
Automated Replay Detection and Multi-Stream Synchronization
Kevin Mekul, BSc

Alpen-Adria-Universität Klagenfurt, Austria
kmekul@edu.aau.at

ABSTRACT
This paper introduces an algorithm for automated replay detection
in CS:GO tournaments. Firstly, it uses a content-based approach
for replay identification in the commentator stream and then the
metadata to synchronize them to the player streams. The provided
metadata for events cannot be used for detecting events in the
streams, because the timestamps of these events are very inaccurate
and differ up to 40 seconds. Furthermore, the algorithm uses a
content-based approach along with the synchronization data to
detect the equivalent scenes in the matching player stream.

1 INTRODUCTION
E-sports are competitions which are only held virtually via video
games. These sports are becoming increasingly popular nowadays.
One of these games is Counter-Strike: Global Offensive (CS:GO),
which is a multiplayer first-person shooter game. The CS:GOWorld
Championship tournament was placed in Katowice in 2018. Each
game is played between two teams of five players. Such events
produce an enormous amount of multimedia data and metadata.
During the tournament, the multimedia data of each game is com-
posed of the commentator stream and ten player streams. It is not
possible to process the material manually and therefore Mediaeval
2019 defined one task: GameStory: The 2019 Video Game Analytics
Challenge [2]. The first part of this task is to find replays in the
commentator stream and the second one to synchronize the streams
and detect the replay scenes at the original player stream. A replay
is a predefined scene of a player stream, which starts and ends with
a logo in the commentator stream. Figure 1 shows this logo. The
final goal is to run the implemented algorithm with the test dataset
(video material of 03-03-2018) and submit up to three solutions.
The processing of multimedia data was developed in Python in
combination with OpenCV [1] and the metadata preparation was
implemented in Java. The detection approach is a content-based
variant and the algorithm can be divided into three steps, but each
step uses the interim result of the step before:

• Replay detection in the commentator stream
• Processing the metadata
• Scene detection in the player streams

This subdivision is necessary, because the first step needs a lot
of time, because the replay detection algorithm runs through the
whole commentator stream and analyzes every frame.

2 REPLAY DETECTION
The tournament the GameStory challenge focuses on ran its course
over three days and there is video material of each gaming day,
which includes the commentator stream and the player streams.

Copyright 2019 for this paper by its authors. Use
permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0).
MediaEval’19, 27-29 October 2019, Sophia Antipolis, France

Figure 1: The replay logo

Every player stream shows the perspective of a specific player. The
commentator stream includes live scenes, replays of interesting
events, statistics and much more. This video has a frame rate that
differs from the player streams. Therefore, the algorithm adjusts the
frame rate to 59 fps. This correction enables an acceptable basis for
the following detection. According to detection speed, I resized the
width to 450 pixels. In addition, the system converts color frames
to gray scale images for further analysis.

A replay contains a specific scene with a pair of logo transitions
and a sweeping off effect at the beginning and the end [4]. This shot
is detected and defined only once, and the algorithm can detect the
starting and endpoint throughout the whole video.

2.1 Detecting replay start
The replay start point detection is always identical. In contrast,
there are five variants of the replay end.

The detection of a starting point is a full frame comparison based
on the structural similarity index, which OpenCV provides. If the
score is higher or equal than the threshold of 0.99, the algorithm
found the start logo. The next step in this process is adding a prede-
fined number to the just found frame number, to get the first frame
after the logo transition. After this step, the algorithm starts at the
adapted frame number to check four regions of interest (ROIs).

The first ROI is the name of the current shown player. The second
one is the small Intel-Logo at the right side of the frame. If a replay
is running, this logo will not be displayed. The third ROI analyses
the current health, which is a number from 100 down to 0. The
algorithm uses this ROI to detect the kill of the currently shown
player. The last ROI analyzes the time.

While detecting the replay starting point it is possible, that no
replay is found after the start replay logo. Because of this reason, the
algorithm checks the first and second ROI. If that scene is no replay,
the found start frame can be deleted and the search process for the
start logo begins again. If the frame difference limit is reached, the
algorithm will stop the search for the ending logo. If a correct start
point for a replay is found, the algorithm will check the replay end
scenarios.



MediaEval’19, 27-29 October 2019, Sophia Antipolis, France K. Mekul

2.2 Detecting replay end
The algorithm includes five end scenarios. The first three scenarios
just stop the replay. The last two stop the current replay and start
a new one. These five scenarios are:

• The standard stopping case for a replay is the logo tran-
sition at the end. This detection is the same as the start
detection, only the adaptation of the frame number is dif-
ferent. The algorithm reduces the frame number with a
predefined number.

• A replay will stop if the current shown player is killed. This
happens, when the health of a player reaches zero. The
algorithm uses the L1-norm of the normalized reference
and the ROI values. If the norm drops below the threshold
value, the current shown player will be killed, and the
replay will stop at this frame.

• A hard shot, every pixel in the frame is black, stops the
replay too. The black frame occurs after a normal frame
and after the black one, a normal frame is shown again but
from another scene. The algorithm detects this case with
the OpenCV method absdiff and stops the replay. The next
replay logo is not marked as a starting point, because it is
the end of the prematurely stopped replay.

• The algorithm for detecting a player change uses the first
ROI and the structural similarity index. The found frame
is the last of the current replay and the next one is the
beginning frame of the new starting replay.

• The system identifies a time jump based on the time ROI
and compares the current time with the time from the 13th
frame before.

The results of replay detection are the frame numbers for begin
and end of a replay and the shown player. The metadata processing
uses these interim results.

3 METADATA PROCESSING
The metadata processing uses the result from the detecting replay
and generates a list with the roundbegin and next_round_begin
frame numbers for the matching player stream. The Java program
reads the replay_begin, replay_end and replay_source values from
the commentator stream results and looks up the suitable match
and round. After that, the algorithm uses the matching match and
round to find the correct round_begin frame number of the player
stream. This process uses the sync-points, but some rounds have
no frame numbers. For that reason, it searches the metadata.csv
for the specific day. This metadata is not usable because it is very
inaccurate. As a result of using the metadata.csv the working time
for the next step is longer. Fortunately, this metadata.csv was never
used, because all detected replays are in rounds with sync-points.

4 SOURCE DETECTION
The replay source detection is the last step of the algorithm and is
implementedwith Python andOpenCV. This step uses the round_begin
numbers to start the detection.

The algorithm compares two ROIs. First, it checks the time of the
found replay starting frame of the commentator stream with the
current time of the player stream until it fits. If the times match, the
middle region of the same frame is checked until the suitable frame

Table 1: Result: test dataset

jc >= precision recall F1 avg. overlap

0.50 0.9744 0.8636 0.9157 0.7458
0.75 0.9487 0.8409 0.8916 0.7595

is found. The algorithm does the same with the replay and frame
of the commentator stream. The detection stops if the matching
start and end frame in the player stream is detected or the next
round begins. The time ROI has one disadvantage: the program
must resize the time of the commentator stream in order to compare
it with the time ROI of the player stream, because the time ROI has
different size in the commentator and the player streams.

The result of this step includes the replays of the commentator
stream and the begin and end frame number of the accurate player
stream.

5 RESULTS AND DISCUSSION
The approach I have chosen was mainly based on content-based
methods. Only the generation of the synchronization part uses
another approach. A Python script and a groundtruth file for the
training dataset was available to check and verify the algorithm.

The next step was to check the algorithm with the test dataset.
All parameters and configurations are the same as in the imple-
mentation step with the training dataset. The described approach
detects 39 replays for the test dataset and the possible matching
source scenes for that. The organization group checked this with a
Python script. Table 1 shows the result.

This task is evaluated in 2 steps. Both, the found replays in the
commentator stream and the found scenes in the player stream
were checked. For the first step, the used methods are precision,
recall and the balanced F1-score. For the second step an average
overlap of the found sequence was computed. One detected replay
is labeled with result ‘None’, because the video stream files of P7
and P10 shows in match 1 and round 1 to 4 the same player on that
day.

ACKNOWLEDGMENTS
Special thanks to the organization group especiallyMathias Lux and
thanks to Michael Wutti for the provision of the synchronization
points [3].

REFERENCES
[1] Joseph Howse. 2013. OpenCV computer vision with python. Packt

Publishing Ltd.
[2] Mathias Lux, Michael Riegler, Duc-Tien Dang-Nguyen, Pirker Johanna,

Martin Potthast, and Pål Halvorsen. 2019. GameStory Task at Media-
Eval 2019.. In Proceedings of MediaEvel 2019.

[3] Michael Wutti. 2018. Automated Killstreak Extraction in CS: GO
Tournaments.. In Proceedings of MediaEvel 2018.

[4] Zhao Zhao, Shuqiang Jiang, Qingming Huang, and Guangyu Zhu. 2006.
Highlight summarization in sports video based on replay detection.
In 2006 IEEE international conference on multimedia and expo. IEEE,
1613–1616.


	Abstract
	1 Introduction
	2 Replay detection
	2.1 Detecting replay start
	2.2 Detecting replay end

	3 Metadata processing
	4 Source detection
	5 Results and discussion
	Acknowledgments
	References

