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ABSTRACT
In this year’s MediaEval task, Emotion and Theme Recognition in
Music Using Jamendo, the goal is to assign emotion and theme tags
to songs. In this paper, we describe our–Team TaiInn (Innsbruck)–
approach for this task. We use a neural network model consisting of
both convolutional and recurrent layers and utilize spectral, high-
level as well as rhythm features. Our approach achieves a ROC-AUC
score of 0.723 on the provided test set.

1 INTRODUCTION
At this year’s MediaEval workshop, the task Emotion and Theme
Recognition in Music Using Jamendo deals with detecting mood and
theme tags for songs that are described by audio descriptors. Those
songs are drawn from Jamendo1, and collected in a data set created
by Bogdanov et al. [3]. The tags that have to be predicted cover
a wide range of emotions and themes, and include tags like sad,
heavy, relaxing, and children. More details can be found in [1].

We use a neural network model to approach this task and show
that our model achieves a performance that is comparable to the
provided baseline (ROC-AUC of 0.723 for our best run), but requires
much fewer training epochs to reach this (16 vs 1,000). We also
show that generating more training samples by drawing random
windows from the providedmel-spectrograms improves results, and
that incorporating high-level features into the model architecture
reduces the number of needed epochs in training while giving
almost the same results. Our code is available on GitHub2.

2 APPROACH
Our approach to the task is an extension to the CRNN (convolu-
tional recurrent neural network) model proposed by Choi et al. [4].
Hence, we utilize a neural network consisting of a combination
of convolutional, recurrent as well as dense blocks. The network
is structured in a way that allows to efficiently combine different
types of features, similar to the approach used by Zangerle et al.
[6] for combining low- and high-level features in a neural network
model for the task of hit song prediction.
†authors contributed equally to this work
1https://www.jamendo.com
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In the remainder of this section, we will explain our approach to
the task in detail. Section 2.1 describes how we use the provided
data to train our models. Section 2.2 explains the structure of our
model. Finally, Section 2.3 details the runs we submitted for the
task.

2.1 Data
For training ourmodels, we used both the precomputedmel-spectro-
grams and audio features computed with Essentia [2] that were
provided by the task organizers. From those, we utilized the mel-
spectrograms as well as high-level features (like genre and dance-
ability), and rhythm features (beats per minute). As training data,
the task organizers provided a set of 9,949 songs. We used two
different training sets. The Base training set is the set provided by
the task organizers. For the mel-spectrograms, we use a window of
width 1,366 around the temporal center of the song. For the Ran-
domSampling training set, on the other hand, we generated more
training samples by taking five random windows of width 1,366
from each song. This training set therefore provides us with 49,745
training samples.

2.2 Model
Our approach uses a neural network model consisting of convolu-
tional, recurrent, and dense layers. The mel-spectrograms are fed
into a series of convolutional layers, followed by two recurrent lay-
ers using GRU (gated recurrent unit) cells. High-level and rhythm
features bypass this part of the network and directly feed into
the dense part that comes after the recurrent layers. A schematic
overview of the base network structure is given in Figure 1. Some
of our submissions feature modifications to this structure. Those
modifications are described in more detail in Section 2.3.

Every convolutional block consists of a 2D convolutional layer
followed by batch normalization, ELU activation and a max pooling
layer. After every block, a dropout of 10% is applied. The convo-
lutional layers have kernel sizes of (3, 3), whereas the pooling
layers have pool sizes of (2, 2), (3, 3), (4, 4), and (4, 4). The
first convolutional layer uses 64 filters, whereas the latter three
layers use 128 filters. This is followed by two recurrent layers using
GRU cells. Both of these layers use tanh activation. Following that,
the output of the second GRU layer is concatenated with the high-
level and rhythm features and fed into two dense layers. The first
dense layer has 128 units and uses tanh activation, whereas the
second and final dense layer has 56 units—the number of possible
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Figure 1: Schematic of our network structure.

labels—and uses sigmoid activation. A dropout of 30% is applied
after the first of the dense layers.

The model is trained using the Adam optimizer [5]. As loss
function, we used binary cross-entropy. The output of this model
is a vector of probabilities, where every entry in the vector holds
the probability for one of the labels. To then decide which labels to
assign to a given song, we determine the best probability thresholds
for every label individually, using the provided validation set. For
this, we use a variation of the elbow method on the ROC curve: We
compute the per label ROC curve on the given validation set. Based
on this ROC curve we compute the straight line between the left
most point and the right most point. This line is used as a reference
to find the point on the ROC curve that has the largest orthogonal
distance to that line. We then use the corresponding threshold as
our decision boundary for that label.

2.3 Submissions
Using the data and model described above, we build multiple sub-
mission runs:

• Run #1: The base model, but without the high-level and
rhythm features, trained on the Base training set.

• Run #2: The base model, but without the high-level and
rhythm features, trained on the RandomSampling training
set.

• Run #3: The base model, but without the high-level and
rhythm features, and with an attention mechanism after
the second recurrent layer, trained on the RandomSampling
training set.

• Run #4: The base model, as described in Section 2.2, trained
on the RandomSampling training set.

• Run #5: The base model, with an attention mechanism after
the second recurrent layer, trained on the RandomSampling
training set.

3 RESULTS AND ANALYSIS
The results for the submissions described in Section 2.3, as well as
how many epochs were used for training the respective model, are
summarized in Table 1. As can be seen, all of our runs outperform
the popularity baseline, but do not manage to beat the VGG-ish
baseline. The best performing runs are run #2 and #3, which both
perform very close to the VGG-ish baseline in terms of ROC-AUC

Table 1: Evaluation results for our runs and for the provided
baselines. Submitted runs are shown in bold.

Run Epochs ROC-AUC PR-AUC F1 (micro) F1 (macro)

Popularity - 0.500 0.032 0.057 0.003
VGG-ish 1,000 0.726 0.108 0.177 0.166

#1 8 0.549 0.043 0.071 0.071
#1 16 0.700 0.080 0.103 0.106
#2 16 0.719 0.110 0.104 0.114
#3 16 0.723 0.110 0.108 0.111
#4 8 0.650 0.069 0.083 0.085
#4 16 0.685 0.090 0.095 0.101
#5 16 0.684 0.089 0.099 0.102

and PR-AUC, but significantly worse in terms of F1 score. On the
other hand, our runs require much fewer training epochs to achieve
those results. The fact that ROC-AUC and PR-AUC are similar but
F1 is worse suggests that our choice of probability thresholds for
label assignments is suboptimal.

Comparing the results for our runs which use both spectrograms
as well as high-level features as input (#4, #5) with the runs that
use only mel-spectrograms (#1, #2, and #3), we observe that the
models without high-level features seem to perform better overall.
Despite this, the models using high-level features learn faster, with
the difference between 8 and 16 epochs of training being much
smaller for run #4 than it is for run #1.

We can also see that random sampling for increasing the number
of training samples helps to improve results. The PR-AUC increases
from 8% in run #1 to 11% in run #2, which only differ in that run #2
uses random sampling while run #1 does not.

4 SUMMARY AND OUTLOOK
In this paper, we described our approach to the Emotion and Theme
Recognition in Music Using Jamendo task at MediaEval 2019. Our
best approach achieved a ROC-AUC score of 0.723, which is slightly
worse than the best baseline provided by the task organizers (0.726),
but needs much fewer training epochs than the baseline. Potential
future work on this approach includes trying different ways to
determine probability thresholds for label assignments and applying
this approach to other data sets for the same task.
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