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Abstract. The theory of learning objects allows one to create edu-
cational entities that follow an object-oriented paradigm and can be
adapted efficiently for rapid creation of courses, training modules as well
as textbooks. In this paper, we introduce one such repository of learning
objects for the field of quantum cryptography. These learning objects
are leveraged into automatic generation of personalized and adaptive
textbooks built on user preferences, learning styles, and desired learning
outcomes. The textbooks are generated using the highly customizable
platform of Jupyter notebooks using several digital assets, coding envi-
ronments, interactive visualizations, and self-graded quizzes and tests.
The presented approach is general and can be easily adopted for the
development of adaptive textbooks for other disciplines.
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1 Introduction

With the potential arrival of quantum computers that can compromise cyber-
security infrastructure, interest in quantum cryptography education is rapidly
increasing across institutions. The interdisciplinary nature of this area coupled
with the lack of adequate course textbooks and time constraints make it challeng-
ing for instructors to design courses that meet the learning outcomes required
by the various cybersecurity certifying agencies. Consequently, instructors usu-
ally resort to manually synthesizing heterogeneous, brittle, lesson plans from a
variety of textbooks, which are often too rigid to accommodate students with
diverse learning preferences and backgrounds and not amenable to effectively
track the required learning outcomes.

Serious games and cybersecurity learning object repositories (LORs) [2, 16,
21, 7, 15] have been recently developed to address some of the above limitations
of traditional pedagogical models for quantum cryptography education. Serious
game based learning approaches gamify only a narrow set of topics compared

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 V. Bommanapally et al.

to the high cost of building these games spanning an entire subject area. While
the LORs [2] cover a vast number of cybersecurity concepts in their learning
objects and relate them to the learning outcomes specified by several certifying
agencies, they provide limited support to automatically generate textbooks of
learning objects for a particular course. Often, instructors have to search/browse
these repositories to manually collate the materials and organize them into a
textbook based on associated outcome and concept dependencies.

This paper presents a quantum cryptography learning object repository (QCL)
that we have developed and deployed in an LOR called Clark [2] and describe an
automated approach to automatically generate adaptive quantum cryptography
textbooks of learning objects (QCTs) from this repository. The quantum cryp-
tography learning objects are designed using Python Jupyter notebooks and
include several digital assets, coding environments, interactive visualizations,
and self-graded quizzes and tests. Our approach for generating QCTs is inspired
by the earlier rule-based frameworks [14, 23]. Given set of learning outcomes,
student preferences and backgrounds, a QCT consisting of a set of instantiated
learning objects is automatically generated such that the successful completion
QCT satisfies the input (desired) learning outcomes. To the best of our knowl-
edge, our work is the first to apply rule-based approaches to learning objects to
generate adaptive textbooks for quantum cryptography. Further, the generated
QCTs are versatile in providing a wide range of coverage similar to LORs as
well as provide dynamic learner interaction similar to serious games due to the
underlying Jupyter notebook features.

Achieving the desired learning outcomes using a large QCT without addi-
tional assistance can be challenging. Since QCTs are outcome-driven, they also
include an evaluation engine to assess student performance with respect to a
given outcome. In order to guide a student through the generated QCT in an
efficient and challenging manner, we present a novel QCT traversal algorithm
that uses student performance at each step to choose the next set of learning
objects so that the desired learning outcomes can be achieved. The proposed
approach has been used to synthesize various QCTs ranging from basic quan-
tum computing fundamentals about tensor products to the entanglement based
quantum key exchange protocol, E91.

The rest of the paper is organized as follows. We briefly describe related
works, next. Section 2 describes the quantum cryptography learning object
repository, QCL. The QCT synthesis framework is described in section 3. Section
4 describes the QCT traversal algorithm and its application to a QCT covering a
non-trivial case study of tensor products used for multi-qubit quantum systems.
Section 6 concludes the paper along with possible future work.

1.1 Related Work

Adaptive web-based textbook generation has a long and rich history in e-learning.
Rule-based frameworks have been extensively investigated by several earlier
works to automatically synthesize course books [14, 23] for a given set of learn-
ing concepts, scenarios, and pedagogical goals. Large learning object repositories
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parameterized by concepts and learner preferences and backgrounds have been
developed by several works [1, 2, 6, 3, 17] for computer science education. Infor-
mally, a generative learning object denotes a family of related LO instances that
can be automatically generated on demand by instantiating the associated meta-
data parameters. While the learning object review instrument [22] to evaluate
these repositories includes adaptation as one of its nine criteria, they provide lim-
ited support ([6] is an exception) for adaptivity as compared to the rule-based
frameworks.

Our learning repository QCL is a part of a recently developed LOR [2] where
learning outcomes are cross-indexed with those of several well-known cyberse-
curity education certifying programs. While our QCT generation framework is
largely inspired from earlier rule-based approaches, our proposed approach, uses
learning outcomes (in addition to preferences, concepts, and backgrounds) to
generate QCTs. Using learning outcomes to synthesize textbooks requires QCL
to be designed to include measurable assessment instruments for every learning
object in QCL. We also develop an outcome-driven algorithm to traverse a QCT
in an efficient manner. To the best of our knowledge this is the first learning
object repository for quantum cryptography. QCL is also unique in CLARK in
using Python Jupyter notebooks to support interactive code, visualizations, and
self-graded quizzes and exams.

2 Quantum Cryptography Learning Object Repository:
QCL

2.1 Clark

Clark is a digital library of learning objects developed mainly through fund-
ing from the National Security Agency and the National Science Foundation. It
consists of learning objects that have been contributed from over fifty universi-
ties across the United States on various topics in cybersecurity. A collection of
learning objects, developed by some of the authors of this paper, on Quantum
Computing and Cryptography is available on Clark for free download.

Clark organizes the learning objects into five classes, based on completion
times, called nanomodules, micromodules, modules, units and courses; units,
being over 10 hours in length, often consist of collection of smaller modules and
a course consists of multiple units. Each class of learning object is accompanied
with learning outcomes that tell the user what they will achieve upon the suc-
cessful completion of the modules and exercises therein. These learning outcomes
are mapped to various cognitive levels of Bloom’s taxonomy thereby providing
a learner an idea of the organization of the learning material and its complexity
and emphasis. Clark also maps various modules to different frameworks such as
CAE-CD and CAE-CO [5], NICE cybersecurity workforce framework [4], etc.
delineating the relationship of modules to knowledge units in those frameworks.

The Quantum Computing and Cryptography learning objects, in particular,
are written in highly customizable Jupyter notebooks. Jupyter notebooks have
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become the defacto standard for quantum programming as they allow for an
easy integration of mathematics, code as well as visual objects that can then
interface to external APIs (such as the IBM simulator or quantum computer)
with minimal effort. Python was the chosen language for the development of
these notebooks since Python is a popular language for quantum programming
and well as the cybersecurity domain. While each Jupyter notebook themselves
supports two types of cells - markdown and code, we further logically organize
these cells into various categories. Therefore, each Jupyter notebook cell contains
one of the following categories: textual explanations of topics, examples, sample
code, (interactive) simulations, (interactive, self-graded) exercises, quizzes, etc.
The notebooks are accompanied with final quizzes (F-Q) that are intended to
be used by instructors in a graded setting. In total, there are 28 notebooks at
present that cover the basic review of linear algebra, basic quantum concepts
and quantum cryptography protocols forming three units.

Figure 1 shows various categories of cells available in Jupyter notebooks in
QCL on Clark.

(a) Static cells with definitions, examples
and self-assessment quizzes. (b) Interactive cell with simulation of Bloch

sphere.

Fig. 1: Illustration of various categories of cells available in the Jupyter notebooks
for QCL.

3 Generating QCTs Guided by Outcomes, Preferences

This section describes our procedure for generating quantum cryptography text-
books, QCTs, using the learning object repository QCL for a given set of learning
outcomes, student preferences, and backgrounds.
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3.1 Instrumenting QCL

The modules of repository QCL are available in some random order on the Clark
[2] website. In order to use QCL, students usually have to perform a keyword
search to identify modules of interest and go through them in some chosen order.
The QCT generation algorithm, described here, aids the user in automatically
collecting relevant materials from the QCL and present them in a coherent man-
ner aimed at achieving the desired learning outcomes. To generate QCTs, all
the cells in the QCL are instrumented with data obtained from domain experts
describing the relations of each cell to other objects, concepts, and outcomes
along with the digital assets included in the cell.

Fig. 2: Interactive simulation of BB84 protocol.

The metadata in each notebook cell of the QCL consists oflocal and global
data members related to that cell and the module containing that cell, re-
spectively. The local data members include information such as the cell-id,

cell-concepts, cell-outcomes, and cell-prerequisites, i.e., outcomes that
must be met in order to use this cell. The local data cell-type, can be one of
– text, code, image, symbolic example, numeric example, video, widgets, quiz,
auto-graded-simulation, auto-graded-quiz, code-IDE, code-IDE-wtests. Users can
write Python programs and test them using a given test suite in cells of type
code-IDE, and code-IDE-wtests. The numeric example, auto-graded-quiz, widget,
code-IDE, code-IDE-wtests cells allow users to interact with a cell by modifying
the cell contents whereas text, code, symbolic example, image, quiz, and video
cells allow more limited forms of user interaction.
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For example, figure (1b) depicts a Bloch sphere widget cell where users can
modify values for parameters theta, phi, azimuth, and elevation using slid-
ing scales to generate different qubit states visualized in the sphere. Figure 2 de-
picts an auto-graded-simulation cell of the BB84 quantum key exchange protocol
where users can modify qubit values and orthonormal bases to orient, measure
qubits and enter the resulting secret key answer to be checked for correctness.

The Boolean valued local data cell-interactive denotes whether a cell is
interactive or not. A cell has to be interactive to be used to assess a learning
outcome. For instance, cell depicted in 2 with the auto-grader is used in QCL to
determine the outcome about users having a basic understanding of the BB84
protocol. The auto-graded quizzes, numeric-examples, and code-IDE-wtests cells
in the QCL are used to determine the learning outcomes of the modules con-
taining these cells.

The local data cell-alternates provides a list of alternate cells that are
semantically equivalent to the current cell but with cell types different than the
current cell. Alternate cells are used to adapt QCTs to student preferences and
also for suggesting next cells based on student performance as described in the
next section.

(a) (b)

Fig. 3: (a) Snapshot of a module cell metadata. (b) Modules and corresponding
outcomes.

The global data members of a cell include the containing module-title,

module-outcomes, and module-prerequisites i.e., other modules whose out-
comes must be achieved in order to achieve the outcomes of the current module.
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As an example, the figure (3a) depicts the data members with the first cell
in the module 8 of QCL. The figure (3b) shows other QCL modules, viz. 1, 2,
and 4, that are related to the module 8 along with the outcomes of the modules.

3.2 Generating QCT from Instrumented QCL

The main steps to generate a QCT from the instrumented QCL are the following.

– QCL Instrumentation Pre-processing: The integrity of the QCL instru-
mentation is verified using a variety of lightweight properties such as: a) all
global data in all cells in a module are identical, b) outcomes of all the cells
of a module belong to the outcomes of that module, c) type checking of cells
along with their alternates. Next, module and outcome dependency graphs
are built from the cell data. Lastly, these graphs are verified using properties
such as: a) absence of dangling edges and cycles, b) module dependencies are
a projection of outcome dependencies and that c) there exist one or more
auto-graded quiz cells (FQ) in each module that interactively evaluate all
the outcomes that module. The semantically verified cells and the graphs are
used to generate QCTs subsequently. Note that the verification is a one time
activity that needs to be performed only when QCL repository is updated.

– Identify QCL Learning Objects: Given a set of outcomes, the QCT
mode, and a ranked list (of student preferences whose elements are cell
types), a forest of relevant QCL learning objects are identified and used to
generate the corresponding QCT. The building blocks of a QCT can either
be QCL modules or QCL cells and this is specified by the QCT mode input.
To build a QCT based on QCL modules, modules whose outcomes include a
given input outcome are identified. A reverse topological sort of the module
dependency graph starting with each of these modules (with ties among the
modules being broken arbitrarily) produces a linear chain of modules which
are then merged while obeying module dependencies to create a single chain
of QCL modules.

– Generating a QCT: The linear chain of modules obtained from the previ-
ous step are then organized into a hierarchy of nano-, micro- modules, units,
and courses based on the estimated times to output a QCT whose successful
completion is guaranteed to satisfy the input outcomes. In order to incor-
porate the student preferences in a QCT, for each cell in the linear chain,
the cell is retained if it matches the highest ranked input student preference;
otherwise we replace it by a better matching alternate cell, if one exists.
Certain modules are pruned from the QCT based on student background.

A QCT can also be built from QCL using individual cells instead of entire
modules using a similar procedure. In this case, the outcome dependency
graph is used instead of the module dependency graph. This often, leads to
more focused QCTs with lesser cells taking lesser instruction time. Student
background is used to prune cells as well as modules in this case as well.



8 V. Bommanapally et al.

3.3 An Example QCT: Tensor Products

Primarily, tensor products are used to develop a vector representation for quan-
tum systems that consist of multiple quantum bits and gates. They are also
useful tools in determining whether two or more quantum systems are in an en-
tangled state or not. Since any computing system that does useful work typically
works on multiple qubits at any given time, tensor products are central to the
study of quantum theory. Because of their importance, we have chosen module
8, Overview of Tensor Analysis, as the running example. Consider two outcomes
from this module - “8.2 Compute Tensor products” and “8.3 Implement program
that computes Tensor product of two matrices”. These outcomes have dependen-
cies in QCL modules 1, 2, and 4 (see figure 3b). These four modules are depicted
in the figure (4a) along with their outcomes. To generate QCTs involving these
modules, first they are instrumented and sanity checks mentioned above were
performed. Next, the module and outcome dependency graphs, depicted in fig-
ure (4a) and figure (4b) were generated and statically verified for the properties
described above to obtain well-formed QCLs and graphs.

(a)
(b)

Fig. 4: (a) Module dependency graph, (b) Outcome dependency graph for out-
come 8.2. at cell level detail. (Note that all the dependencies including transitive
dependencies are shown in the graph for clarity.)

Inputs consisting of outcome 8.2, QCT mode specifying modules as building
blocks, text cell-type as the highest preference and a novice user background
are used to generate a QCT that includes all of the cells of QCL module 8
along with those of the QCL modules 1, 2, and 4 on which module 8 depends.
The reverse topological sorting of the module dependency creates a QCT with a
linear chain of modules beginning with 12 cells of module 1, followed by 10 cells
in module 2, followed by 18 cells of module 4, and ending with 11 cells of module
8. Since it is the case that either all these cells satisfy the highest preference or
there exist no alternate cells that do, none of the cells in the QCT is replaced.
Finally, the generated QCT is partitioned into two nanomodules (1 and 2), and
2 micromodules (4 and 8) based on estimated times.
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Fig. 5: (a) Cell path with learner preference “text” and outcome “8.2” arrows
showing possible alternate cells for cell “m8-1”, (b) Cell path for learner prefer-
ence “example”

Next, consider generating a QCT using the same inputs as above, but chang-
ing the QCT mode to use QCL cells instead of QCL modules as building blocks
of QCT. The outcome dependency graph in figure (4b) is used in this case to
generate the QCT consisting of only 11 QCL cells across the four QCL modules
1, 2, 4, and 8, which is shown in figure (5a). We can also generate a QCT by
changing the input to specify highest preference cell-type to be a numerical-
example instead of text and this will lead to the replacement cell “m8-1” by
cell “m8-4” shown in figure (5b) which are the alternate cells of “m8-1”. Note,
here m8-1 is cell number 1 of module 8. If we were to provide the preference [
numerical-example > example > text ], then several alternate cells will be used
to generate the final QCT. The resulting linear chain in the QCT is shown in
the figure (5a) with right branch showing preference as example. These cells are
organized based on their estimated time into a single nanomodule.

Note that building a QCT for outcome 8.2 using QCL modules leads to QCT
with 50 cells whereas we need only 11 cells if we use QCL cells to generate the
QCT, which is a saving of 39 cells.

4 Dynamic QCT Traversal Using Student Performance

Achieving the desired learning outcomes by serially following a QCT that is
constructed solely based on dependencies can be challenging. For example, it is
conceivable that students may want to study a concept in different contexts to
achieve the required outcome; this may also involve attempting to achieve a spec-
ified outcome in conjunction with others. For example, an outcome “understand
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the basics of a quantum protocol” such as E91 may be achieved in conjunction
with an outcome that requires to create a functional prototype of this protocol.
Consequently, in this section, we present a novel QCT traversal algorithm that
uses student performance at each outcome assessment step to choose the next
set of learning objects such that the desired outcomes can be achieved in an
efficient manner.

The proposed traversal algorithm works on a quiz dependency graph,Q, whose
nodes are QCL auto-graded quiz cells, (recall from section 3.2 that these cells
(FQ), taken together assess all the outcomes of the module containing them).
The information at each node ci of Q, R(ci), is the set of outcomes that are
assessed by that node. Each node ci, in Q, is assigned a node weight, vi as
follows: vi = 〈 1

|C(oj)| , oj ε R(ci)〉. Here |C(oj)| is the number of nodes in Q that

contain an unmet outcome oj for all oj that are in node ci.

There is a labeled edge (ci, cj , wi,j) in Q from node ci to cj with weight
wi,j if some outcome in R(cj) depends on an outcome in R(ci). Let NRj,i be the
number of outcomes common to ci and cj and Nj,i be the number of outcomes in
cj that depend on some outcome in ci. The dependency overlap between node ci
and cj is, D(ci, cj) = Nji−δ∗NRji; where δ = 10−ceil(log(N)), is the redundancy
factor and N is the number of outcomes in Q.

Given node weights and the dependency overlap, the edge weight is given by,

wi,j =
(

D(ci,cj)
|Rcj | ∗ vj

)
.

A quiz cell dependency graph involving outcomes from the QCL modules 1,
2, 4, and 8 discussed earlier is depicted in figure 6.

Fig. 6: Quiz cell dependency graph
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4.1 Adaptive QCT Traversal Algorithm

The adaptive traversal through quiz cell dependency graph is achieved using the
traversal algorithm given below. The proposed algorithm is presented for cell
level navigation. However, it can be easily adapted to the case where student
prefers module level traversal of the QCT.

Algorithm
Inputs: Textbook QCT, Quiz Dependency Graph (Q)
Steps:

1. Pick next node ci. If there are one or more unvisited source nodes, then
choose one with the maximum node weight. Otherwise, pick the next node
that has the maximum edge weight from a visited node.

2. Generate a new QCT with target outcomes R(ci) from the input QCT.
3. Assess outcomes R(ci) using the quiz cell corresponding to ci.
4. If some of outcomes in R(ci) are achieved, update Q by re-calculating the

node and edge weights. Node weights are modified as the number of unmet
outcomes change and consequently edge weights change as well. Remove
nodes with 0 node weight, edges among nodes with independent or disjoint
outcomes. Go to step 1 and repeat if Q is not empty.

5. If one or more outcomes R(ci) are not met, go to step 2.

The above algorithm traverses a given QCT by starting with quizzes which
cover unmet outcomes that do not have any prerequisites. If there is a choice
among such quizzes then those covering the largest number of unmet outcomes
is chosen. The student is given a new QCT with cells related to the outcomes
in the chosen quiz and their performance is evaluated on the quiz after going
through the new QCT. If the student succeeds in the quiz, the graph is updated
to reflect the outcomes that are already met. Then, the next quiz is chosen based
on maximum edge weight, which picks a quiz with least redundancy in terms
of satisfied outcomes among all candidate quizzes and has the most number of
prerequisites satisfied among all the candidate quizzes. Note that all prerequisites
must be met for every candidate quiz.

Example: Consider the quiz dependency graph Q in figure 6 involving the
auto-graded quizzes from the QCL modules 1, 2, 4, and 8. Each node in the graph
represents a quiz and its associated outcomes. The node FQ: 2.10 represents
question number 10 from the final quiz for module 2 and so on. The node weights
and edge weights are calculated. The initial node weights of two base nodes FQ:
2.9 and FQ: 2.10 are 5/6 and 11/6 respectively. Hence FQ: 2.10 is chosen initially
being node with maximum edge weight. After the student gains knowledge in
the QCT generated, the outcome is measured by providing the quiz FQ: 2.10.
Once the quiz is solved successfully, all the node weights are re-calculated and
the outcomes are marked met in the other available quiz cell. Hence the value
of node FQ: 2.9 is 0 once the student achieves the outcomes from FQ: 2.10
similarly, value of node FQ: 2.4 is 1/2. Next, the edge weights of the adjacent
nodes are calculated as shown on the edges from FQ: 2.10 in the above figure.
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The edge with maximum weight i.e, FQ: 2.11 is chosen as next best quiz for
the student. Accordingly, the related QCT is generated from QCL based on the
outcomes and student preferences. The procedure is repeated until the student
successfully achieves all the target outcomes.

5 Conclusion

In this paper, we presented a new method to generate adaptive quantum cryp-
tography textbooks (QCT) from a repository of quantum cryptography learning
objects. The textbook generation is customized based on the learning outcomes,
student preferences and the background of the student. Each learning object
is instrumented with metadata that is used to generate new textbooks. A case
study shows that the outcome level dependency reduces the overhead of cells
required to achieve a learning outcome compared to module level dependency.
We also introduce an adaptive QCT traversal algorithm to further guide the
students through the generated QCTs based on their performance on quizzes.
This helps the student achieve the desired outcomes efficiently.

In future work, we will extend our work with reinforcement learning tech-
niques and automate the generation of QCTs. Further, QCTs generated will
be supplemented with a query engine for each lookup of learning objects for a
just-in-time learning process.
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