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Abstract.

The management of type 1 diabetes mellitus (T1DM) is a burden-
some life-long task. In fact, TIDM individuals are request to per-
form every day tens of actions to adapt the insulin therapy, aimed at
maintaining the blood glucose (BG) concentration as much as possi-
ble into a safe range coping with the day-to-day variability of their
life style. The recent availability of continuous glucose monitoring
(CGM) devices and other low-cost wearable sensors to track impor-
tant vital and activity signals, is stimulating the development of de-
cision support systems to lower this burden. Modern deep learning
models, trained using rich amount of information, are a suitable and
effective instrument for such purpose, especially if used to predict
future BG values. However, the high accuracy of deep learning ap-
proaches is often obtained at the expense of less interpretability.

To surpass this limit, in this work we propose a new deep learn-
ing method for BG prediction based on a personalized bidirectional
long short-term memory (LSTM) equipped with a tool that enables
its interpretability. The OhioT1DM Dataset was used to develop a
model targeting future BG at 30 and 60 minute prediction horizons
(PH). The accuracy of model predictions was evaluated in terms of
root mean square error (RMSE), mean absolute error (MAE), and the
time gained (TG) to anticipate the actual glucose concentration.

The obtained results show fairly good prediction accuracy (for
PH = 30/60 min): RMSE = 20.20/34.19 mg/dl, MAE = 14.74/25.98
mg/dl, and TG = 9.17/18.33 min. Moreover, we showed, in a repre-
sentative case, that our algorithm is able to preserve the physiological
meaning of the considered inputs.

In conclusion, we built a model able to provide reliable glucose
performance ensuring the interpretability of its output. Future work
will assess model performance against other competitive strategies.

1 INTRODUCTION

Diabetes is a chronical metabolic disease in which patients are no
longer able to effectively control blood glucose (BG) concentration
[2]. In particular, type 1 diabetes mellitus (T1DM) is characterized
by an autoimmune attack on the pancreatic S-cells resulting to im-
paired insulin production. As a consequence, people with T1DM are
required to manage their glycemia to keep it within the safe range
(i.e. BG € [70, 180] mg/dl) without incurring in dangerous complica-
tions induced by hypoglycemia (BG < 70 mg/dl) and hyperglycemia
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(BG > 180 mg/dl). Such a burdensome process can be eased by in-
tegrating in T1DM therapy newly developed decision support algo-
rithms [15] [3]. Specifically, methodologies based on deep learning
aimed to predict future BG levels [6] represent a unique way to equip
people with TIDM with an effective tool to proactively tackle the
shortcoming of adverse events.

The increasing amount of data that can be easily collected by sen-
sors continuously monitoring BG levels (CGM), insulin infusion,
and physical activity, just to mention a few, enables researchers to
build new BG prediction algorithms that are effective, personalized,
and able to empower T1DM management [4]]. In particular, in 2020,
Marling et al. [[13] started the second edition of the Blood Glucose
Level Prediction (BGLP) Challenge, i.e., an open competition aimed
to promote and facilitate research in this field. Alongside with the
competition, the second version of the so-called OhioT1DM Dataset
was released. In particular, by including CGM recordings, insulin in-
fusion logs, daily event reporting, and patient vital parameters’ mon-
itoring, this dataset represents a unique source of data that can be
used for the purpose.

In this paper, we present a new BG level prediction method based
on deep learning that we developed and submitted to the second
BGLP Challenge. Specifically, given the complexity of the problem
at hand and the "temporal” nature of the feature set, here we trained
a long-short term memory (LSTM) [11]] neural network targeting fu-
ture BG levels. Even if recurrent neural networks such as LSTMs
are known to achieve good performance for the specific task of BG
prediction [14]], they lack of interpretability. In fact, when develop-
ing models for TIDM decision support, there is the need of provid-
ing transparent models able to produce reliable but also interpretable
predictions [1]]. To the best of our knowledge, current state-of-the-
art algorithms for BG prediction based on LSTMs have never been
interpreted to explain the model “rationale” behind its outcomes. As
such, the aim being equipping our model with this feature, we ex-
ploited SHapley Additive exPlanations (SHAP), i.e., a newly devel-
oped approach to interpret deep learning model predictions [12]. This
represents a novelty in the field and offers useful insights on the use
of recurrent neural networks for TIDM management.

2 DATASET PREPARATION
2.1 Dataset description and preprocessing

The model was trained and evaluated on data obtained from the
updated OhioT1DM Dataset developed by Marling et al. [13]. In
the specific, data from 6 people with TIDM were provided. These
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anonymous people (numbered as 540, 544, 552, 567, 584, and 596)
wore Medtronic 530G and 630G insulin pumps and Medtronic En-
lite CGM sensors during an 8-week data-collection period. They re-
ported their meals and other life-event data (time of exercise, sleep,
work, stress, and illness) via a custom smartphone app. Furthermore,
additional physiological data were collected by a Empatica fitness
band, including galvanic skin response, skin temperature, and mag-
nitude of acceleration.

In the training dataset, several intervals of missing values were
observed. Such discontinuities reduce the number of training data
available but also compromise the dynamical structure of the data,
thus causing a bad impact on the training procedure. Because of this,
a first order interpolation was performed, on the training set only, on
the missing portions that were shorter than 30 minutes.

The data were re-sampled onto a uniform time grid with regular
intervals of 5 minutes for training and testing the model. Each sample
is placed in the new grid at the closest timestamp with respect to its
original timestamp. The final prediction obtained was then realigned
to the original timestamps by reassigning every predicted sample to
the original timestamps, inverting the re-sampling procedure.

2.2 Feature extraction

Deep learning models, such as the one used in this work, are able to
deal with raw data without resorting to manual feature engineering.
However, this is in general true when large amount of data are used
for their training. Therefore, given the limited size of the dataset at
hand, we resorted to manual feature engineering. This is furtherly
substantiated by several tests that we performed during our study
(not reported here for the sake of simplicity), which confirmed that,
using the extracted features described in the following, we were able
to improve model performance.

An initial observation of the data revealed that the information reg-
istered by the fitness band were partial or incomplete in the major-
ity of the people. Therefore, we decided to discard these signals. As
such, along with the CGM measurements, we considered the follow-
ing signals as input to our predictive algorithm: the injected insulin
as reported by the pump, the reported meals and the self-reported
physical exercise.

Since whenever a meal is consumed, an insulin bolus is injected
to counter the post-prandial hyperglycemic excursion the two signals
(meals and insulin) tend to be highly correlated. Therefore, to try to
overcome this problem, we generated a new signal consisting of only
the correction boluses (INS¢), determined as the injections of insulin
that are administered at a time of minimum 90 minutes after a meal.

A consumed meal or an injected insulin bolus do not impact the
BG levels immediately. Instead, their effect can only be observed
after a minimum time of 30-60 minutes. Similarly, the impact of
physical activity has a delayed effect on the BG levels [16]. Be-
cause of this, the signals of injected insulin (INS), INS¢, reported
meals (MEA) and physical activity (PA) are transformed to better
account for the underlying physiological dynamics. The transforma-
tion consisted of a 2"? order low-pass filtering with impulse response
h(t) = Xte ', where we set A=0.02. This procedure has been
adopted in literature to produce feature sets for the development of
ML algorithms for T1IDM decision support [3]] [15]. Additionally, a
transformation of the CGM signal is obtained using the dynamic risk
[7]l, which empowers the model with additional features that capture
the dynamics of the CGM signal (e.g., glycemic variability).

In summary, the following features were considered: CGM, DR,
INS, INSc, MEA, and PA.

3 METHODS
3.1 A Bidirectional LSTM to Predict Future BG
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Figure 1. Scheme of the implemented bidirectional LSTM.

As introduced, BG level prediction is a very challenging and com-
plex task. By analyzing the nature of our dataset, it is natural to think
that proper modeling of the temporal between-feature dependencies
is crucial to effectively solve the problem at hand. For this reason,
in this work we decided to adopt an LSTM-based model architecture
since LSTMs are well-known in the literature to be the ideal choice
to build a predictive model for time series [9]. An LSTM consists
of a set of recurrently connected blocks, known as LSTM memory
cells. Each LSTM cell consists of an input gate, an output gate, and
a forget gate. Each of the three gates can be thought of as a neuron,
and each gate achieves a particular function in the cell. In particular,
LSTM:s are able to exploit learned temporal dependencies to predict
the future output according to their previous states, thus well-fitting
the purpose of this work. A common drawback of LSTM networks is
that, by processing the input in a temporal order, they tend to produce
as output, something that is strongly based on forwards dependencies
only. To solve this issue, a bidirectional LSTM can be exploited [8].
Briefly, it consists of presenting, to two parallel LSTMs, each train-
ing sequence forwards and backwards and then merging the LSTMs
outputs to obtain the resulting target estimate. As such, this allows to
learn potentially richer representations and capture patterns that may
have been missed by the chronological-order version alone. More-
over, the use of bidirectional LSTMs for BG level prediction allowed
to obtained promising results in several seminal works [17][18].
The final model architecture, shown in Figure[T]and hereafter labeled
as BLSTM, consists of a four-layer neural network: a bidirectional
LSTM input layer composed of 128 cells having a look back period
of 15 minutes (i.e. 3 samples), two LSTM layers respectively com-
posed of 64 and 32 cells, and a fully connected layer consisting of
a single neuron computing the BG level prediction at two different
prediction horizons (PH), i.e. 30 and 60 min. BLSTM architecture,
hyperparameters, and look back period have been chosen by trial-
and-error to compromise between model complexity and accuracy.
The BLSTM is implemented in Python using the Keras library [5].

3.2 Equipping BLSTM with interpretability

New algorithms for decision support in T1D management require
to be interpretable [1] to avoid potentially adverse or even life-
threatening consequences. Unlike traditional physiological-based
strategies, deep learning models (such as LSTMs) are black-boxes,



meaning that their high accuracy is often achieved by learning com-
plex relationships that even experts struggle to interpret. For black
box models to be adopted in the field of T1D, it is thus desirable to
understand whether or not they retain the physiological significance
of the inputs they use.

In this work, we aim to overcome the issue of interpretability by
analysing our BLSTM with a novel unified approach to interpret
model predictions, SHAP [12]. SHAP is a newly developed game
theoretical approach to explain how much a given feature impacts on
model prediction (compared to if we made that prediction at some
baseline value of that feature). By this method, we were able to fully
interpret the BLSTM. Indeed, SHAP allowed to both visualize the
feature importance and what is driving it.

3.3 Software framework

For each subject and considered PH we trained, thus personalized,
a different BLSTM model. The training of each BLSTM has been
performed through the gradient descent RMSprop algorithm applied
in a mini-batch mode [[10]. In particular, as schematized in Figure[2]
we developed an ad-hoc software framework to automatically per-
form both model training and tuning. In details, in block A, the
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Figure 2. Scheme of the experimental framework.

preprocessed data have been divided into training and test data, re-
spectively. Then, in block B, to optimally tune the BLSTM, fea-
ture selection is performed. To do so, we generated the power set of
S = {DR, INS, INS¢, CHO, PA}, i.e. the set of all subsets of S, in-
cluding the empty set and S itself. Then, given its obvious impact on
model performance, we constrained each feature subset in the power
set to also contain the CG M feature. As a result, we exhaustively ex-
amined all the possible sub-sets of features, each containing CGM
and other, possibly useful, input features. Block B also splits data into
training and validation set. Here, we explored multiple ”split points”
s, thus assigning {50, 60, 70, 80}% of the data to the training data
and the remaining {50, 40, 30, 20} % to the validation data (used to
early stop the training of BLSTM in block C to avoid overfitting).
For each feature set & in the above-described power set and each
considered split point s, the performance of the BLSTM is assessed
in terms of mean squared error (M S E};). To prevent such evalua-
tion from being affected by the random initialization of the BLSTM
weights, the whole training and evaluation process is repeated, in
block C, three times per feature set. In turn, for each feature set h

and split point s we computed M SE},s as:

3
1
MSEps = 3% MSEj M
k=1
where subscript £ = 1,...,3 refers to the repetition at hand.

In block D, the best feature set h and split point s are selected
as the h and s that obtained the minimum M SE}s. Then, five
BLSTMs, namely BLSTM; ¢ = 1, ..., 5 are trained on the entire pa-
tient/prediction horizon-specific training set. Finally, in block E, we
evaluated the model performance by comparing the true BG values in
the test set against the respective predictions obtained by averaging
each BLSTM; estimate and we interpret model predictions through
SHAP.

4 ASSESSMENT OF BLSTM PERFORMANCE

For the BGLP challenge, the considered metrics for evaluating the
accuracy of the obtained prediction are the Root Mean Squared Er-
ror, (RMSE) and the Mean Absolute Error (MAE). Considering the
prediction error e(n) = y(n) — g(n), where y(n) and §(n) are the
CGM measurements and the computed prediction, respectively, the
RMSE and MAE are obtained as follows:

RMSE =Y \/e(t)?,

MAE = mean(|e(t)])

where N is the number of total points.

In this paper, we considered an additional performance metric: the
Time Gain (TG), which quantifies the time gained thanks to the pre-
diction. A measure of the average TG is obtained as:

TG(y,§) = PH — delay(y, 9)

where PH is the prediction horizon used to perform the prediction
¢ and the delay(y, y) between the original and the predicted pro-
files quantified by the temporal shift k& that minimizes the distance
between y and §:

delay(y,§) = argmin  _ (y(i) = 5(i — k))*

i=1

5 RESULTS
5.1 BLSTM performance in terms of prediction
accuracy

In Figure |3| we present an example of the prediction obtained on a
representative subject (544). In the top panel, we report in blue the
actual CGM measurements and in red the prediction performed by
the BLSTM; in the bottom panel, we report the consumed meals (in
grams) as reported by the subject. Albeit affected by the CGM signal
noise, the prediction is able to follow the CGM measurements during
the post-prandial rises with minor delay. Predicting hypoglycemic
episodes with high accuracy resulted to be one of the harder task
(an example of inaccurate prediction can be seen at around 12:20).
A possible explanation for this is that hypoglycemic episodes are
sporadic events which do not happen often, therefore the BLSTM
may not have enough training data to learn how to predict similar
patterns occurring in the test set.

In Table [T} we report the optimal feature sets that were identi-
fied on the training set, in block C, for each subject and PH. The
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Figure 3. Example of prediction obtained on subject 596. In the top panel,
the CGM measurements (blue) and the respective prediction (red). In the bot-
tom panel, the consumed meals reported by the patient.

Table 1. Optimal feature set selected on the training set in block C.

ID PH = 30 min PH = 60 min

540 CGM, INS CGM, DR, INS

544 | CGM, DR, INS, MEA, INS | CGM, MEA, INS~
552 CGM, INS, MEA CGM, INS, INS¢

567 CGM, DR, INS CGM, INS, PA

584 CGM, DR, INS¢ CGM, INS¢

596 CGM, INS, MEA CGM, INS, MEA

CGM feature is included in every set by default as described ear-
lier in Section@ The feature INS is adopted in almost every case,
expect some where it is replaced by the feature INSc. The feature
MEA is adopted less often, especially in patients where we observed
a lower consistency in reporting meals. The feature PA was selected
only once, denoting its limited effectiveness in improving the per-
formance of the BLSTM. In general, different PH lead to different
features sets for the same patient. This is due to the fact that some
features, e.g. MEA, might be relevant, in a specific patient, for PH =
30 min and not for PH = 60 min given their impact on BG level in
the very short-term.

In Table [2] we report the RMSE, the MAE and the TG obtained
for each subject and PH. A mean RMSE = 20.20 mg/dl is obtained

Table 2. Results obtained on the test-set.

PH = 30 min PH = 60 min

ID RMSE MAE TG | RMSE MAE TG

540 23.19 17.33 10 41.41 31.77 20
544 18.88 13.23 15 31.06  22.54 30
552 17.97 13.50 10 31.20 2448 20
567 21.18 15.20 10 3740  28.50 20
584 21.91 16.38 5 3595  27.59 5
596 18.09 12.81 5 28.13  20.99 15
mean | 2020 1474 9.17 | 34.19 2598 18.33

for PH = 30 min, together with a value of MAE = 14.74 mg/dl and
TG = 9.17 min. For PH = 60 min, a mean RMSE = 34.19 mg/dl was
obtained, together with MAE = 25.98 mg/dl and TG = 18.33 min.

Table [3] reports the number of samples predicted per patient and
the percentage of predicted samples over the total CGM samples
available. Except for one case, the BLSTM was able to compute a
prediction for more than 90% of the samples.

Table 3. Predicted samples per subject.

PH =30 min PH = 60 min

ID  Total samples | predicted % predicted %

540 2884 2820 97.78 2697 93.52
544 2704 2586 95.64 2638 97.56
552 2352 2275 96.73 2235 95.03
567 2377 2157 90.74 2232 93.90
584 2653 2354 88.73 2473 93.22
596 2731 2683 98.24 2647 96.92

5.2 Model interpretation

As discussed in Section 3.2, thanks to SHAP we are able to interpret
each trained BLSTM. The plot in Figure f]reports the application of
SHAP to the BLSTM obtained for patient 596 for a PH of 60 min.
This plot is made of many dots. Each dot has three characteristics:
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Figure 4. Impact of each input feature on model output obtained via SHAP
in patient 596 with PH = 60 min.

vertical location shows what feature it is depicting, the color shows
whether that feature assumed an high or low value for that row of
the dataset, horizontal location shows whether the effect of that value
caused a higher or lower prediction of future BG levels. Results show
that high values of CGM translate in high predicted CGM values. On
the other hand, high INS impacts negatively on model output mir-
roring the actual impact of insulin on BG dynamics. Parallely, high
MEA induces an increase on predicted glucose values, correctly ac-
counting for the effect of meal intakes on BG level. As such, the
physiological meaning of all input features is preserved by the con-
sidered representative BLSTM.

For brevity, we do not report the results obtained on other patients,
being very similar and consistent with that previously showed.

6 CONCLUSION

The possibility of collecting important vital and activity signals from
low-cost wearable sensors in patients with T1IDM is calling for the
development of individualized proactive decision support systems to
lower the daily burden in the application of BG control therapy. In
this work, the aim being providing patients with reliable BG pre-
dictions, we leveraged the OhioT1DM Dataset to build a new deep
learning-based approach for the scope that we submitted for the sec-
ond edition of the BGLP Challenge. The novelty here is that, beside
obtaining fairly good BG predictions considering both a 30 min and
a 60 min-long PH, our algorithm is also interpretable. Indeed, the in-
tegration of SHAP in our procedure allowed to obtain a "transparent”
model where the impact of each feature on model output is explicitly
expressed.



The presented study has some limitations that need to be addressed
in future work. In particular, we will concentrate on two main is-
sues. First, to fully evaluate its performance, BLSTM will be as-
sessed against other competing baseline and state-of-the-art BG pre-
diction methodologies, e.g., neural networks, random forests, and
vanilla LSTMs. Then, we will tackle the limitation represented by
the dataset length. In fact, methodologies like LSTMs usually ben-
efit from having more data to be used for their training and tuning.
For this purpose, we will investigate the potential advantage of using
longer datasets on BLSTM performance.
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