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Abstract. A machine learning-based method for blood glucose
level prediction thirty and sixty minutes in advance based on highly
multiclass classification (as opposed to the more traditional regres-
sion approach) is proposed. An advantage of this approach is the
possibility of modelling and visualising the uncertainty of a predic-
tion across the entire range of blood glucose levels without paramet-
ric assumptions such as normality. To demonstrate the approach, a
long-short term memory-based neural network classifier is used in
conjunction with a blood glucose-specific data preprocessing tech-
nique (risk domain transform) to train a set of models and generate
predictions for the 2018 and 2020 Blood Glucose Level Prediction
Competition datasets. Numeric accuracy results are reported along
with examples of the uncertainty visualisation possible using this
technique.

1 INTRODUCTION AND BACKGROUND
Maintaining blood glucose level (BGL) in the normoglycemic range
is a significant challenge for patients with type 1 diabetes (T1D).
Traditionally, patient BGL self-management is achieved using finger
stick blood samples, testing strips and glucose meters (see [13] for
an overview), combined with bolus insulin dosing to approximate
proper insulin delivery in the body of non-diabetic person. However,
with the recent development of continuous glucose monitors (CGMs)
and semi- and fully closed-loop artificial pancreas (AP) systems [14],
much finer grained control of patient BGL is now possible. Addition-
ally, significantly greater volumes of BGL data is also available when
these devices are used. AP technology has been show to improve pa-
tient outcomes [5].

In this paper, the problem of forecasting BGL thirty and sixty min-
utes in advance is considered using the 2020 BGL Prediction Chal-
lenge [3] as a testbed. Although several past systems have consid-
ered machine learning techniques for BGL forecasting (see [16] for a
comprehensive survey), most approaches take a regression approach
to solving the problem. In other words, each “forecast” is a numeric
point prediction (such as BGL at some point in the future), and over-
all system accuracy is a measurement of the error between the fore-
cast and the actual future BGL. Accuracy metrics may be statistical
(e.g. mean absolute error) or clinical (e.g. Clarke error grid analysis
[12]). Regardless, the focus is usually on point predictions.

Here, an alternative approach is taken: instead of treating BGL
forecasting as a regression problem, it is instead viewed as a clas-
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sification problem. This is achieved by dividing the range of pos-
sible BGL values into 100 bins equally spaced in the risk domain
[9]. Each bin is mapped to a class, and therefore a given forecast is
generated by predicting the probability of each class and computing
the expected value across all of the classes. An advantage of this ap-
proach is that the probabilities associated with the forecast can be
visualised across the BGL range. This could be useful for patients,
since it enables the patient to take the reliability of the forecast into
consideration when making a decision. Additionally, the probability
distribution can be used to estimate the chance of significant events
such as hypoglycemic episode. Although a similar idea was explored
in the context of regression recently [11], the underlying assumption
there was that the uncertainty distribution was Gaussian, whereas in
the classification approach presented here, no assumptions need be
made about the distribution.

Figure 1. Risk function. The vertical green line at 112.5 mg/dl is the point
of least risk while vertical red lines represent (from left to right) the

thresholds [6] for level 2 and level 1 hypoglycemia, normoglycemia, and
level 1 and level 2 hyperglycemia respectively.

In order to transform the problem of BGL forecasting into a clas-
sification problem, a method of breaking the BGL range into sensi-
ble classes is required. This is not trivial because the range of BGL
values is continuous, and the sizes of clinically-relevant subranges
varies non-linearly. For example, a small change in the hypoglycemic
part of the BGL range may be highly significant clinically but an
equivalent change in the hyperglycemic part of the range may be
considered insignificant.

One option is to use the five ranges proposed by Danne et al. [6] as
the classes. These ranges are: levels I and II hypoglycemic, normo-
glycemia, and levels I and II hyperglycemia. In this case, the size and
split points of each range are defined. However, this would amount
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to only five classes, and predictions in such a case may lack accuracy
within a class. Another option is to arbitrarily divide the BGL range
into a much larger number of bins (e.g. 100) which both increases the
number of classes considerably (making the machine learning more
challenging) but simultaneously increases the granularity of the pre-
dictions so that better probability distributions can be produced. In
this paper, the latter approach is taken, however this in turn leads to
the necessity to decide how the bins should be defined/split across
the range of BGL values.

Because of the inherent non-linearity of the BGL range, an ap-
proach called the risk domain transformation, first proposed by Ko-
vatchev et al. [9], is utilised. The idea is to define a non-linear trans-
formation function (and by implication, its inverse) that shifts a CGM
sensor reading from the blood glucose domain to a new “risk” do-
main that is better suited for subsequent analysis. This transforma-
tion function is illustrated by Figure 1. Also shown by the figure are
the breakpoints for the five ranges defined by Danne et al. [6].

As can be observed in the figure, risk domain values typically
spans a range from approximately -2 to just over 2, and most nor-
moglycemic readings lie more or less in the range range [−0.9, 0.9].
A risk value of 0.0 corresponds to the BGL of 112.5 mg/dl, which is
considered the point of least risk. An advantage of the risk domain
is that the hypo- and hyperglycemic ranges now have equal size and
significance, which reduces the chance of bias in statistical analysis
(e.g. due to larger absolute error sizes in the hyperglycemic range).

r(xt) = yt = 1.509
(
log(xt)

1.084 − 5.381
)

(1)

r−1(yt) = xt = exp

((
yt

1.509
+ 5.381

) 1
1.084

)
(2)

The exact definitions of the risk domain transformation and its
inverse are given in Equations 1 and 2 where xt is a CGM reading at
time t and yt is its corresponding risk value.

2 METHOD

For dividing the BGL range into classes, the following exact pro-
cedure is used. The risk domain range [−2, 2] is considered and
100 bin midpoints are placed on it. The bin midpoints are denoted
y∗
1 , y

∗
3 , y

∗
3 . . . y

∗
100 with y∗

1 = −2 and y∗
100 = 2. The remaining bin

midpoints are equally spaced along the risk range between y∗
1 and

y∗
100. This ensures that for the smaller hypoglycemic range, the bin

sizes will be scaled properly in size and that there will be a propor-
tionate number of bins (and therefore classes) in each subrange of
the BGL scale.

Next, in order to a assign a new CGM reading x (in mg/dl) to a bin,
its corresponding risk value y = r(x) is computed using Equation 1.
The reading is then assigned the bin with the closest midpoint. This
means that the split points between bins do not need to be calculated
explicitly, and if a reading is outside the risk range (either x < −2 or
x > 2) then it will be assigned to one of the bins at the ends of range.
However, this tends not happen often since the significant majority
of readings in the competition datasets lie on the [−2, 2] range.

Finally, once its class is determined, the reading x is transformed
into a one-hot encoded vector (0, 0 . . . 0, 1, 0 . . . 0, 0) of length 100
where the single 1 in the vector corresponds to the bin that x is as-
signed to.

To summarise the process, the predictors X for the model com-
prise a time series of risk-transformed CGM readings, and the target
Y is a one-hot encoded class vector of dimension 100. Predictions are

therefore numeric vectors, e.g. (0, 0 . . . 0.25, 0.6, 0.3 . . . 0, 0). Note
that whichever type of model is used, the values should be positive
and sum to unity so that they can be interpreted as normal probabili-
ties.

To evaluate this idea, 100-class classification experiments using
a neural network as a predictive model were performed. Figure 2
depicts the particular neural network architecture used here.

LSTM(units=12)

Flatten

Batch Normalisation

Dense(units=50, act=RELU)

Batch Normalisation

Dense(units=100, act=Softmax)

Figure 2. Architecture of the neural network used in the experiments.

The inputs to the neural network are twelve risk value readings,
representing the past sixty minutes of BGL variation as sensed by
the CGM (assuming that readings occur every five minutes). Since
this is a time series, a long-short term memory (LTSM) layer with
twelve units is used for initial input processing. Next, the LSTM out-
put is flattened and passed through two dense fully connected layers
for further processing. Both of these layers apply batch normalisa-
tion first, which ensures faster convergence times and stability during
training. Finally, the last dense layer predicts the class and applies a
softmax activation function to ensure that the output is a probability
vector.

To train each instance (one per patient) of this neural network, the
ADAM optimiser [7] was used with a learning rate of 0.0001, 10k
epochs, batch size of 32, and validation data set to a random 15% sub-
set of training data. The loss function utilised was categorical cross-
entropy, which is commonly used for multiclass classification prob-
lems. Early stopping during training was permitted if no improve-
ment in loss was observed for 100 epochs. All other settings were
identical to those used in keras v. 2.3.1 [4] with tensorflow v.
2.1.0 [2] as a base neural network system. The neural network param-
eters and architecture decisions were made as a result of single-run
experiments using data from the first patient in the 2018 competition
dataset [10].

To generate data for training the neural network, a strict approach
was taken towards missing data and all examples with gaps or time
discrepancies (e.g. readings not exactly five minutes apart) exist were
excluded. Therefore, to generate one example for the thirty minute
(t+30) forecasting problem, it is required that nine consecutive read-
ings (from the start of the example up to and including the prediction
target) exist, and for the sixty minute problem (t + 60), twelve con-
secutive readings were required. No missing value imputation was
performed. As a result, the number of test examples varies slightly
depending on the forecasting horizon: i.e. the number of 2020 dataset
test examples is 2,743, 2,579, 2,177, 2,185, 2,393 and 2,624 for the



30-minute horizon and 2,689, 2,531, 2,111, 2,113, 2,297 and 2,582
for the 60 minute horizon respectively.

With the neural network architecture and training data construc-
tion approach described, the final aspect of methodology to be de-
scribed is the way that numeric point predictions were generated for
the competition purposes (which require point predictions). A sim-
plistic approach is allow only bin midpoints (i.e. y∗

1 . . . y
∗
100) to be

predictions, and select the bin/class with the highest probability. Ini-
tial tests showed that this technique had low accuracy. Instead, a more
sophisticated approach is to calculate the expected BGL value, as de-
scribed by the following equation:

(3)

x̂t+n = f(mn, yt−55, yt−50 . . . yt−5, yt)

=

100∑
i=1

p(y∗
i |mn, yt−55 . . . yt)r

−1(y∗
i )

where n ∈ {30, 60}, mn is the neural network for the current patient
with forecasting horizon n, yt is the risk-transformed BGL level at
time t (yt = r(xt)), y∗

1 . . . y
∗
100 are risk bin midpoints, f() represents

the application of mn to the observed CGM values, and x̂t+n is the
expected value or prediction at time t + n. Since the probabilities
across the 100 bins sum to 1, the resulting point prediction will be
scaled correctly. Initial experiments showed that this expected value
approach produced accurate estimates. Source code is available [1].

3 RESULTS
Two rounds of experiments were performed. In the first round, neu-
ral networks models were independently trained and tested for each
of the twelve patients from both the 2018 and 2020 competition
datasets. There was no sharing of information between models. In
the second round, models for the 2020 patients only were trained,
and the training data for each patient included all of the training data
from the 2018 competition in addition to the specific 2020 patient’s
training data. An individual patient’s own training data was therefore
a small subset of his/her full training dataset. To account for this im-
balance in the second round, samples from the target patient were
re-weighted by a factor of six compared to the sample weights from
the other patients.

Results for the first round of experiments are given in Tables 1
and 2. The first table is mean absolute error (MAE) results, and the
second table gives root mean squared error (RMSE) results. Units
are mg/dl. Using both metrics, predictive performance is comparable
between the two datasets, with patient 540 from the 2020 dataset
being the most “difficult” patient to predict. Conversely, the patient
with lowest forecast error is patient 570 from the 2018 dataset.

Results for the second round of experiments are given in Tables
3 and 4. It can be observed that the additional training data leads
to a very slight improvement in accuracy. Performing a paired t-test
across the six 2020 patients reveals that the improvement in MAE is
significant even albeit small (average improvement for thirty minute
forecasting is 0.45 with significance p = 0.000056, and for sixty
minute forecasting it is 0.82 with significance p = 0.008096).

More interesting are the prediction plots that can be generated
when making a forecast using the classification approach. Figures
3-6 depict some probability densities produced by the model when
making four different predictions. For each figure, the point predic-
tion generated using the expected value computation (Equation 3) is
shown as red line.

The tidiest example is Figure 3, which depicts a single-peaked dis-
tribution with the forecast coinciding with the peak of the distribu-

Patient ID MAE t+ 30 std MAE t+ 60 std

559 14.7 0.2 26.2 0.1
570 12.2 0.4 21.0 0.4
588 14.0 0.1 23.4 0.2
563 13.6 0.1 22.5 0.2
575 15.0 0.1 25.9 0.2
591 16.0 0.1 26.3 0.1

Avg. 14.3 24.2

540 16.8 0.1 30.8 0.1
544 12.9 0.2 23.3 0.2
552 12.5 0.1 23.0 0.1
567 14.9 0.1 27.9 0.2
584 16.7 0.1 28.0 0.2
596 12.6 0.1 21.7 0.0

Avg. 14.4 25.8

Table 1. Mean absolute error (MAE, mg/dl) results by patient and
prediction horizon, averaged over five runs.

Patient ID RMSE t+ 30 std RMSE t+ 60 std

559 21.6 0.2 35.5 0.2
570 17.2 0.5 28.3 0.3
588 19.1 0.1 31.8 0.2
563 20.6 0.3 31.2 0.4
575 23.8 0.4 36.4 0.3
591 21.8 0.2 33.7 0.1

Avg. 20.7 32.8

540 23.0 0.2 40.6 0.14
544 17.4 0.2 30.5 0.17
552 16.9 0.0 30.2 0.10
567 20.9 0.2 36.9 0.22
584 23.0 0.1 36.6 0.16
596 17.8 0.1 29.5 0.03

Avg. 19.8 34.0

Table 2. Root mean squared error (RMSE, mg/dl) results by patient and
prediction horizon, averaged over five runs.

Patient ID MAE t+ 30 std MAE t+ 60 std

540 16.4 0.1 29.8 0.1
544 12.3 0.1 22.9 0.2
552 12.2 0.1 22.2 0.2
567 14.5 0.2 27.4 0.4
584 16.1 0.2 26.4 0.1
596 12.2 0.3 21.3 0.1

Avg. 13.9 25.0

Table 3. Mean absolute error (MAE, mg/dl) results by patient and
prediction horizon, averaged over five runs for the 2020 dataset only.

Training data includes the entire 2018 dataset.

Patient ID RMSE t+ 30 std RMSE t+ 60 std

540 22.4 0.1 39.5 0.1
544 17.0 0.1 30.1 0.2
552 16.5 0.1 29.3 0.1
567 20.8 0.2 36.9 0.4
584 22.4 0.2 35.9 0.2
596 17.2 0.3 29.0 0.2

Avg. 19.4 33.4

Table 4. Root mean squared error (RMSE, mg/dl) results by patient and
prediction horizon, averaged over five runs for the 2020 dataset only.

Training data includes the entire 2018 dataset.



tion. While this class of forecast is common, it is not the only type of
distribution that is output from the model.

Figure 4 shows a two-peaked distribution with an expected value
between the peaks. While the expected value is a useful point predic-
tion, the dual peaks are also useful information since it can be clearly
observed that the two most likely outcomes are normoglycemia vs. a
state most likely in level I hyperglycemica, although the model is not
certain.

Figure 3. Probability distribution over BGLs for one prediction. In this
example, the expected BGL coincides with the distribution peak.

Figure 4. In this probability distribution over BGL levels, two peaks exist
in the distribution and the expected BGL lies between the peaks.

Figure 5. In this example, the distribution is skewed to to the right with the
expected BGL quite a distance to the left of the peak.

Figure 5 shows a skewed distribution a significant mass of the
probability distribution is at the upper end of the range, but the ex-
pected value is closer to the middle of the range (albeit still in the hy-
perglycemic range). In this case, the expected value underestimates

Figure 6. An example of a prediction with considerable uncertainty over
the hypoglycemic and normoglycemic ranges.

the true risk to the patient at the current time. Again, this is clearly
noticeable.

Finally, Figure 6 depicts a prediction with considerable noise in the
distribution. While the forecast is normoglycemic, there is significant
mass in the hypoglycemic range. Therefore it could be concluded that
although the point prediction is reasonably, there is still significant
risk of hypoglycemia.

Further analysis was performed with respect to the variance of the
prediction distributions. It was found that for most patients, the dis-
tribution of variances is skewed to the left indicating that on average
most predictions are more certain (more like Figures 3 and 4) than
uncertain. However, more analysis needs to be done on this point.

4 CONCLUSION
This paper describes a system for forecasting BGL at thirty and sixty
minutes in advance. This main distinctiveness of this approach is the
adoption of a highly multi-class classification-based technique and
use of a domain-specific transform for normalising BGL values (op-
posed to more traditional min/max scaling or standardisation). The
ability to visualise non-parametric probability distributions accom-
panying predictions as a meaningful context is a clear advantage.

To test the proposed method with real patients, we will use a
system known as SmartCGMS [8]. SmartCGMS is a continuous
glucose monitoring and controlling software framework. It pro-
vides infrastructure to connect and develop “building blocks” for an
insulin-pump software stack. Principally, the pump developer con-
nects CGM-sensor blocks to computing blocks, which predict BGL
and subsequently schedule insulin boluses or adjust the insulin basal
rate. Next, another block transforms the results of these computa-
tions into insulin-pump control commands. With SmartCGMS, we
can close the loop in-silico[15] first, before conducting an in-vivo
experiment to ensure maximum safety.

Our specific approach will be to transform the best trained
keras/tensorflow-based neural network into a hard-coded and con-
stant feed-forward neural network in C++. This will enable efficient
deployment and computation on low-power devices such as insulin-
pump controllers, while we can still train the original neural network
using high-performance computers. As a result, a flow in which a
neural network is continuously learned from patient BGL measure-
ments, providing personalised BGL predictions, can be established.
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