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Abstract. Maintaining blood glucose in a target range is essential
for people living with Type 1 diabetes in order to avoid excessive
periods in hypoglycemia and hyperglycemia which can result in se-
vere complications. Accurate blood glucose prediction can reduce
this risk and enhance early interventions to improve diabetes man-
agement. However, due to the complex nature of glucose metabolism
and the various lifestyle related factors which can disrupt this, dia-
betes management still remains challenging. In this work we pro-
pose a novel deep learning model to predict future BG levels based
on the historical continuous glucose monitoring measurements, meal
ingestion, and insulin delivery. We adopt a modified architecture of
the generative adversarial network that comprises of a generator and
a discriminator. The generator computes the BG predictions by a
recurrent neural network with gated recurrent units, and the auxil-
iary discriminator employs a one-dimensional convolutional neural
network to distinguish between the predictive and real BG values.
Two modules are trained in an adversarial process with a combina-
tion of loss. The experiments were conducted using the OhioT1DM
dataset that contains the data of six T1D contributors over 40 days.
The proposed algorithm achieves an average root mean square er-
ror (RMSE) of 18.34 ± 0.17 mg/dL with a mean absolute error
(MAE) of 13.37 ± 0.18 mg/dL for the 30-minute prediction hori-
zon (PH) and an average RMSE of 32.31± 0.46 mg/dL with a MAE
of 24.20 ± 0.42 for the 60-minute PH. The results are compared
for clinical relevance using the Clarke error grid which confirms the
promising performance of the proposed model.

1 INTRODUCTION

Diabetes is a chronic metabolic disorder that affects more than 400
million people worldwide with an increasing global prevalence [27].
Due to an absence of insulin production from the pancreatic β cells,
people living with Type 1 diabetes (T1D) require long-term self-
management through exogenous insulin delivery to maintain blood
glucose (BG) levels in a normal range. In this regard, accurate glu-
cose prediction has great potential to improve diabetes manage-
ment, enabling proactive actions to reduce the occurrence of adverse
glycemic events, including hypoglycemia and hyperglycemia.

In recent years, empowered by the advances in wearable devices
and data-driven techniques, different BG prediction algorithms have
been proposed and validated in clinical practice [29]. Among these,
continuous glucose monitoring (CGM) is an essential technology
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that measures BG levels and provides readings in real-time. CGM
has produced a vast amount of BG data with its increasing use in the
diabetes population. Taking advantage of this, the emergence of deep
learning algorithms for BG prediction has achieved recent success
and outperformed several conventional machine learning approaches
in terms of accuracy [1, 16, 17, 23, 28]. Generally, the major chal-
lenge of BG prediction lies in accounting for the intra- and inter-
person variability that leads to various glucose responses under dif-
ferent conditions [25]. Furthermore, many external events and factors
can influence glucose dynamics, such as meal ingestion, physical ex-
ercise, psychological stress, and illness. Deep learning is powerful
at extracting hidden representations from large-scale raw data [15],
making it suitable for accounting for the complexity of glucose dy-
namics in diabetes.

In this work, we propose a novel deep learning model for BG pre-
diction using a modified generative adversarial network (GAN). As a
recent breakthrough in the field of deep learning, GANs have shown
promising performance on various tasks, such as generating realistic
images [13], synthesizing electronic health records [4] and predicting
financial time series [31]. Normally, a GAN framework is composed
of two deep neural networks (DNNs) models as the generator and the
discriminator, respectively. They are trained simultaneously through
an adversarial process [10]. The proposed generator captures feature
maps of the multi-variant physiological waveform data and gener-
ates predictive BG samples, while the discriminator is designed to
distinguish the real data from generated ones. To model the temporal
dynamics of BG data, we adopt a recurrent neural network (RNN)
in the generator and a one-dimensional convolutional neural network
(CNN) in the discriminator with dilation factors in each DNN layer
to expand receptive fields, which have been verified as adequate net-
work structures for BG prediction in our previous works [5, 17, 33].

2 METHODS

2.1 Dataset and Pre-processing

The data that we used to develop the model is the OhioT1DM
dataset, provided by the Blood Glucose Level Prediction (BGLP)
Challenge [20, 21]. It was produced by collecting BG-relevant data
on 12 people with T1D over an eight-week period. The first half of
the cohort released for the 2018 BGLP challenge was used for model
pre-training, and we focus on the performance of the rest six indi-
viduals that numbered 540, 544, 552, 567, 584, and 596. The dataset
contains BG levels collected by CGM readings every five minutes,
insulin delivery from insulin pumps, self-reported events (such as
meal, work, sleep, psychological stress, and physical exercise) via
a smartphone app and physical activity by a sensor band. However,
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Figure 1: The system architecture of the proposed GAN framework to predict BG levels.

there are unavoidable differences between the collected data and ac-
tual physiological states. For example, the CGM sensor measures in-
terstitial fluid glucose level and then estimate BG levels by applying
signal processing techniques, such as filtering and calibration algo-
rithms. The meal and insulin are discrete values manually input by
users, instead of series of carbohydrates and insulin on board.

It should be noted that the dataset contains many missing gaps
and outliers affecting BG levels, both in the training and testing
sets, mainly due to CGM signal loss, sensor noise (e.g., compres-
sion artifacts), or some usage reasons, such as sensor replacement
and calibration. To compensate for some of the missing data, we ap-
ply linear interpolation to fill the missing sequences in the training
sets, while we only extrapolate missing values in the testing set to
ensure that the future information is not involved as partial inputs
in the prediction. We then align processed BG samples and other
features, e.g. exogenous events, with the same resolution of CGM
measurements, and normalize them to form a N -step time series:
XN = [x1, . . . ,xN ] ∈ RN×d, where x is a d-dimensional vector
mapping the multivariate data at each timestep.

2.2 Problem Formulation
Considering a target prediction horizon (PH) (e.g. 30 or 60 minutes),
the goal of the predictor is to estimate the future BG levels Gt+w

of individuals given past and current physiological states, where w is
the number of timesteps determined by PH and CGM resolution (e.g.
5 minutes). Hence, the objective of predictor is consistent with that
of GANs, aiming to learn the DNN approximator p̂ from the pattern
of glucose dynamics p measured in the human body, which can be
expressed by the form of the Kullback-Leibler divergence [30]:

min
p̂

D((p(Gt+w|X1:t)||(p̂(Gt+w|X1:t)) (1)

where D is a measurement of the distance between distributions.
Thus, we need to select highly-related data features to represent
the physiological state. Referring to some previous work and hyper-
parameter tuning [16, 17, 22, 23], we use X , [G,M, I] as the
physiological time series, where G is pre-processed CGM measure-
ments (mg/dL); M denotes the carbohydrate amount of meal inges-
tion (g); and I is the bolus insulin delivery (U). In order to reduce
the bias in the supervised learning, we set the changes of BG levels
in PH as the training targets of the generator: ∆Gt = Gt+w − Gt.

Then the predictive BG level Ĝt+w from the generator is defined as
follows:

Ĝt+w = fG(Xt+1−L:t) +Gt (2)

where fG represents the parameters of the generator. Instead of us-
ing the whole series, we divide X into small contiguous sequences
with a length of L as a sliding window, then feed them into the deep
generative model in a form of mini-batches, aiming at improving sta-
bility and generalization of the model [12]. According to the feature
selection in [22] and the model validation, we empirically setL = 18
which indicates that the input contains 1.5 hours historical data.

2.3 System Architecture

The RNN-based algorithms performed well in BG level prediction
in previous studies [1, 23, 28]. Thus, we instantiate a three-layer
RNN with 32 hidden units to build the generator, which can be
seen as a typical setup of time series GANs [9, 24, 30]. In general,
vanilla RNN architecture faces the problem of gradient vanishing
and exploding, making it difficult to capture long-term dependencies.
Thus, the gated RNN units are proposed to meet this challenge using
element-wise gating functions [7], including long short-term mem-
ory (LSTM) units [11] and gated recurrent units (GRUs) [6]. Com-
pared to the vanilla RNN, the gated units are able to control the flow
of information inside units by a set of gates, which allows an eas-
ier backward propagation process. Compared to the LSTM, the GRU
was proposed more recently and removed the memory unit. This cell
structure uses less parameters and computes the output more effi-
ciently [32] . During the hyper-parameter tuning, GRU-based algo-
rithms also achieved the best predictive outcomes, so we naturally
adopt GRU cells in the RNNs .

As depicted in Figure 1, the multi-dimensional input is fed into a
RNN with GRU cells given a state length of L. Then the data is pro-
cessed by a set of hidden neurons to calculate the last cell state Ct.
A fully connected (FC) layer with weights WFC and a bias bFC are
used to model the final scalar output: ∆Ĝt = WFCCt + bFC . Fi-
nally, after adding the current BG level to predictive glucose change,
we obtain the output Ĝt+w.

In general, the prediction performance degrades with the increase
of PH, due to the complicated physiological conditions of people
with T1D and the uncertainties of exogenous events between t and
t+w. For instance, if there was a meal intake with large carbohydrate



20-30 minutes before t+w, the BG level would raise fast and make
the target ∆Gt suddenly increase. These cases occur frequently in
the daytime with a large PH, which could affect a supervised learning
model to achieve global optimum. This motivated us to make use
of the information between t and t + w during the training process
to investigate the contiguous glucose change. Therefore, we append
the predictive BG level to the end of series Gt+1:t+w−1 to form a
synthetic sequence ŷ and use Gt+1:t+w as the corresponding real
sequence y. Then we introduce a CNN-based discriminator to extract
features and distinguish the real from synthetic sequences, benefiting
from the good classification ability of CNNs [15]. There are three
one-dimensional (1-D) causal CNN layers employed with rectified
linear unit (ReLU) activation and 32 hidden units to compute the final
binary output. The discriminator is expected to classify the real and
synthetic sequences by 1 and 0, while the generator is pitted against
the discriminator and aims to estimate a BG value that is close to the
real BG distribution over the PH. Thus the loss of discriminator is
computed by cross-entropy. Consequently, this adversarial training
contains two loss functions LG and LD for the generator and the
discriminator respectively, which are given by

LG = λ1LSL + λ2m

m∑
i=1

log(1− fD(ŷ(i))), (3)

LD =
1

m

m∑
i=1

[− log fD(y(i))− (log(1− fD(ŷ(i))))], (4)

where fD represents the calculation in the discriminator; LSL

is the means square error loss of supervised learning: LSL =∑m
i=1(G

(i)
t+w − Ĝ

(i)
t+w)2; λ1 and λ2 are used to adjust the ratio be-

tween supervised loss and adversarial loss [31]; and m stands for
the mini-batch size. In practice, we employ two separate Adam opti-
mizer [14] to minimize LG and LD with batch size of 512 and learn-
ing rate of 0.0001.

Moreover, we introduce dilation to both the RNN and the CNN
layers [3, 26], which has shown the promising performance of BG
level prediction in previous work [5, 17, 32, 33]. By skipping certain
number connections between neurons, the receptive field of the DNN
layers can be exponentially increased, which is helpful to capture
long-term temporal dependencies in the BG series. In particular, the
dilation of layer l is set to rl = 2l−1, increasing from the bottom
layer to the top layer. The computation of DNN layers are defined as
follows:

h
(l)
t = fN (h

(∗)
t−rl

, in
(l−1)
t ) (5)

where h(l)
t and in(l−1)

t are the output and input of layer l at timestep
t; fN denotes the computation in hidden neurons, referring to convo-
lution and cell operation in CNN and RNN layers, respectively. As
a feed-forward neural network, the CNN hidden units fetch all the
inputs from the layer at a lower level (∗ = l − 1), whereas RNNs
skip cell state by rl − 1 timesteps to perform the recursive operation
(∗ = l).

2.4 Training and Validation
The training and testing sets are separately provided by the BGLP
challenge, which contains the data for around 40 and 10 days, re-
spectively. To tune the hyper-parameters by grid search, we vali-
dated the models by the same range of hyper-parameters values as
in our previous work [32]. We considered many validation methods,
such as simple splitting, k-fold cross-validation, and blocked cross-
validation [2]. Due to the temporal dependencies and limited size of

the training set, we use the last 20% data of the training set to validate
the models and guarantee that future information is not involved in
current prediction. The early-stop technique is applied to avoid over-
fitting; we stop the training process when the validation loss keeps
increasing. In particular, we set the maximum number of epochs to
3000 with stopping patience of 50. The data sufficiency and over-
fitting occurrences are further investigated by means of the learning
curves.

2.5 Metrics
A set of metrics is applied to evaluate the performance of the GAN
model, including root mean square error (RMSE) (mg/dL), mean ab-
solute error (MAE) (mg/dL), which are denoted as:

RMSE =

√√√√ 1

N

N∑
k=1

(Gk − Ĝk)2, MAE =
1

N

N∑
k=1

|Gk − Ĝk|,

(6)
In addition to the RMSE and MAE metrics, we also use the Clarke
error grid (CEG) [8], which is a semi-quantitative tool from the clin-
ical perspective. As shown in Figure 2, there are five zones labeled
to intuitively reveal the medical consequence based on the prediction
results. In general, the data points (BG pairs) in zone A and B are
regarded as positive for medical treatment, while the rest (C, D and
E) are considered undesirable.

3 RESULTS
After tuning the hyper-parameters, we tested the model on the test-
ing sets. Table 1 shows the RMSE and MAE results for the PH of
30 minutes and 60 minutes. Considering the randomness of the ini-
tial weights in DNNs, we conducted 10 simulations and reported
results by Mean±SD, where SD is the standard deviation. The av-
erage (AVG) RMSE and MAE over all 6 contributors respectively
achieve 18.34 ± 0.17 and 13.37 ± 0.18 mg/dL for 30-minute PH,
and 32.21 ± 0.46 and 24.20 ± 0.42 for 60-minute PH. The best
RMSE and MAE results in experiments are also presented in the last
row, which are slightly smaller than the average results. It is noted the
standard deviation of multiple simulations is small, which indicates
the stability of the model.

Table 1: Prediction performance of the GAN model evaluated on 6
data contributors.

ID Number 30-minute PH 60-minute PH

(#) RMSE MAE RMSE MAE

540 2884 20.14± 0.21 15.22± 0.17 38.54± 0.46 29.37± 0.21
544 2704 16.28± 0.11 11.62± 0.15 27.64± 0.43 20.09± 0.38
552 2352 16.08± 0.20 12.03± 0.22 29.03± 0.35 22.47± 0.34
567 2377 20.00± 0.14 14.17± 0.22 35.65± 0.41 26.68± 0.53
584 2653 20.91± 0.08 15.11± 0.11 34.31± 0.53 25.55± 0.52
596 2731 16.63± 0.25 12.12± 0.23 28.10± 0.57 21.06± 0.57
AVG 18.34 13.37 32.21 24.20
SD 0.17 0.18 0.46 0.42
Best 18.21 13.21 31.64 23.70

To visualize clinical significance between the reference and pre-
diction outcomes, Figure 2 shows the CEG of the contributor 544
that obtains the best statistic performance in Table 1. The specific
percentage of the distribution in five regions is presented in Table 2.
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Figure 2: The Clarke error grid plots for contributor 544

Table 2: The percentage distribution in Clarke error gird (%).

ID 540 544 552 567 584 596
30-minute PH

CEGA 86.15 93.91 89.41 89.01 86.75 91.03
CEGB 12.18 5.76 8.80 10.06 12.26 7.57
CEGC 0 0 0 0 0 0
CEGD 1.67 0.33 1.79 0.93 0.98 1.40
CEGE 0 0 0 0 0 0

60-minute PH
CEGA 60.22 79.38 68.01 60.81 69.46 76.60
CEGB 33.37 19.20 28.91 30.80 28.34 20.78
CEGC 0.14 0 0 0.25 0.18 0
CEGD 6.27 1.38 3.08 8.14 2.01 2.62
CEGE 0 0 0 0 0 0

4 DISCUSSION
As shown in Table 2, the majority of the CEG points are located
in zones A and B. These zones signify that the data is within 20%
value of the reference, where the treatment suggestions are appro-
priate regardless of the prediction error. It indicates the high clinical
accuracy of the proposed model. The percentage of zone D is small
for the 30-minute PH and increases for the 60-minute PH. The points
in zone D mean the predictive model missed the hypoglycemia or
hyperglycemia events and could lead to poor treatment. In Figure 2b,
the most error points are concentrated on the bottom-right corner of
the left panel of zone D. It reveals that the model outputs higher
predictions when BG levels enter the hypoglycemia region, which is
undesirable in the clinical setting. Figure 3 shows the correspond-
ing BG curves for the contributor 544, where the findings from CEG
analysis can be validated, and time lags between the predictions and
measurements can be observed. The overestimation is observed in
several BG regions with low BG levels or a sharp decrease. Aligning
the error region with the timesteps, we find that some of the mis-
estimation occurs in nocturnal hypoglycemia. Similar findings are
identified by the CEG analysis and BG curves of the other contribu-
tors. Therefore, future work will include training and switching be-
tween different models for different glucose regions, evaluated by
more advanced error grid analysis.

During the experiments, we explored Tikhonov regularization to
filter out the outliers in training sets, as described in [1]. However, it
was prone to degrade the validation performance but largely reduce
the training loss. Then we used the 2018 OhioT1DM dataset [21] and
the in silico datasets from UVA/Padova T1D simulator [19] for model
pre-training. The simulator produced data of an average virtual adult
subject with the scenarios defined in [32] over 360 simulated days.
The population model was trained by 5 epochs and then fine-tuned
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Figure 3: The comparison between the model predictions and the
ground truth of CGM measurements during the first 24-hour period
in the testing set of contributor 544. There are three missing BG val-
ues between 8:00 and 8:15.

by subject-specific data, but the average validation RMSE slightly
increased by around 0.5 mg/dL, compared with the models without
pre-training. As shown in Table 1, there are two groups: one includ-
ing contributors 544, 552, and 596 with better RMSE and MAE per-
formance, and the other including contributors 540, 567 and 584.
We introduced the data from the former group to pre-train a pop-
ulation model for the latter group, but the RMSE almost remained
unchanged. Thus, one explanation of the pre-training performance is
that large inter-person variability exists. For example, in the testing
set, contributor 552 has a gap of 1415 missing data points (∼ 5 days),
and contributor 567 did not record the meal ingestion, for which we
reduced the dimension of the input data. To this end, multiple pre-
possessing methods are needed to mitigate these missing or incor-
rect inputs, such as the detection of unannounced meals. In addition,
as future work, we consider incorporating personalized physiologi-
cal and behavioral models [18], such as insulin and carbohydrate on
board, to better explain the observed variability.

Compared with the RNN prediction model in our previous
work [32], the GAN model achieved better validation performance
and smaller RMSE for most of the data contributors in the training
process, especially for the 60-minute PH. During the testing phase,
the GAN model can output the predictions without using the discrim-
inator. Hence, the complexity of the proposed model is similar to that
of the conventional RNN models, which can be easily implemented
on smartphone applications [16, 17] to provide real-time predictions
and control insulin pump via Bluetooth connectivity. The code cor-
responding to this work is available at: https://bitbucket.org/deep-
learning-healthcare/glugan.



5 CONCLUSION

In this work, a novel deep learning model using a modified GAN
architecture is designed to predict BG levels for people with T1D.
We developed the personalized models and conducted multiple eval-
uations for each data contributor in the OhioT1DM dataset. The
proposed model achieves promising prediction performance for 30-
minute and 60-minute PH in terms of average RMSE and MAE. The
CEG analysis further indicates good clinical accuracy, but there are
opportunities for enhancement. In particular the model falls short
sometimes in capturing a small number of hypoglycemia events.
Nevertheless, the model is able capture most of the individual glu-
cose dynamics and has clear potential to be adopted in actual clinical
applications.
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