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Abstract. In this study we investigate the need for training future
blood glucose level prediction models at the individual level (i.e. per
patient). Specifically, we train various model classes: linear models,
feed-forward neural networks, recurrent neural networks, and recur-
rent neural networks incorporating attention mechanisms, to predict
future blood glucose levels using varying time series history lengths
and data sources. We also compare methods of handling missing
time series data during training. We found that relatively short his-
tory lengths provided the best results: a 30 minute history length
proved optimal in our experiments. We observed long short-term
memory (LSTM) networks performed better than linear and feed-
forward neural networks, and that including an attention mechanism
in the LSTM model further improved performance, even when pro-
cessing sequences with relatively short length. We observed models
trained using all of the available data outperformed those trained at
the individual level. We also observed models trained using all of the
available data, except for the data contributed by a given patient, were
as effective at predicting the patient’s future blood glucose levels as
models trained using all of the available data. These models also sig-
nificantly outperformed models trained using the patient’s data only.
Finally, we found that including sequences with missing values dur-
ing training produced models that were more robust to missing val-
ues.

1 Introduction

Accurate future blood glucose level prediction systems could play
an important role in future type-I diabetes condition management
practices. Such a system could prove particularly useful in avoiding
hypo/hyper-glycemic events. Future blood glucose level prediction
is difficult - blood glucose levels are influenced by many variables,
including food consumption, physical activity, mental stress, and fa-
tigue. The Blood Glucose Level Prediction Challenge 2020 tasked
entrants with building systems to predict future blood glucose levels
at 30 minutes, and 60 minutes into the future. Challenge participants
were given access to the OhioT1DM dataset [8], which comprises
8 weeks worth of data collected for 12 type-I diabetes patients. The
data include periodic blood glucose level readings, administered in-
sulin information, various bio-metric data, and self-reported infor-
mation regarding meals and exercise.

In the previous iteration of the challenge, several researchers
demonstrated both that it is possible to predict future blood glucose
levels using previous blood glucose levels only [9], and that past
blood glucose levels are the most important features for future blood
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glucose level prediction [10]. In this study, we aimed to extend this
research into future glucose level prediction from historical glucose
levels only. Most previous work involved training personalized mod-
els designed to predict future blood glucose level data for a single
patient [9, 10, 2]. Others used schemes coupling pre-training using
adjacent patient’s data with a final training phase using the patient of
interest’s data only [3, 12].

In this work, we investigate the possibility of building a single
model that is able to predict future blood glucose levels for all 12
patients in the OhioT1DM data set, and the effectiveness of apply-
ing such a model to completely unseen data (i.e. blood glucose series
from an unseen patient). We also investigate the impact of history
length on future blood glucose level prediction. We experiment with
various model types: linear models, feed-forward neural networks,
and recurrent neural networks. Furthermore, inspired by advances in
leveraging long distance temporal patterns for time series prediction
[6], we attempt to build a long short-term memory (LSTM) model
that is able to use information from very far in the past (up to 24
hours) by incorporating an attention mechanism. Finally, we com-
pare the effectiveness of two methods for handling missing data dur-
ing training.

2 Method

2.1 Datasets

As stated above, one of our primary aims was to build a single model
that is able to predict future blood glucose levels for each patient in
the data set. To this end, we constructed a combined data set contain-
ing data provided by each of the patients. Specifically, we created a
data set composed of all of the data points contributed by the six pa-
tients included in the previous iteration of the challenge (both train-
ing and test sets), as well as the training data points provided by the
new cohort of patients. This combined data set was split into training
and validation sets: the final 20% of the data points provided by each
patient were chosen for the validation set. The test data sets for the
6 new patients were ignored during development to avoid bias in the
result. For experiments in building patient specific models, training
and validation sets were constructed using the patient in question’s
data only (again with an 80/20 split).

2.2 Data preprocessing

Prior to model training, the data were standardized according to:

x =
x− µtrain

σtrain
(1)
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Model Hyper-parameters

Feed-forward # hidden units ∈ {16, 32, 64, 128, 256, 512, 1024}
# layers* ∈ {1, 2}
activation function ∈ {ReLU}

Recurrent # hidden units ∈ {16, 32, 64, 128, 256, 512, 1024}
recurrent cell* ∈ {LSTM,GRU}
# layers* ∈ {1, 2}
output dropout* ∈ {0, 0.1, 0.2, 0.5}

LSTM + Attention # αt hidden units ∈ {4, 8, 16, 32, 64, 128}

Table 1. Lists of hyper-parameters tuned when training feed-forward,
recurrent neural networks, and LSTM with attention networks. Note that not

all possible combinations were tried - parameters marked with an asterisk
were tuned after the optimal number of hidden units was chosen.

where µtrain, and σtrain, are the mean and standard deviation of the
training data, respectively. There is a non-negligible amount of data
missing from the training set, which needed to be considered when
preprocessing the data. We investigated two approaches to handling
missing data: discarding any training sequences with one or more
missing data points; and replacing missing values with zeros follow-
ing standardization. It was hypothesized that the second approach
may help the system learn to be robust to missing data.

2.3 Model training
We experimented with linear models, feed-forward neural networks,
and recurrent neural networks. Each model was trained to minimize
the root mean square error (RMSE):

RMSE =

√√√√ n∑
i=1

(
ŷi − yi
n

)2

(2)

where ŷi is the predicted value, yi is the true value, and n is
the total number of points in the evaluation set. Various hyper-
parameters were tuned when training the feed-forward and recur-
rent neural networks; Table 1 provides a summary. During devel-
opment, each model was trained for 50 epochs using the Adam op-
timizer (α=0.001, β1=0.9, β2=0.999) [5] and a batch size of 256.
The final model was trained with early stopping using the same opti-
mizer settings, and a batch size of 32, for a maximum period of 500
epochs with early stopping and a patience value of 30. Each model
was trained 5 times in order to get an estimate of the influence of the
random initialization and stochastic training process on the result.

Model selection and hyper-parameter tuning were performed for
the 30 minute prediction horizon task. The best performing model
was then trained for 60 minute prediction. Experiments were re-
peated for blood glucose history lengths of 30 minutes, 1 hour, 2
hours, and 24 hours.

2.4 Improving long distance pattern learning with
Attention

It can be difficult for recurrent neural networks to learn long distance
patterns. The LSTM network was introduced to address this problem

RMSE MAE

Patient ID PH=30 PH=60 PH=30 PH=60

540 21.03 (0.07) 37.37 (0.09) 16.64 (0.1) 30.8 (0.13)

544 16.14 (0.12) 28.4 (0.14) 12.85 (0.11) 23.57 (0.16)

552 15.82 (0.06) 27.6 (0.15) 12.43 (0.12) 22.78 (0.16)

567 20.29 (0.08) 34.28 (0.18) 15.9 (0.12) 28.95 (0.13)

584 20.39 (0.07) 32.97 (0.09) 15.99 (0.03) 27.04 (0.07)

596 15.7 (0.03) 25.99 (0.12) 12.4 (0.04) 21.33 (0.13)

AVG 18.23 (2.36) 31.1 (4.05) 14.37 (1.83) 25.75 (3.43)

Table 2. Root mean square error and mean absolute error (mg/dl)
computed using the test points for each patient, at different prediction

horizons (30 minutes, and 60 minutes) for a single layer LSTM with 128
hidden units.

[4]. Even so, LSTM networks can struggle to learn very long range
patterns. Attention mechanisms - initially introduced in the context
of neural machine translation - have been shown to improve LSTM
networks’ capacity for learning very long range patterns [7, 1]. At-
tention mechanisms have also been applied to time series data, and
have proven to be effective in instances where the data exhibit long
range periodicity - for example, in electricity consumption prediction
[6]. We hypothesised that blood glucose level prediction using a very
long history, coupled with an attention mechanism, could lead to im-
proved performance, due to periodic human behaviours (e.g. eating
meals at similar times each day; walking to and from work e.t.c). In
order to test this hypothesis, we chose the best performing LSTM
configuration trained with a history length of 24 hours, without at-
tention, and added an attention mechanism as per [7]:

score(ht,hi) = hT
t Whi (3)

αti =
exp(score(ht,hi)

Σt
j=1exp(score(ht,hj))

) (4)

ct =
∑
i

αtihi (5)

at = f(ct,ht) = tanh(Wc[ct;ht]) (6)

where score(ht,hi) is an alignment model, ct is the weighted con-
text vector, and at is the attention vector, which is fed into the clas-
sification layer (without an attention mechanism, the hidden state ht

is fed into the classification layer). The dimensionality of αt was
chosen using the validation set - see Table 1 for details. We also ex-
perimented with attention mechanisms in LSTM networks designed
to process shorter sequence lengths: we chose the optimal LSTM
model architecture for each history length (30 minutes, 60 minutes,
2 hours), added an attention mechanism, and re-trained the model
(again, the optimal αt dimensionality was chosen using the valida-
tion set).

2.5 Investigating the need for personal data during
training

In order to investigate the need for an individual’s data when training
a model to predict their future blood glucose levels, we trained 6
different models - each with one patient’s training data excluded from

2



Patient ID Patient only All patients Patient excluded

540 21.68 (0.04) 21.03 (0.07) 21.16 (0.11)

544 17.28 (0.1) 16.14 (0.12) 16.22 (0.09)

552 16.87 (0.12) 15.82 (0.06) 15.87 (0.09)

567 21.15 (0.3) 20.29 (0.08) 20.5 (0.11)

584 22.11 (0.13) 20.39 (0.07) 20.46 (0.06)

596 16.16 (0.11) 15.7 (0.03) 15.71 (0.02)

AVG 19.21 (2.48) 18.23 (2.36) 18.32 (2.4)

Table 3. Root mean square error (mg/dl) computed using the test points for
each patient, with a prediction horizon of 30 minutes for a single layer

LSTM with 128 hidden units, trained using different data sets. Values listed
in the first column correspond to models trained using the individual patient
data only; values in the middle column correspond to models trained using

data from all patients; values in the final column correspond to models
trained using data from all patients except for the patient for which the

evaluation is performed.

the training set - using the optimal LSTM architecture determined
in previous experiments. The models were then evaluated using the
test data for the patient that was excluded from the training set. We
also trained 6 patient specific models, each trained using the patient’s
training data only. We again used the optimal architecture determined
in previous experiments, but tuned the number of hidden units using
the validation set in order to avoid over-fitting due to the significantly
reduced size of the training set (compared with the set with which the
optimal architecture was chosen). Each model was trained using the
early-stopping procedure outlined in 2.3.

3 Results and Discussion

Our evaluation showed that recurrent models performed significantly
better than both linear and feed-forward neural network models, for
each history length we experimented with (p=0.05, corrected paired
t-test [11]). We also found that feed-forward networks generally out-
performed linear models, likely due to their ability to model non-
linear relationships. The optimal feed-forward network contained
512 hidden units. We found no difference between LSTM and gated
recurrent unit (GRU) networks - remaining evaluations will be per-
formed for LSTM recurrent networks only for simplicity. Figure 1
compares the performance of the different model types as a func-
tion of history length. For each model class we observed that perfor-
mance decreased linearly with increasing history length. The LSTM
appeared better able to deal with longer history lengths - the perfor-
mance degradation was less severe than for the other model classes.
We found a history length of 30 minutes to be optimal for each model
class. The best performing LSTM model contained a single layer
with 128 hidden units, and was trained without dropout. The test set
results for this model are listed in Table 2.

Table 3 compares LSTM models (with the same architecture as
above) trained with the following data sources: the individual pa-
tient’s data only, data from all of the available patients, and data
from every other patient (excluding data contributed by the patient
in question). We observed that models trained using a large amount
of data, but excluding the patient’s data, outperformed models trained
using the patient’s data only (p=0.05). We also found no significant
difference in performance between models trained using all of the
available training data (i.e. including the patient’s data) and those tr-

Figure 1. Comparison of validation set scores for linear, feed-forward, and
LSTM neural networks as a function of history length.

ained excluding the patient’s data, highlighting the general nature of
the models. We found that including sequences with values in the
training set produced models that were more robust to missing data,
as evidenced by the improved RMSE scores listed in Table 4: RMSE
scores were significantly improved for each patient using this ap-
proach to training (p=0.05).

Incorporating an attention mechanism further improved perfor-
mance in most instances: we observed significant improvements for
history lengths of 30 minutes, 60 minutes, and 2 hours (p=0.05), but
not for history lengths of 24 hours. Figure 3 compares the regular
LSTM and LSTM with attention performance as a function of his-
tory length. Figure 2 shows partial auto-correlation plots for 4 differ-
ent patients. Interestingly, two of the patients’ blood glucose data -
patient 540, and patient 544 - don’t show any significant long term
correlation, whereas the other two - patient 552, and patient 567 -
both exhibit significant correlation at time lags of approximately 6
and 12 hours. We observed this behaviour in half of the patients. We

Patient ID Exclude missing data Include missing data

540 21.45 (0.06) 21.03 (0.07)

544 16.79 (0.06) 16.14 (0.12)

552 16.27 (0.13) 15.82 (0.06)

567 21.19 (0.1) 20.29 (0.08)

584 21.16 (0.06) 20.39 (0.07)

596 16.08 (0.07) 15.7 (0.03)

AVG 18.82 (2.45) 18.23 (2.36)

Table 4. Root mean square error (mg/dl) computed using the test points for
each patient, with a prediction horizon of 30 minutes for a single layer

LSTM with 128 hidden units, trained using different methods of handling
missing data. Values in the first column correspond to a model trained with
full sequences only (any sequences with missing values were discarded).

Values in the second column correspond to a model trained with sequences
including missing values - missing values were replaced with zeros

following standardization.
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Figure 2. Partial auto-correlation plots for 4 different patients. The patients in the top row exhibit short term patterns only, but those in the bottom row show
significant correlations at time lags of approximately 6 and 12 hours.

also observed correlations at even greater time lags, corresponding
to multiples of 6 hours. The difference in the patients’ partial auto-
correlation plots suggests it may be sub-optimal to train an attention
mechanism using each patient’s data at once, and that training at the
patient-level may enable the model to learn very long range patterns.
Furthermore, while we were able to train an LSTM model with a
history length of 30 minutes that generalized across all patients, it
may be the case that short range blood glucose patterns are quite ge-

Figure 3. Comparison of validation set RMSE scores (prediction horizon
= 30 minutes) for LSTMs and LSTMs incorporating an attention mechanism

as a function of history length.

neral, and long range patterns are more personalized, and tuning the
history length per patient could improve prediction performance. All
of the results presented in this section can be reproduced using pub-
licly available code 3.

4 Conclusion
In this study we showed that it is possible to train a single LSTM
model that is able to predict future blood glucose levels for each of
the different patients whose data are included in the OhioT1DM data
set. We also demonstrated that an individual patient’s data is not re-
quired during the training process in order for our model to effec-
tively predict the patient’s future blood glucose levels. Furthermore
we showed that incorporating an attention mechanism in the LSTM
improved performance, and that including sequences with missing
values during training produced models that were more robust to
missing data.

3 https://github.com/robert-bevan/bglp
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