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Personalised Glucose Prediction via
Deep Multitask Networks

John Daniels and Pau Herrero and Pantelis Georgiou'

Abstract. Glucose control is an essential requirement in primary
therapy for diabetes management. Digital approaches to maintaining
tight glycaemic control, such as clinical decision support systems and
artificial pancreas systems rely on continuous glucose monitoring de-
vices and self-reported data, which is usually improved through glu-
cose forecasting. In this work, we develop a multitask approach us-
ing convolutional recurrent neural networks (MTCRNN) to provide
short-term forecasts using the OhioT1DM dataset which comprises
12 participants. We obtain the following results - 30 min: 19.7940.06
mg/dL (RMSE); 13.62+0.05 mg/dL (MAE) and 60 min: 33.73+0.24
mg/dL (RMSE); 24.54+0.15 mg/dL. (MAE). Multitask learning fa-
cilitates an approach that allows for learning with the data from all
available subjects, thereby overcoming the common challenge of in-
sufficient individual datasets while learning appropriate individual
models for each participant.

1 INTRODUCTION

In recent years, the proliferation of biosensors and wearable devices
has facilitated the ability to perform continuous monitoring of phys-
iological signals. In diabetes management, this has come with the
increasing use of continuous glucose monitoring (CGM) devices for
helping with glucose control. The current literature on clinical impact
of CGM devices shows that continuously monitoring blood glucose
concentration levels has benefit in maintaining tight glycaemic con-
trol [5, 2]. As a next step, glucose prediction offers an opportunity
to further improve glucose control by taking actions to avert adverse
glycaemic events, such as suspension of insulin delivery in closed-
loop systems to avert hypoglycaemia.

The general work in this area has typically involved collecting data
covering physiological variables such as glucose concentration lev-
els, heart rate, and self-reported data covering exercise,sleep, stress,
illness, insulin, and meals. However, public datasets covering ambu-
latory monitoring of T1DM population are not widely available.

Deep learning [6] facilitates learning the optimal features and has
been shown to perform better than other methods involving hand
crafted features that have been employed in recent times for predict-
ing glucose concentration levels. However, typically these models re-
quire relatively large amounts of data to converge on an appropriate
model.

In this work, we employ a multitask learning [1] approach in order
to improve the performance of the glucose forecasting in a neural net-
work, where each individual is viewed as a task, using shared layers
to enable learning form other individuals.
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2 RELATED WORK

Glucose prediction has been a long-standing area of focus in the dia-
betes community. As a result, many approaches have existed in order
to provide near-time glucose concentration level forecasts.

Early work in this area have focused on physiological models and
traditional machine learning methods in predicting glucose concen-
tration levels [12, 3]. Recent work as seen in the 2018 Blood Glucose
Predictive Challenge has seen a move towards deep learning methods
with more impressive results [11, 9, 14, 8]. These have used convolu-
tional architectures, recurrent architectures, or a combination of both
to model the task of glucose prediction.

3 DATASET AND DATA PREPROCESSING

In this section, we detail the transformations that are performed on
the data prior to training and testing the model for each T1DM par-
ticipant.

3.1 OhioT1DM Dataset 2020

The OhioT1DM dataset 2020 [10] is a dataset comprising 12 unique
participants that cover eight weeks of daily living. The participants
are given IDs as the data is anonymised. This data comprises physio-
logical data gathered using a continuous glucose monitor (blood glu-
cose concentration levels) and wristband device (heart rate, skin con-
ductance, skin temperature), activity data (acceleration, step count),
and self-reported data (meal intake, insulin, exercise, work, sleep,
and stressors).

3.2 Dealing with Missing Values

A non-trivial aspect of the datasets used for developing glucose pre-
diction models is the aspect of missingness. This is evident in the
Ohio T1DM dataset with missingness present in both physiological
variables and self-reported data [4].

Linear Interpolation: The blood glucose values that are miss-
ing in this dataset are typically missing at random. This could be
attributed to issues around replacing glucose sensors and/or transmit-
ters, or dealing with faulty communication. As a result, we employ
linear interpolation in the training set to handle imputation of missing
blood glucose concentration levels in the dataset over a period of one
hour. In the samples where more than an hour of CGM data is miss-
ing the sample is discarded from the training set. This is illustrated
with an example sequence in (C) of Fig.1

On the other hand, features which comprise self-reported data the
assumption is made that any missing values represent an absence of
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A visualisation of the imputation methods employed in this work. In (A) the input sequence has at least 30 minutes of recent values missing (eg.

linear extrapolation). (B) shows the imputation scheme during testing for longer than 30 minutes of recent values missing (zero-order hold). Finally (C) shows
the imputation scheme when the missing values of the input sequence are located between real values (linear interpolation).

said feature. Therefore all missing values in insulin, meal intake and
reported exercise are imputed with zero.

The missingness in features from the self-reported data in the test-
ing set is tackled similarly as in the training set. However, this is
not the case for blood glucose concentration levels as interpolation
when a current value at a given timestep is missing would lead to an
inaccurate evaluation of model performance.

Extrapolation: In order to accurately evaluate the performance of
the model we cannot always rely on interpolation at test time as this
may require, in a real-time setting, an unknown future value to per-
form interpolation. Consequently, we need to rely on other methods
of extrapolation to impute the missing glucose concentration levels.
In this scenario (A), for gaps of data less than 30 minutes, we im-
pute missing values with predicted values from the trained model.
For missing recent values longer than 30 minutes as in (B), we pad
the remaining values with the last computed value. In cases where, a
gap larger than 30 minutes is evident in historical data and a current
value is present at the given timestep, linear interpolation was then
employed instead to provide a more accurate imputation.

3.3 Standardisation

To enable training the proposed model effectively, we perform trans-
formation of the relevant input features (blood glucose concentration,
insulin bolus, meal(carbohydrate) intake, and reported exercise). The
blood glucose concentration levels are scaled down by a factor of
120. Similarly, the insulin bolus is scaled by 100 and meal intake
values are scaled by 200 in the same range between features. The ex-
ercise values are transformed to a simple binary representation of the
presence or absence of exercise, from the recorded exercise intensity
on a range from 1-10.

4 METHODS

In this section we detail the machine learning technique that is used
to provide the means of learning personalised models with the entire
dataset. We detail the approach to develop the deep multitask net-
work for personalisation. We provide a summary of the hyperparam-
eters used in training as well and setting up the input for personalised
multitask learning.

4.1 Multitask Learning

Multitask learning is an approach in machine learning that can be
broadly described as a method of learning multiple tasks simultane-

ously with the aim of improving generalisation [1].

Multitask learning for personalisation has been used mainly in af-
fective computing [13] with early work in diabetes management fo-
cusing on using multitask learning for developing prediction models
for clustered groups of Type 1, Type 2, an non-diabetic participants
[7] rather than leveraging similarities within groups such as gender,
for personalised glucose predictions.

As seen Figure 2, the output from the shared layers are now fed
into the individual(task)-specific fully connected layers of each user.

In a multitask setting of this kind, a multiplicative gating approach
is used to ensure that the input corresponding to the particular user
trains on just that user in the individual-specific layers. In that sense,
at each iteration a batch that consists of data from a particular indi-
vidual is used to train the shared layers and the layers specific to the
individual.

4.2 CRNN Model

The deep learning model trained in the multitask learning setting is
a convolutional recurrent neural network (CRNN) proposed by Li et.
al [8] to perform short-term glucose prediction. This forms the basis
of the single-task (STL) model. The convolutional recurrent model
consists initially of a 3 temporal convolutional layers that perform
a 1-D convolution with a Gaussian kernel over the sequence of in-
put to extract features of various rates of appearance, followed by
a max pooling layer after each convolution operation. The input is
a 4-dimensional sequence that takes a 2-hour window of historical
data.

The output from the convolutional layers performs feature extrac-
tion and feeds into a recurrent long short-term memory (LSTM) layer
that is able to better model the temporal nature of the task.

The output from the shared layers feed into the fully connected
layers of each user and to then provide the change in glucose value
over the prediction horizon. This is then added to the current glucose
value to provide the forecast glucose concentration level.

4.3 Loss Function

The loss function used for converging to the appropriate model for
the glucose forecasting is the mean absolute error. This is expressed
below as:
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Figure 2. A detailed look at the formulation of convolutional recurrent networks in a multitask setting. In this setting, each user is represented as a task. In
addition, the initial layers (convolutional and recurrent layers) are shared between each user, the next two (dense) layers are shared based on gender, and the last
(dense) layer is specific to each user.

where ¢ denotes the predicted results given the historical data and y
denotes the reference change in glucose concentration over the rele-
vant glucose prediction, and Nyq¢cn refers to the batch size.

4.4 Hyperparameters
The following table details provides the details of the hyperparame-

ters used for the model architecture at each layer.

Table 1. A table detailing the size and dimensions of layers in the
multitask CRNN model (MTCRNN)

Layer Description | Output Dimensions No. of
(layer) Parameters
Shared Convolutional Layers (Batch x Steps x Channels)
(1) 1x4 conv 128(1) x 24 x 8 104
max_pooling, size2 | 128(1) x 12 X 8 —
(2) 1x4 conv 128(1) x 12 x 16 528
max_pooling, size2 | 128(1) x 6 x 16 —
(3) 1x4 conv 128(1) x 6 x 32 2080
max_pooling 128(1) x 3 x 32 —

Shared Recurrent Layer (Batchx Cells)
(4) Istm [ 128(1) x 64 [ 24832
Sub-cluster Dense Layers (Batch x Units)

(5) dense 128(1) x 256 16640

(6) dense 128(1) x 32 8224
Individual-Specific Dense Layers (Batch x Units)

(7) dense [ 128(1) x 1 [ 33

The optimiser used for this work is Adam. The learning rate is
0.0053. The model is trained for 200 epochs. This value was obtained
through grid search optimisation.

The model is developed on Keras 2.2.2, with a Tensorflow 1.5
backend. The training is performed on an NVIDIA GTX 1050 GPU.

The repository for the code accompanying the paper can be found at:
https://github.com/jsmdaniels/ecai-bglp-challenge

5 RESULTS
5.1 Evaluation Metrics

The model is tested on data from six participant IDs: 540, 544, 552,
567, 584, 596.

The evaluation of the model is based on two metrics: root mean
square error (RMSE) and the mean absolute error (MAE). The ex-
trapolated points are not considered in calculating these metrics. The
formulation of these metrics are provided below:
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where ¢ denotes the predicted results given the historical data and
y denotes the reference glucose measurement, and NN refers to the
data size.

In order to undertake a comprehensive evaluation of the model
performance, the subsequent criteria for assessment are followed:

e Performance evaluation over 30-minute and 60-minute pre-
diction horizon (PH): The RMSE and MAE for each participant
is analysed for a the same length of values for both prediction
horizons.

o Comparison of training setting: The performance of the multi-
task learning (MTL) approach is evaluated in the context of com-
parison with the performance of a single task learning (STL) ap-
proach which uses only patient specific data.



e Multiple runs for each participant ID: The multitask CRNN
(MTCRNN) model uses randomly initialised weights at the start
of training. Given the variable nature of this training procedure,
the results reported are the average of 5 model runs.

The unit for results reported below is mg/dL. The best perfor-
mance is in bold.

Table 2. A table showing prediction performance for 30 minutes the
RMSE and MAE results of the six participants over 5 runs (CRNN)

MTL STL
1D RMSE MAE RMSE MAE
540 21.19+0.07 15.1740.06 22.454+0.39 16.21+0.34
544 16.82+0.09  11.72+0.06  18.63+1.59  12.57+0.23
552 16.30+0.12  11.92+0.03  17.11+0.24  12.68+0.49
567 24.1240.17  15.554+0.03 24.73+0.45 16.01+0.71
584 23.66+0.20 15.77+0.08 24.30£0.48  16.20+0.23
596 16.63+0.15  11.59+0.09 16.78+0.20  12.00+1.77
Average  19.79+0.06  13.621+0.05 20.67+0.32  14.284+0.19

Table 3. A table showing the prediction performance for 60 minutes
RMSE and MAE results of the six participants over 5 runs (CRNN)

MTL STL
1D RMSE MAE RMSE MAE
540 38.29+0.29  28.60+0.17 41.064+0.24  30.33+0.69
544 28.97+0.24  20.77£0.20  29.60+0.37  20.52+0.17
552 29.35+0.27  22.07+0.13  30.32+0.10  22.53+0.13
567 40.19£0.79  28.77£0.13  40.09+0.64  27.71+0.13
584 37.82+0.78  26.88+£0.37  37.22+£0.34  26.64+0.41
596 27.74+0.11  20.124+0.14  28.13+0.48  20.30+0.41
Average  33.73+0.24  24.5440.08 34.40+0.14 24.6740.14

6 DISCUSSION

As seen in Table 3, the results shown provide a comprehensive eval-
uation of the model predictive performance.
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Figure 3. A graph showing the predictive performance of the model on
participant ID:596 at a 30 minute predictive horizon.

Evidently, the model performance at PH = 30 minutes is better
than the model performance at PH = 60 minutes, given that prediction
at 60 minutes is a more complex task than prediction at 30 minutes.
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Figure 4. A graph showing the predictive performance of the model on
participant ID:596 at a 60 minute predictive horizon.

Figures 3 and 4 exhibit the differences in performance as seen in the
specific window for participant 596. The increased lag and reduced
predictive performance can also be attributed to the higher chance of
external activities (insulin, meals, exercise) that influence the blood
glucose trajectory occurring over the prediction horizon.

The best predictive performances were achieved by the model
with IDs 544, 552, 596 whereas, IDs 540, 567, and 584 exhibited
worse performances over both 30 and 60 minute prediction horizons.
An investigation of the glycaemic variability, using the coefficient
of variation (CV) [2], of the training set of the former set of par-
ticipants are stable (CV<36%) whereas the latter group are labile
(CV>36%). The multitask learning approach definitively performs
better over the single task approach over a 30-minute prediction hori-
zon. However, the performance improvement of the MTL approach
over a 60-minute prediction is not consistent across each participant
and metric.

One potential issue with multitask learning is the issue of negative
transfer. This can be described as a scenario in which one or more
of the tasks (individuals) or sampled batches during training are not
strongly correlated, degrading the learning in the shared layers, and
subsequently the performance at test time.

7 CONCLUSION

In this work, we have presented a multitask convolutional recurrent
neural network that is capable of performing short-term personalised
predictions - 19.79+0.06mg/dL (RMSE) and 13.62+0.05mg/dL
(MAE) at 30 minutes, as well as 33.734+0.24mg/dL. (RMSE) and
24.54+0.15mg/dL (MAE) at 60 minutes. We work towards lever-
aging population data while still learning a personalised model. In
the future, we hope to address further challenges such as negative
transfer during learning that could improve the accuracy of individ-
ual models. This approach would enable more accurate models to be
deployed in the face of limited personal data.
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