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Abstract. Control of blood glucose (BG) levels is essential for di-
abetes management, especially for long term health improvement.
Predicting both hypoglycemic events (BG < 70 mg/dl) and hyper-
glycemic events (BG > 180 mg/dl) is essential in helping diabetics
control their long term health. In this paper we attempt to forecast
future blood glucose levels, as well as analyze the efficiency of de-
tecting both hypoglycemic events and hyperglycemic events. We do
so by comparing Auto-Regressive Integrated Moving-Average, Vector
Auto-Regression, Kalman Filter, Unscented Kalman Filter, Ordinary
Least Squares, Support Vector Machines, Random Forests, Gradient
Boosted Trees, XGBoosted Trees, Adaptive Neuro-Fuzzy Inference
System (ANFIS), and Multi-Layer Perceptron in terms of Root Mean
Squared Error, Mean Absolute Error, Coefficient of Determination,
Matthews Correlation Coefficient, and Clarke Error Grid to com-
pare their effectiveness in predicting future blood glucose levels, as
well as predicting both hypoglycemic and hyperglycemic events.

1 Introduction
Blood glucose prediction has been an ongoing challenge within the
medical field due to the near unpredictable variability of the many
underlying factors influencing an individual’s glucose levels. There
has been a strong drive recently to create an artificial pancreas using
artificial intelligence, which has necessitated the need to predict fu-
ture blood glucose levels as well as the ability to accurately predict
the onset of both hypoglycemic (BG< 70 mg/dl) and hyperglycemic
(BG > 180 mg/dl) events [11].

Most predictive models for blood glucose encompass a physio-
logical profile that includes a person’s insulin, meal absorption, and
past blood glucose levels [13]. Various machine learning methods
that have been attempted to predict future blood glucose levels with
regards to this profile include Auto-Regressive Integrated Moving-
Average (ARIMA, see [3], [4], [13], and [15]), Support Vector Ma-
chines and Kernel Regression (SVM, see [3], [12], [13], and [15]),
Random Forests (RF, see [8], [12], [13], and [15]), Gradient Boosted
Trees (see [8] and [15]), and Artificial Neural Networks (see REF-
ERENCES).

Comparing papers on the results, accuracy, and effectiveness of
the models is near impossible due to different data sets being used
between them. This paper seeks to offer a comparison of as many
models as possible on a single data set.

In this paper, we compare the effectiveness of several mod-
els, namely ARIMA, Vector Auto-Regression Moving-Average with
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Exogenous Regressor (VAR), Ordinary Least Squares (OLS), K-
Nearest Neighbors (KNN), SVM, RF, Gradient Boosting, XGBoost-
ing, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multi-
Layer Perceptron. Additionally we attempt to use both the Kalman
Filter and the Unscented Kalman Filter (UKF) to predict future blood
glucose values. The Unscented Kalman Filter was chosen over the
Extended Kalman Filter due to its ability to use state-space models
to predict nonlinear functions. In comparing each of these model’s
effectiveness we use RMSE, MAE, the Matthew Correlation Coef-
ficient (A commonly used metric for checking hypoglycemic and
hyperglycemic events that roughly measures the quality of binary
classifications) [4], and the Clarke Error Grid.

2 Data
2.1 OHIO T1DM
The data used for this comparison was the OhioT1DM data set,
which was obtained as part of the second Blood Glucose Level
Prediction Challenge [5]. This data set contains eight weeks worth
of data for 12 people with type 1 diabetes. All contributors were
on insulin pump therapy with continuous blood glucose monitoring
(CGM). All pumps were of one of two brands, all life event data was
reported via a custom smartphone app, and all psychological data
was provided from a fitness band. The features themselves provided
in the data set are: Date, Glucose Level, Finger Stick, Basal (Insulin),
Basal Temperature, Bolus (Insulin), Meal (Carbohydrate Estimate),
Sleep, Work, Stressors, Hypoglycemic Event, Illness, Exercise, Basis
Heart Rate, Basis GSR, Basis Skin Temperature, Basis Air Temper-
ature, Basis Steps, Basis Sleep, and Acceleration [5].

The train and test splits were given as part of the second Blood
Glucose Level Prediction Challenge (see [5] for more details).

2.2 Preprocessing
The glucose readings are in about 5-minute increments while other
reading are every minute. Other readings reported by the patient are
at arbitrary times not aligned with the glucose readings. To combine
them into one data frame to use for predicting glucose, the most im-
portant predictor, glucose levels, was made the main index. All other
values were merged to the closest glucose values within the previ-
ous 4 minutes. For values that were not in this tolerance they were
dropped from the data frame.

Most of these values that were dropped were due to missing data.
There are many gaps where the meter was not recording glucose val-
ues. This could be times between taking it off and putting it on, the
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hour or more it takes for the meter to get set up, or a day where the
user just did not put it on. Leaving these gaps often resulted in large
jumps in the training and testing data. These discontinuities would
be a problem in training the models. To fill them we couldn’t use
interpolation methods as we are unable to know the future while pre-
dicting these values. Therefore, our method to extrapolate values for
these times was to use a moving average. For example, for the first
extrapolated missing value, we would use the mean of the previous 2
values. For the second we would use the mean of the previous 4 val-
ues. For the tenth we would use the mean of the previous 20 values,
including the ten we had just extrapolated before that. This would
happen in five minute increments until we reach the next actual value
in the data frame. The last predicted value would be dropped and the
data frame would continue as normal until a difference of more than 6
minutes between values was detected and this rolling average would
extrapolate the missing values. The rolling average would eventu-
ally converge to the average value of all the data, but maintains the
nature of the recent data. For example, if the person has had high
blood glucose levels for the day, the filled data would stay high, but
eventually move towards the mean of the person when using several
days for large gaps. This was done since after a few hours, guessing
where the person’s data was going to start is nearly random guessing.
Since the actual glucose values are essentially normally distributed,
it is better to guess more towards the mean of the glucose levels.
Meanwhile, the discontinuities were reduced by maintaining the lo-
cal rolling mean. This resulted in many of the extrapolations ending
very close to where the data continues from the discontinuity for this
data.

3 Methods
We intend to compare many methods used for classical and regres-
sive time series analysis. Thus, even though some methods are known
to not perform well with blood glucose levels for this type of prob-
lem, they give a baseline to compare each successive method. In ad-
dition to the classical models, we used some models described in
other papers about predicting glucose levels for comparison and po-
tentially better parameter choices. Further, we chose some methods
like VAR and ANFIS in order to compare methods not seen in the
research found. The following subsections explain choices in why
specific methods, parameters, and architecture were chosen.

3.1 Classical Methods
3.1.1 ARIMA

Even though ARIMA itself is a linear combination of a trend com-
ponent, a seasonal component, and a residual component, we chose
to use this model due to its classical use within time series anal-
ysis. Additionally, ARIMA was chosen due to its ability to allow
us to choose the order of p and q for both the AR and MA parts
of the model. These hyperparameters p and q were chosen using
stats.models.orderselect, from which we found that p=2 and q=2 gave
the lowest error. It should be noted that the data is nearly stationary to
start, so a lag of 0 was used (as larger lags resulted in a worse error).
The only data features used were the previous p blood glucose levels
and the q corresponding error terms.

3.1.2 VAR

VAR is a vectored version of an AR model. This allows for more
types of inputs to influence the prediction, rather than just simply

using the previous p blood glucose values. VAR used the same pa-
rameters used in the ARIMA model described above.

3.1.3 Unscented Kalman Filter (UKF)

Whilst the Extended Kalman Filter (EKF) works well for linear pro-
jections, blood glucose levels are nonlinear in nature. Generally EKF
can be thought of as the extension of a Gaussian Random Variable
(GRV) through a linear system [14]. In the nonlinear case however,
the EKF produces approximations to the values xk, yk, and Kk

(the state, observation, and covariance for the system) [14]. In other
words, the Extended Kalman Filter propagates a GRV through a first-
order linearization of the nonlinear system [14].

The Unscented Kalman Filter also uses a Gaussian Random Vari-
able, but instead uses a minimal set of carefully chosen sample points
for which to propagate this GRV [14]. This is done by applying
the unscented transformation to the selected sample points and then
propagating these carefully chosen points through the system. Doing
so allows for approximations that are accurate to the third order of a
Taylor series expansion [14].

To summarize, the Unscented Kalman Filter selects carefully cho-
sen points, applies the unscented transformation to these points, then
performs the time update and measurement update as is standard in
the Kalman Filter [14].

3.2 Regression and Ensemble Methods

Since the OhioT1DM data set is time series based, regular regression
methods are not immediately available for us to use when forecasting
data. However, we can transform the data into a regression problem
by first redefining how the data is presented. Instead of each row in
the data representing a single time step of the nineteen features, we
instead redefine the data on the last six rows of data (we used the last
30 minutes of known information of data). Thus each row in the new
reformatted data set now contains the last six known time steps with
the labels being the future blood glucose values we wish to predict
at each time step. Each label is the next six or twelve blood glucose
values following the current time step in the OhioT1DM data set
for the 30-minute and 60-minute prediction horizons respectively. In
summary, each time step is reformatted to have a 6x19 feature space
with each label having 6 or 12 values. With the data reformatted the
following algorithms can be run.

3.2.1 Ordinary Least Squares

While the data is nonlinear in nature, it is possible that within a suf-
ficiently small subset of the data (that is, for a sufficiently small time
interval), the data may be quasi-linear. As with ODEs (where one
can essentially linearize a nonlinear system) we seek to do some-
thing similar by attempting to fit affine functions to a sufficiently
small time domain. Ordinary Least Squares (OLS) seeks to do this,
fit an affine function (with a constant and error term), to the data
set. In addition to regular OLS, we also run OLS with regularization
terms, namely Lasso (L1 regularization), Ridge (L2 regularization),
and Elastic Net (L1 and L2 regularization) all with α values of 1 for
the regularization terms. We note that Lasso regularization gives us
the advantage of feature reduction, allowing us to analyze which lags
are most important in determining future blood glucose levels.



3.2.2 Support Vector Machines

We believe Support Vector Machine regression may be a useful
method due to its ability to alter the kernel being used, thus allowing
us to alter our definition of distance with regards to the data. Sup-
port Vector Machine (SVM) regression seeks to fit a hyperplane to
the data with an ε-margin. Points that fall within this ε-margin are
known as support vectors and are used to help define the hyperplane
used in the regression. Notions of distance to this hyperplane are de-
fined using a kernel. We attempt to use an RBF-kernel (with a scaling
γ value) and a Polynomial Kernel (with a scaling γ value, a constant
term of 0 and a power of 3) in our regressions. Each SVM had an
ε-margin of 0.1. The results for each of the SVMs are reported under
RBF, Poly, and Sig respectively.

3.2.3 K-Nearest Neighbors

It is likely that previous patterns in the lags of blood glucose (and
other features) may be similar to the current pattern in the lags of
features, we believe KNN regression may also be a useful regression
method. KNN uses a voting method to form the regression. Using a
defined metric of distance, KNN regression finds the K closest neigh-
bors to the given data point and then returns the average of the labels.
We use five neighbors, along with Euclidean distance for this algo-
rithm. The results for this algorithm are reported under KNN.

3.2.4 Random Forest Regression

Random Forest Regression is an ensemble method that combines
weak decision-tree regressors to form a strong group regressor, Ran-
dom Forests allow us to create a regressor that branches based on the
features. This is included here due to its use in other papers attempt-
ing blood glucose prediction (see [8], [12], [13], and [15]). To limit
run-time to a reasonable length, a max-depth of four was imposed on
each forest.

3.2.5 Gradient Boosting

Another ensemble method that combines weak decision-tree regres-
sors to form a strong group regressor, Gradient Boosting instead
seeks to optimize the gradient of the loss function for each regres-
sor. As this can perform well with the correct hyperparameters, we
include this to see if the algorithm can outperform any of the afore-
mentioned algorithms. In addition to using regular Gradient Boosted
Trees, we also use an optimized version of this algorithm known as
Extreme Gradient Boosted Trees (XGB). For Gradient Boosting a
least-squares loss function, along with a learning rate of 0.1, and 100
estimators were used. For XBG a grid search was performed to find
the optimal hyperparameters. Respectively, the results for these algo-
rithms are reported under Grad and XGB.

3.3 Neural Networks

Much work has already been done implementing neural networks
in many different forms, including CNN, CRNN, DCNN, LSTM,
Jump neural Networks, and Echo State (see [1], [2], [3], [4], [6], [8],
and [15]). Much of this work came from the Blood Glucose Level
Prediction Challenge (BGLP) in 2018 using the OHIO T1DM data
set.

3.3.1 ANFIS

ANFIS is a neural network that includes fuzzy logic principles.
Fuzzy logic is about partial truths. Most neural networks have
a true/false form in selections. Fuzzy logic models uncertain-
ties. Some examples of this are what one considers warm/cold,
fast/medium/slow, or high/low. Rather than just picking one or the
other, a draw from a distribution can give a weighted random nature
to the choices. ANFIS is designed to approximate nonlinear func-
tions like glucose values. This was chosen due to the extremely ac-
curate predictions in the referenced paper on chaotic systems. [9]

3.3.2 Multi-Layer Perceptron (MLP)

The Multi-Layer Perceptron (MLP) is a fully-connected, feed-
forward neural network. This neural network can often find higher-
order terms without having to create these higher-order terms. This
reduces feature engineering of the data. Our MLP consists of three
hidden layers, each with 100 nodes, and ReLu activation functions.
The output layer for the regression is merely the output of the last
affine function. Results are reported under MLP.

4 Metrics
The following metrics were used when evaluating the efficiency and
accuracy of the algorithms:

4.1 Root Mean Square Error

The root mean square error (RMSE) is defined as

√
1
n

n∑
i=1

(ŷi − yi)2

where ŷi is the predicted value and yi is the actual value. RMSE has
the advantage of an easily defined gradient, easy interpretability, and
taking the square root of the squares transforms the error back to the
original function space (that is, the RMSE value is in the same units
as our label). This is the first metric used in evaluating the accuracy
of the regression models.

4.2 Mean Absolute Error

The mean absolute error (MAE) is defined as 1
n

n∑
i=1

| ŷi − yi |. This

error function is easy to define, is fairly robust against outliers, and
will be in the same units as our label. However, the gradient is not
always easy to define (and may not exist). This is the second metric
used in evaluating the accuracy of the regression models.

4.3 Coefficient of Determination
The coefficient of determination (R2) is defined as

1−

n∑
i=1

ε2i

n∑
i=1

(yi − ȳ)2

where yi is the actual value, ŷi is the predicted value, εi = yi − ŷi
and is defined as the ith residual, and ȳ is the sample mean. The co-
efficient of determination gives a measure of how much variance is
explained by the model. Values near 1 indicate nearly all variance
is explained by the model, while values near 0 indicate the variance
may be caused by other factors. We note that negative values are pos-
sible, and for this paper indicate poor performance from the model.



4.4 Matthews Correlation Coefficient
The Matthews Correlation Coefficient (MCC) is defined as

(TP∗TN)−(FP∗FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

where TP, FP, FN, TN

stand for the true positive, false positive, false negative, and true neg-
ative rates respectively [4]. This metric gives a general idea of how
well an algorithm does in predicting glycemic events. Values near 1
show the predictions correlate with the actual glycemic events. Val-
ues near 0 indicate the algorithm does no better than random guess-
ing. Values near -1 indicate negative correlation (that is the predic-
tions correlate with the opposite of the glycemic event). This metric
is commonly used by many articles that attempt to predict blood glu-
cose levels (see [4] for one such example), and as such is used here.

4.5 Clarke Error Grid
The Clarke Error Grid plots the actual blood glucose values against
the predicted blood glucose values and is used as an indication of
the potential results that may occur for a given prediction. The grid
is split into 5 zones A-E. Predictions in Zone A and B are gener-
ally considered safe predictions and would not result in any negative
effects on the patient. Predictions in Zone C would result in unneces-
sary treatment. Predictions in Zone D indicate a potentially danger-
ous failure to detect a glycemic event. Predictions in zone E would
confuse treatment of hypoglycemia for hyperglycemia and vice versa
(see [1]). Points in Zone E are considered extremely dangerous, as
treatment due to these results could result in the patient’s death. For
this paper, in addition to MCC we use the percentage of points within
each zone to evaluate the accuracy of a model’s predictions.

5 Results
The following tables describe the average of the metric scores from
the 6 patients. Each of these metrics are described above, namely
RMSE, MAE, MCCs, and R2. The abbreviation definitions and ex-
planations can be found in the Methods section above.

Table 1. Metric Averages for 30-minute Prediction Horizon

Method RMSE MAE MCCl MCCh R2

OLS 20.53 14.14 0.34 0.79 0.86
Lasso 20.58 14.22 0.32 0.79 0.85
Ridge 20.52 14.13 0.35 0.79 0.86
Elastic 20.56 14.20 0.31 0.79 0.86
RBF 24.89 16.96 0.14 0.74 0.79
Poly 31.73 22.51 -0.00 0.70 0.66
KNN 24.57 17.07 0.30 0.73 0.79
RF 23.00 16.27 0.16 0.76 0.82
Grad 21.37 14.87 0.17 0.78 0.84
XGB 24.62 17.29 0.34 0.74 0.79
Kalman 24.08 24.08 0.40 0.74 0.78
UKF 29.88 20.65 0.30 0.67 0.69
ARIMA 23.73 16.68 0.12 0.75 0.81
VAR 25.25 17.05 0.36 0.74 0.79
ANFIS 24.56 16.52 0.26 0.76 0.80
MLP 20.85 14.30 0.30 0.78 0.85

Table 2. Metric Averages for 60-minute Prediction Horizon

Method RMSE MAE MCCl MCCh R2

OLS 33.42 24.65 0.02 0.61 0.62
Lasso 33.41 24.67 0.02 0.61 0.62
Ridge 33.41 24.65 0.02 0.61 0.62
Elastic 33.40 24.67 0.02 0.61 0.62
RBF 36.76 26.53 -0.00 0.55 0.54
Poly 39.16 29.31 -0.00 0.53 0.48
KNN 38.11 28.01 0.15 0.53 0.50
RF 35.20 26.08 0.09 0.58 0.58
Grad 33.98 24.96 0.08 0.58 0.61
XGB 39.78 26.97 0.15 0.53 0.46
Kalman 22.77 15.28 0.41 0.75 0.81
UKF 29.78 20.65 0.30 0.66 0.69
ARIMA 36.39 26.93 0.01 0.56 0.54
VAR 35.06 19.56 0.16 0.70 0.54
ANFIS 36.87 26.53 0.12 0.59 0.56
MLP 35.59 25.81 0.06 0.59 0.57

6 Analysis

In an attempt to first analyze the accuracy of these predictions we first
analyze the RMSE and MAE for both the 30-minute and 60-minute
prediction horizons (Tables 1 and 2). As a general guideline we will
first analyze which model we believe is performing best among the
patients. Once this is done we will then analyze general trends we
have noticed while analyzing this data.

6.1 30-Minute Prediction

We note that in terms of the above defined metrics OLS, Lasso,
Ridge, and Elastic Net Regression perform nearly identical. Thus,
since the differences between OLS, Ridge, Lasso, and Elastic Net re-
gression yield minimally different results, we consider Lasso to be
the best model for the 30-minute blood glucose predictions. Lasso
regression offers a natural form of feature selection which allows
us to analyze which lags are most important for predicting future
blood glucose levels. A further analysis of the feature relevancy can
be found under section 6.4.

Even though we have identified Lasso regression as the best per-
forming algorithm among those tested for the 30-minute prediction
horizon, this means little if this ”best” algorithm still yields subpar
results. As such, we analyze Lasso regression both in terms of MCC
and the Clarke Error Grid to determine if these results are ”suffi-
ciently adequate” for blood glucose prediction. To see general trends
for the prediction we analyze the results for actual and predicted val-
ues across time for patients 540 and 584.

Note the Clarke Error Grid for patients 540 and 584 for the 30-
minute prediction horizon (figure 2). The closer the points fall onto
the bottom left to top right diagonal the better the predictions are
considered. Analyzing these plots visually does not raise any imme-
diate concerns for the predictions. Most values appear to fall within
zones A, B, and C. Analyzing the zones percentages (table 3) shows
that Lasso has 96% accuracy for patient 540 and about 99% accu-
racy for patient 584. The major concern however is that the rest of
these predictions fall within zones D-E, indicating these predictions
may result in potentially dangerous care if acted on for the patient.
Considering the high accuracy for each patient though, these results
are considered ”sufficiently accurate” for the 30-minute prediction
horizon.

Analyzing the MCC for Lasso regression for the 30 minute hori-
zon shows that the MCC tends to be about twice as high for hyper-



glycemic events than for hypoglycemic events. Given that the data
tends to have many more values in the hyperglycemic range than the
hypoglycemic this reflects more on the class imbalance more than the
algorithm. This is seen due to all the algorithms having this trend.
Further, this bias is reflected in the algorithm’s predictions, as val-
leys in the predictions do not reach as low as the valleys in the actual
data (see figure 1). Because of this, we note that the algorithms are
less likely to predict hypoglycemic events as they are hyperglycemic
events, a result that occurs due to the higher number of blood glucose
values in the data.

6.2 60-Minute Prediction
Looking at the results for the 60-minute prediction horizon for the
RMSE and MAE we find the surprising result that the Kalman Filter
(not the Unscented Kalman Filter), performs best out of all the algo-
rithms. Several explanations are possible as to why this occurs. One
of these is that the Kalman filter seemed to dampen the predictions.
Most of the other algorithms would keep predicting upwards for the
hour predictions if the trend was going up beforehand. The Kalman
filter seems to mainly shift the prediction horizon over (so the differ-
ence between the last known glucose value and the prediction for an
hour later is minimal). Since it keeps the results in the typical ranges
of glucose values it may avoid the poor scores from unusually strong
spikes of predicted values. The scores may be the best, but they may
still be very poor predictors for an hour out.

Considering the aforementioned problems with the Kalman filter,
we analyze the ”second” best algorithm. Since the general trends dis-
cussed in the 30-minute prediction horizon section still hold for the
60-minute prediction horizon (when we disregard the Kalman Fil-
ter), we conclude Lasso regression to be the next best algorithm to
use. However, analyzing the difference between the 30-minute pre-
diction horizon and the 60-minute prediction horizon raises several
concerns with using Lasso regression for the 60-minute prediction
horizon.

We noted earlier that Lasso regression tends to underfit with re-
gards to hypoglycemic events. This problem is only exacerbated
when the prediction horizon is extended to 60 minutes (see table 2).
Here we notice the hypoglycemic MCC has reduced to near 0, indi-
cating that Lasso prediction does no better than random guessing as
to whether a hypoglycemic event is occurring. This is far from ideal
for any diabetic patient. As well, we note that for the 60-minute pre-
diction horizon, the accuracy of safe predictions degrades by about
2-3% (see table 3). While 94-97% accuracy is still fairly good, given
that this reduction in accuracy results in 2-3% more dangerous pre-
dictions, and considering the fact that Lasso regression is unable to
predict hypoglycemic events better than random guessing, we do not
consider these predictions to be ”sufficiently accurate” for the 60-
minute prediction horizon. As such, our recommendation is to use
the 30-minute prediction horizon.

6.3 Overall Trends
The biggest trend that we notice is that the models tend to underfit
in regards to hypoglycemic events. That is, the predicted values do
not reach as low as the actual blood glucose values do. This is noted
in the hypoglycemic MCC for the 30-minute prediction horizon (see
table 1) which gives on average a score at about 0.3. This indicates
a general correlation in predicting hypoglycemic events, but not a
strong one. Given that the average blood glucose levels on the test
data were 159.42 mg/dl, 158.51 mg/dl, 134.92 mg/dl, 143.41 mg/dl,

172.71 mg/dl, and 148.23 mg/dl for patients 540, 544, 552, 567, 584,
and 596 respectively the most likely reason that the MCC for hypo-
glycemic events is so low is due to class imbalance within the glucose
levels. Since most glucose levels are generally high for the patients,
the model overfits for higher glucose levels, and as such struggles to
predict hypoglycemic events. A potential solution could be to upsam-
ple by ”jittering” the smaller imbalanced class (adding small random
perturbations to the existing smaller imbalanced class in order to cre-
ate for data). See [7] and [10] for such an example.

6.4 Feature Relevancy

As stated earlier, one important benefit of Lasso regression is the
ability to identify features important to glucose prediction. As seen
in Table 4: glucose level, bolus, meal, and exercise are significant in
predicting glucose levels (finger sticks are potentially significant, but
they may be linearly dependent on glucose level). The Weights col-
umn is the sum of all 6 people’s weight scores. The problem with the
weights is the huge variability in the number of recorded data points.
In an attempt to normalize the data, we created an Adjusted Weight.
This is made by dividing the weights of each person by the number
of recorded values for each person and summing all 6 of them to-
gether. This was multiplied by 1000 so the values would be about
the same magnitude as the original weights. The lack of enough data
for exercise is demonstrated here. Only 3 of the 6 people had values
for exercise and one of them had only 4 values. This person in the
Adjusted Weights had a score of 32 while the other two were about
1.5 and 2. More data points for these other categories would reduce
the variance and more clearly identify what features are important.

7 Conclusion

We found that Lasso regression performed best out of the algo-
rithms used for both the 30-minute prediction horizon and the 60-
minute prediction horizon. While the results were adequate for the
30-minute prediction horizon, these quickly degraded for the 60-
minute horizon. We found in general that the regression algorithms
perform fairly well for predicting hyperglycemic events, but strug-
gle for predicting hypoglycemic events. It is our opinion that further
research should be done with regards to improving the prediction
horizon for blood glucose prediction. Specifically, further research
should be investigated into the effects of the volume of data on the
prediction horizon. If an artificial pancreas is to become a reality,
stable prediction horizons beyond 30-minutes are needed.

Furthermore, analyzing the coefficients of the Lasso model shows
that glucose level, bolus, meal, and exercise are the most relevant
features in producing forecasts for blood glucose levels. However,
problems with sparsity among certain features reduce the relevancy
of these features. As such, future research should include handling
sparse features in a more robust way.

8 Additional Material

For those wishing to compare or reproduce work found in this
paper, the related code can be found at https://github.
com/marshallb95/BloodGlucosePrediction/blob/
master/Master.ipynb.

https://github.com/marshallb95/BloodGlucosePrediction/blob/master/Master.ipynb
https://github.com/marshallb95/BloodGlucosePrediction/blob/master/Master.ipynb
https://github.com/marshallb95/BloodGlucosePrediction/blob/master/Master.ipynb
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Table 3. Clarke Error Grid percentages

30 min 60 min︷ ︸︸ ︷ ︷ ︸︸ ︷
Zone 540 584 540 584

Zones A-B 0.96 0.99 0.935 0.97
Zone C 0.0 0.00 0.001 0.01
Zones D-E 0.04 0.01 0.064 0.02

Table 4. Lasso Significant Values Totals

Feature Number Recorded Weights Adjusted Weights

glucose level 77563 15.4654 1.2062
basis gsr 39542 0.2272 0.03560
skin temperature 39540 0.2418 0.0295
acceleration 39542 0 0
finger stick 1669 0.54 2.4504
basal 428 0 0
temp basal 208 0 0
bolus 1994 9.4944 23.4776
meal 957 3.5682 31.6974
stressors 2 0 0
exercise 65 0.2312 36.2337
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Figure 1. Patient 540 prediction results for 30 min PH with Lasso regres-
sion
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Figure 2. Patient 540 Clarke Error Grid for 30 min PH with Lasso regres-
sion
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Figure 3. Patient 584 Clarke Error Grid for 30 min PH with Lasso regres-
sion
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