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Abstract. Regulation of blood glucose concentrations (BGCs) is a
tough burden for people living with type 1 diabetes mellitus (T1DM).
People with T1DM must administer exogenous insulin to maintain
their BGC within an euglycemic range. Hyperglycemia (high BGC)
and hypoglycemia (low BGC) can occur because of poor BGC man-
agement. Using recursively identified models to predict the future
BGC values opens novel possibilities for improving the BGC regu-
lation performance by adjusting the dose of insulin infusion, taking
rescue carbohydrates, or both. The BGC prediction model can also
benefit the development of artificial pancreas systems. In this paper,
a latent variable (LV) based multivariable statistical modeling ap-
proach is applied to model BGC dynamics and forecast future BGCs.
The LV-based model is a powerful linear method to build an empir-
ical model by using the collected data. The model is evaluated with
the Ohio T1DM dataset that contains BGCs from continuous glu-
cose monitoring (CGM) sensors, basal and bolus insulin information
from insulin pump, and additional information from wristbands or
reported by the subject. The results indicate that the LV-based model
can predict future BGC values with high accuracy for prediction hori-
zons of 30 and 60 minutes.

1 Introduction

People with type 1 diabetes mellitus (T1DM), an immune disorder
where the pancreas does not produce insulin, must administer ex-
ogenous insulin either by injections several times every day or in-
fusion with an insulin pump to maintain their blood glucose con-
centrations (BGCs) within a safe range (70-180 mg/dL) [23]. With-
out effective regulation, people with T1DM may suffer from several
long-term complications caused by hyperglycemia (high BGC), such
as kidney failure, blindness, and the deterioration of cardiovascular
health. They can also have low BGC (hypoglycemia), which may
cause dizziness, diabetes coma, or even death because of the lack of
energy for the brain [4].

Artificial pancreas (AP) systems are proposed to provide more re-
liable BGC management by automatically calculating the dose of in-
sulin to infuse by using a closed-loop controller incorporating BGCs
measured by continuous glucose monitoring (CGM) sensors, histori-
cal infused insulin data, and other available information, such as meal
carbohydrates (CHOs) and exercise information [15, 9, 16, 18, 2, 10].
The closed-loop controller is the critical component in developing an
AP system. Model-based controllers have become the preferred op-
tion in recent in silico and clinical studies where the future BGCs
predicted by a model, historical CGM measurements, administered
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insulin, and constraint conditions are taken into account when com-
puting the future insulin doses to be infused. The data-driven model-
ing techniques have been evaluated in many studies because of their
computational tractability and identification efficiency.

The empirical modeling technologies for T1DM include linear
and nonlinear methods. For nonlinear models, artificial neural net-
works (ANN) [1], convolutional neural networks (CNN) [26], recur-
rent neural networks (RNN) [13, 3], and other machine learning and
deep learning techniques [17, 11] have been used to model the glu-
cose dynamics. However, the nonlinear models can only be trained
with a large data set, and it can be difficult to develop personalized
models or to update the model parameters or structure. For the lin-
ear modeling methods, autoregressive model with exogenous inputs
(ARX), and autoregressive moving average model with exogenous
inputs (ARMAX) [7, 19, 25] are used to build personalized glucose
prediction models with recursively updated model parameters where
the future BGC values are modeled as a linear combination of his-
torical measurements from sensors, administered insulin, and other
information such as meal CHOs and exercise. Statistical methods
based on latent variables (LVs) are demonstrated to have powerful
abilities for various data analysis tasks, modeling, and process mon-
itoring [20, 21], and has been proven as a good alternative linear
model for type 1 diabetes [24].

In this paper, a novel multivariate statistical method proposed by
Nelson and MacGregor [14, 8] where the score vector is estimated
using missing data imputation technique is applied to model the glu-
cose dynamics based on LVs derived from principal component anal-
ysis (PCA). There are three key steps in developing a BGC predic-
tion model based on the LVs technique. First, a PCA is performed
on the gathered data to decompose the data into a linear combina-
tion of scores and loadings. Then, the unobserved variables are esti-
mated as conditional mean values computed from the gathered data
and new measurements. Finally, the score of new observed data is
estimated using incomplete observations and the future BGC values
are predicted. The rest of this paper is organized as follows: Section 2
summarizes the pre-processing of the data set. The LV-based method
is described and a glucose prediction model is developed in Section
3. The Ohio T1DM data set [12] is used to assess the performance
of the model and the results are given and discussed in Section 4.
Finally, some concluding remarks are provided in Section 5.

2 Data Pre-processing
2.1 Data
The Ohio T1DM dataset provided by the Blood Glucose Level Pre-
diction (BGLP) challenge records eight weeks of data collected from
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six T1DM patients with subject ID: 540, 544, 552, 567, 584, and 596.
The data set contains BGC values measured by CGM sensors with
a sampling time of 5 minutes, basal and bolus insulin information
from the insulin pump, information collected from wristbands, and
events (i.e., meal, exercise, work, illness, etc.) recorded by the sub-
jects themselves (see [12] for details). However, there is no evidence
on the accuracy of the subject-reported information, which may de-
grade the reliability of glucose prediction model and the wristband
did not work continuously for a long period of time due to its lim-
ited battery power, which causes lots of missed data. Thus, only data
collected from CGM sensors and insulin pumps is used in this study.

The insulin infused with an insulin pump includes basal insulin,
given continuously since the defined start times, and bolus insulin,
which is usually given to mitigate the effects of the rapid raise of
BGC around meal times. Basal insulin is recorded as “basal” which
is the basal insulin infusion rate and “temp basal” which defines the
basal insulin infusion rate in specific time intervals to achieve better
regulation of BGCs. There are three types of bolus insulin defined in
the dataset: normal, normal dual and square dual. For “normal” bolus
insulin, a certain dose of insulin is infused immediately to the patient,
while for “normal dual” bolus insulin, a certain percentage of bolus
is given to the subject up front and the remaining insulin amount is
given gradually over a longer time duration. In this study, half of
the dose is supposed to be given to the patient immediately and the
remaining half is infused over the following 30 minutes. For “square
dual” bolus insulin, the bolus insulin is administered continuously
in the given time interval. The bolus and basal insulin values are
converted to U/min and aligned to match the CGM sampling time.

The insulin on board (IOB), which represents the insulin that
remains active within the body, is calculated from a physiological
model [22] and is found useful in some previous works [1, 6]. The
physiological model is represented as

dC1 (t)

dt
= u (t)−KdiaC1 (t) (1)

dC2 (t)

dt
= Kdia (C1 (t)− C2 (t)) (2)

IOB (t) = C1 (t) + C2 (t) (3)

where C1 and C2 define two insulin compartments, u (t) is the in-
sulin infusion, and Kdia is a constant related to the duration of in-
sulin action, set as 0.0182.

The dataset contains missing CGM measurements for in both the
training and testing sets that cause discontinuous CGM curves. The
gaps that are not greater than 3 samples in the training dataset are
interpolated using first-order linear model. For the cases where more
than 3 samples are missed, a single variable statistical model similar
to the one used to modeling glucose dynamics is used. In the testing
data set, with the intent of on-line implementation, only the historical
CGM measurements are used to fill the missing gaps until new the
CGM observations become available. Fig. 1 shows an example of the
filled gap in the training dataset (Subject ID 540).

2.2 Batch Generation
The pre-processed CGM readings (y) and calculated IOB (IOB)
are arranged as time series and a sliding window of 2 hours length is
chosen to generate batch segments from the training data as

Xtrain =

 y (1) · · · y (24) IOB (1) · · · IOB (24)
y (2) · · · y (25) IOB (2) · · · IOB (25)

...
...

...
...

...
...
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Figure 1. Illustration of the filled gap in training data
(Subject ID: 540, 18 CGM measurements are missed)

where each row can be considered as an observation and each column
is the values of a single variable.

3 Methods
A multivariable statistical technique based on LVs [14, 8] is devel-
oped to predict the future BGC values, where a LV model is devel-
oped using the PCA algorithm. Then, the conditional mean values are
estimated from the same distribution, and future BGCs are predicted
with LVs and incomplete observations.

3.1 Latent Variable Model
Consider a data matrix X (N ×M) that contains N observations
(rows) and M variables (columns), then a linear combination of an
observation x in datasetX can be written as t = p1x1+. . .+pMxM ,
where t is a new vector in the same space as x. The fundamental
idea behind PCA is to find the loading vector p that maximizes the
variation of t, thus the first LV of PCA model can be calculated by
solving the following problem:

arg max
‖p‖=1

(
tT t
)

= arg max
‖p‖=1

(
pTXTXp

)
(4)

where p is the vector of regression coefficients. Accordingly, the
dataset X can be expressed as X = tpT + E with E denoting the
residual matrix. We can get more components by solving the follow-
ing problem:

arg max
‖p‖=1

∥∥X − tpT∥∥2 (5)

Traditionally, the successive progress is evaluated by

‖X‖2 − ‖E‖2

‖X‖2
100% (6)

which is referred to as the percentage of explained variation of t and
it is fixed as 95% in this study. If the first A (A is much smaller than
the rank of X) significant components can summarize sufficiently
well the datasetX , then a LV model developed using PCA algorithm
can be expressed as

X = t1p
T
1 + t2p

T
2 + ...+ tAp

T
A + E = T1:AP

T
1:A + E (7)



where T1:A = [t1, . . . , tA] (N ×A) and P1:A =
[p1, . . . , pA] (M ×A) are now matrices containing A score
vectors and A loading vectors, respectively.

3.2 Conditional Mean Replacement Method

For a new test observation z that was not used in the model develop-
ment but is drawn from the same distribution as observations in X ,
the scores τ of the first A significant components of the new obser-
vation can then be calculated as

τ1:A = PT
1:Az (8)

Consider a situation where only part of the object z is observed, it
is nature to assume the firstR variables are measured and the remain-
ing (M −R) variables are unobserved, then without loss of gener-
ality, we have

z =

[
z#

z∗

]
where z# is the observed variables and z∗ represents the missing
measurements. This induces the following partition in X:

X =
[
X# X∗

]
where X# contains the first R columns of X and X∗ is made up
of the remaining (M −R) columns. Correspondingly, the loading
matrix P can be partitioned as

P =

[
P#

P ∗

]
where P# is the submatrix comprising the first R rows of P and the
remaining (M −R) rows are defined as matrix P ∗. Then, the score
vector τ1:A of the new observation z can be rewrite as

τ̂1:A = P#T
1:A z

# + P ∗T1:Az
∗ (9)

For a given data matrix X and a new observation z with z# de-
noting the measured variables that follow the same distribution as
observations in X , the missing variables z∗ of z can be estimated as
the expected values from the conditional normal distribution:

ẑ∗ = E
[
z∗
∣∣z#, S ] (10)

Substituting the expression into the estimator of score vector of
the new observation yields:

τ̂1:A = Θ1:AP
#T
1:A

(
S##

)−
z# (11)

where S = XTX
N−1

=

[
S## S#∗

S∗# S∗∗

]
is the covariance matrix of

X and Θ is the square diagonal matrix consisted of the eigenvalues
λ = [λ1, . . . , λH ] in descending order and H is the rank of X .

Finally, the unmeasured variables z∗ in z can then be calculated
from the estimated score vector along with the loading matrix:

ẑ∗ = P ∗1:Aτ̂1:A (12)

which yields the future predictions given the past observed glucose
values.

3.3 Glucose prediction based on LV model
An accurate glucose prediction model could benefit diabetes man-
agement and significantly reduce the risk of hypoglycemia. To pre-
dict the future 60 minutes glucose values, the preceding one hour of
data is assumed available and marked as z#. Then, the glucose pre-
diction model can be developed and the subsequent future hour of
BGC values can be predicted online as follows:

1. The batch data set Xtrain is generated for each subject using the
training dataset.

2. While a new observation z# is available:

(a) Calculate the similarities between the new object z# and ob-
servations in submatrix X#, select the most similar N obser-
vations from Xtrain to form a new data matrix X .

(b) Develop PCA model using data matrix X as stated in (7).

(c) Estimate the score vector τ of the new observation z# as stated
in (11).

(d) Predict the next 1 hour’s glucose values as stated in (12).

The above process was implemented in MATLAB 2019b and
the future one hour’s BGC values (12 samples) can be forecasted
by feeding the testing data to the model. The codes are available:
https://github.com/xiaoyu1115/BGLP_2020.git.

4 Results
In the clinical study, the training data from Ohio T1DM dataset with
subject ID: 540, 544, 552, 567, 584, and 596 were first divided into
two parts: the first 90% of data were used to develop PCA model and
the model is tested with the remaining 10% of data to determine the
number of observations that should be used in building the LV-based
glucose prediction models. Using this approach, the computational
burden in the modeling progress can be reduced significantly. Feed-
ing both the processed training and testing data into the modeling
process described in Section 3, the future glucose concentrations can
be predicted with prediction horizons of up to 60 minutes. The root
mean square errors (RMSEs) and mean absolute errors (MAEs) of
the 6 subjects are summarized in Table 1. The prediction results are
also analysed using Clark Error Grid (CEG) [5] and the percentages
of data distributed in Zone A to Zone D are summarized in Table 1
as well.

RMSE =

√√√√ 1

N

N∑
i=1

(y (i)− ŷ (i))2 (13)

MAE =
1

N

N∑
i=1

|y (i)− ŷ (i)| (14)

where y is the BGC values measured by CGM sensors, ŷ is the pre-
dicted BGCs, and N is the total data points in the testing dataset for
each subject.

In Table 1, the RMSE varies from 16.66 to 22.76 mg/dL for the
prediction horizon of 30 minutes with an average value of 19.37
mg/dL. The RMSE varies from 26.81 to 38.99 mg/dL for the pre-
diction horizon of 60 minutes with an average value of 32.59 mg/dL.
It is reasonable to see this increase in RMSE because the unknown
disturbances including meals and exercise that will influence the glu-
cose dynamics significantly. The relationships between the predic-
tion horizon and RMSE or MAE in Figure 2 also indicate that the
prediction accuracy decreases with increasing prediction horizon. An



Table 1. RMSE (mg/dL), MAE (mg/dL) and CEG (%) results of the LV-based model (STD: standard deviation)

PH=30 minutes PH=60 minutes

Subject RMSE MAE Zone A Zone B Zone C Zone D RMSE MAE Zone A Zone B Zone C Zone D

540 20.76 15.23 84.92 12.55 0.03 2.50 38.99 29.75 57.84 35.58 0.24 6.35
544 16.70 11.65 93.23 6.29 0 0.48 26.81 19.77 78.77 19.67 0.07 1.48
552 16.66 12.36 88.05 10.88 0 1.06 29.41 23.08 64.97 31.63 0.09 3.32
567 22.76 15.30 86.03 12.28 0.04 1.60 37.95 28.13 57.93 34.54 0.34 7.15
584 22.22 15.86 85.11 13.87 0 1.02 34.81 26.57 67.66 30.08 0.15 2.11
596 17.12 12.15 90.11 8.31 0 1.57 27.57 20.53 72.06 25.23 0.04 2.67

Mean 19.37 13.76 87.91 10.70 0.01 1.30 32.59 24.64 66.54 29.46 0.15 3.85
STD 2.87 1.89 3.27 2.87 0.02 0.68 5.35 4.12 8.17 6.03 0.12 2.34

0 2 4 6 8 10 12

Predict Horizon (5min)

0

10

20

30

40

R
M

S
E

(m
g

/d
L

)

540

544

552

567

584

596

0 2 4 6 8 10 12

Predict Horizon (5min)

0

10

20

30

M
A

E
(m

g
/d

L
)

540

544

552

567

584

596

Figure 2. Relationship between prediction horizon and prediction accuracy
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Figure 3. BGC prediction for Subject 544 using LV-based model

average of 87.91% data lie in zone A of CEG which indicates the
high clinical accuracy of the model with prediction horizon of 30
minutes. The percentage of data in zone B increase dramatically as
the prediction horizon increases to 60 minutes.

The forecasting performance of the model is better for subjects
544, 552, and 596 than subjects 540, 552, and 567. One of the rea-
son is there are less noise and sensor failures contained in the dataset
provided by subjects 544, 552, and 596. A filter might improve pre-
diction performance for this case. And many gaps are observed in
CGM measurements, which also deteriorate the prediction accuracy
of the model in which the interpolated CGM data were used to pre-
dict the further BGC values.

The predicted BGC values for subject 544 with prediction horizon
of 30 minutes and 60 minutes are shown in Figure 3. For the pre-
diction horizon of 30 minutes, the LV-based model can predict the
future BGC values with a comparable high accuracy, and most of the
hyperglycemia and hypoglycemia events can be forecasted on time.
When the prediction horizon is increased to 60 minutes, the predic-
tion accuracy decreases, but is still acceptable. The prediction values
can still provide an insight on the variation of BGC which can be
used to tune the insulin infusion rate as a reference.

5 Conclusion
In this paper, an online recursively identified LV-based modeling ap-
proach is developed to predict the future BGC values with predic-
tion horizons of 30 and 60 minutes. With the pre-processed dataset,
the LV-based model is developed to calculate the LVs using a small
submatrix of the training dataset when a new observation is avail-
able. The future blood glucose values are predicted as a linear com-
bination of estimated scores and loadings. The proposed model is
evaluated with the Ohio T1DM dataset and the results demonstrate
the effectiveness of the model. Although the measurement noise is
weight-averaged in the LV-based model, it still has a significant in-
fluence on modeling and prediction progress. Online denoising tech-
niques would be one of the future study directions that might improve
the prediction accuracy. Further, integrating other data fields with the
personalized physiological models is a potential approach to improve
the prediction performance in the future work.
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