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A Deep Learning Approach for Blood Glucose Prediction
of Type 1 Diabetes
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Abstract. An essential part of this work is to provide a data-driven
model for predicting blood glucose levels that will help to warn
the person with type 1 diabetes about a potential hypo- or hyper-
glycemic event in an easy-to-manage and discreet way. In this work,
we apply a convolutional recurrent neural network on a real dataset
of 6 contributors, provided by the University of Ohio [5]. Our model
is capable of predicting glucose levels with high precision with a 30-
minute horizon (RMSE = 17.45 [mg/dL] and MAE = 11.22 [mg/dL]),
and RMSE = 33.67 [mg/dL] and MAE = 23.25 [mg/dL] for the 60-
minute horizon. We believe this precision can greatly impact the
long-term health condition as well as the daily management of people
with type 1 diabetes.

1 INTRODUCTION

Type 1 diabetes is a disease in which the cells responsible for insulin
production are destroyed. Because insulin is the hormone that trig-
gers absorption of glucose within the cells, people with diabetes need
to monitor their glucose concentration in the blood and readjust it by
frequent insulin injections, following a well-defined medical proto-
col (e.g., once during the day and once before each meal, to keep
blood sugar levels within the normal range). The main challenge in
handling diabetes is the optimization of insulin injections in order
to avoid hypoglycemia and hyperglycemia. This is complicated by
the fact that besides insulin intake and diet, glucose levels are also
affected by several other factors such as physical activity, lifestyle,
mental state, stress, etc. Despite the various accomplishments made
in continuous diabetes monitoring (a.k.a. continuous glucose moni-
toring, CGM), such methods remain invasive. Furthermore, they are
only able to provide the glycemic state at a given time, when the
insulin level may already be unacceptable (too high or too low). A
proactive detection could therefore dramatically improve the daily
handling of diabetes by the patients themselves.

This work presents an approach based on deep learning algorithms
for predicting glucose levels in the future (30-minute and 60-minute
horizons). Our work is based on the architecture of a recurrent neu-
ral network (CRNN) from [3] and proposes certain variants, such as
multi-step predictions, regression model using blood glucose level
data for each person every 5 minutes, and the inclusion of other data
such as basal insulin, bolus insulin, and meal values.

The goal of using a CRNN architecture is twofold. (1) Convolu-
tional layers act as filters and automatically learn to detect the fea-
tures of interest for prediction. They are also particularly convenient
for analyzing time series with little signal processing required. And
(2), recurrent neural network are well-known for the capacity to learn
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long-term relationships between the different values. For instance, it
is necessary for the network to be able to capture a correlation be-
tween the ingestion of carbohydrates now and a change in the blood
glucose level in a near future.

This paper is organized as follows: Section 2 presents related work
for glucose prediction, Section 3 formulates the problem of glucose
prediction and our contribution, Section 4 details our methodology
and discuss experimental results. Finally, in Section 5 we summarize
the importance of our contribution and suggest some future work.

2 RELATED WORK

Predicting blood glucose levels for diabetes (type 1 or type 2) us-
ing machine learning has gained a lot of attention and has resulted
in several methods and applications being proposed recently. They
are however either based on solely measuring the glucose levels or
the resulting prediction accuracy is not yet high enough to be consid-
ered as a reliable predictor of a potential critical glycemic condition.
Several types of regression algorithms can be used, including SVR,
classic statistical methods such as ARIMA, deep learning neural net-
works, or even a naive persistence algorithm, to name a few.

Gu et al. [2] propose a personalized smartphone-based non-
invasive blood glucose monitoring system that detects abnormal
blood glucose levels events by jointly tracking meal, drug and in-
sulin intake, as well as physical activity and sleep quality. It automati-
cally collects daily exercise and sleep quality, and predicts the current
blood glucose level of users, together with manual records of food,
drug and insulin intake. It needs re-calibration using CGM devices
once every three weeks and is based on multi-division deep dynamic
recurrent neural network framework. Plis et al. [6] propose a solution
that uses a generic physiological model of blood glucose dynamics
to generate features for a SVR model that is trained on contributor
specific data. It is shown that, the model could be used to anticipate
almost a quarter of hypoglycemic events 30 minutes in advance, how-
ever the demonstrated corresponding precision is 42%. Contreras et
al. [1] present an alternative approach to glucose levels prediction,
based on previous studies that incorporated medical knowledge into a
grammar aimed to build expression for glucose that considered previ-
ous glucose values, carbohydrate intake, and insulin administration.
They extend the previous research to investigate a novel and com-
plementary approach that uses symbolic regression through gram-
mar evolution to determine an approximate glucose levels and fluc-
tuations using personalized blood glucose predictive models. In the
same order of topic, we note the work in [4]. It also contains a com-
parison with a prediction using latent variable with exogenous input
(LVX [9]) model, in this model bolus insulin and meal are included
in the predictor matrix X but in this work only meal information is
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added . We can see that the RMSE for a prediction horizon of 60 min
for clinical data, varies from 37.02 to 35.96 [mg/dL]. In [3], they use
a deep learning architecture for predicting 30-minute and 60-minute
horizons on both real and simulated patients. For real patients and
a 30-minute horizon, they report an RMSE of 21.07 [mg/dL]. How-
ever, only a few approaches have used deep learning algorithms for
CGM on clinical data and more specifically for this dataset provided
by the University of Ohio [5].

3 Glucose Prediction

The aim of this work is to predict glucose levels in advance in or-
der to avoid situations of hyperglycemia or hypoglycemia, as well
as others negative effects on the health. For instance, chronic hyper-
glycemia may induce fatigue and vision problems among others. For
that purpose, we created a model capable of predicting the glycemia
of type 1 diabetes, where values must be as accurate as possible. In
this context, the metrics are the RMSE and the MAE. The smaller
these values, the more reliable the model. The real gain for a pa-
tient is to be able to make decisions at any given time considering
the prediction of future values, and possibly avoid glycemia-related
discomforts while minimizing intrusive methods.

4 METHODOLOGY
4.1 Approach

Our approach can be summarized by the following steps:

1. Data importation

2. Data preprocessing

3. Implementation of the CRNN prediction model with multi-step
forecasting

4. Training, testing and tuning on selected features

5. Delivery of the forecasted blood glucose levels

Data importation involves loading, merging, and aligning values
from multiple sources under the same time scale. The selected fea-
tures are basal/bolus insulin, carbohydrates, and blood glucose levels.

In the preprocessing step, all variables must have measurements
carried over at the same time. This requires the use of subsampling
or oversampling methods and, corollary, defining imputing methods.
Linear interpolation is used for the glucose level on the training set
to resample the time series at a frequency of 5 minutes. The others
features may be imputed with null values when required, as their na-
ture is sparse. We can also use domain-specific functions, such as an
equation describing the absorption rate over time for carbohydrates.
The preprocessing steps are summarized by :

. Save all the blood glucose timestamps

. Resample the features to a time delta of 1 second

. Forward fill the missing values by using the last available values

. Fill the left missing values with O

. Resample the features to a time delta of 5 minutes

. Smooth each feature with a 1D Gaussian filter over a window con-
taining the past 2 hours of data
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We use the saved timestamps at preprocessing step 1 to generate
the results at the same timestamps as the measured values.

Linear interpolation is used during the training process to impute
the missing values. This allows to have more data points for the
model to be trained on. However, we should note that linear inter-
polation is not ideal for big gaps of missing values. The interpolation

is not used at test time as it could lead to a data peek. Meaning the
predictions would be contaminated by future values.

The CRNN model target values are based on the following equa-
tion:

Yi+r = bgesr —bge,for L=1,2, ... 12 (1)

where bg; is the blood glucose value at time ¢, L is the lag value in
timesteps for the horizon, and y the label to predict, that is the
differentiated value of the blood glucose level.

For instance, if the blood glucose level is 80 mg/dL at the cur-
rent time and 60 mg/dL 30 minutes later, the label for a prediction
horizon of 30 minutes at the current time would be —20 mg/dL.

Respectively, as the model does not predict directly the blood glu-
cose level but only the difference from the last known value. The
predicted blood glucose level is obtained with the following equa-
tion:

b9y 1, = bge + Grir,for L=1,2, ..., 12 )

where bg; is the blood glucose value at time ¢, l;bt 4 is the
predicted blood glucose level at time ¢ + L, ¢+, is the predicted
blood glucose level difference at time ¢ with lag L, L is the lag
value in timesteps for the horizon, and y the label to predict.

It is important to note that the CRNN only outputs the values ¢¢4 ..

The model is capable of giving a prediction for each 5 minutes
prediction horizon up to 60 minutes that is 5, 10, ..., 60 minutes. This
feature may give valuable information to a user and thereby improve
their blood glucose level control. An example of such a prediction is
given in Fig. 5.

The overall architecture of the CRNN is based on [3] and de-
scribed in Fig. 1. The input signals time series are fed into a CNN
for extracting relevant features. The purpose of the pooling layers
is to gradually reduce the spatial dimension while keeping only the
highest values included in the pooling window. Then, these features
are fed into an RNN layer to model the relationships over time. Fi-
nally, a dense neural network is used as a last layer for regressing the
desired target.
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Figure 1. A multi-layer CRNN composed of convolutional layers, pooling
layers, an RNN network, and a dense neural network

The training of a model is done on a contributor-basis, that is one
model is trained per contributor. The reason is that each glucose re-
sponse is individual, and a one-population model does not seem rea-
sonable for CGM.



4.2 Experimental Results
4.2.1 Dataset

Our results reported in this work are based on the OhioT1DM dataset
[5]. For each contributor a train set as well as test set are provided.
One model only is pretrained on the data from the 6 contributors of
2018. Then for each 6 data contributor of 2020 transfer learning is
applied, resulting in one trained model per contributor.

The reported results are based on the following signals: glucose
level, basal insulin, bolus insulin, and meal for 6 data contributors
(540, 544, 552, 567, 584, and 596). While more signals were avail-
able, we decided to use only these signals. Indeed, we performed
several tests with the complete dataset and the preliminary results
indicated better results with a limited set of features.

The use of a sliding window consisting of the last 2 hour data,
resulting in 24 data points is based on [3]. Cross- and/or auto-
correlation may provide a good starting point to find a reasonable
sliding window size. Of course, the computing complexity must be
taken into consideration depending on the targeted deployment hard-
ware.

4.2.2 Architecture and learning process

The detailed architecture of the CRNN is presented in Tablel.

Layer description
Convolution 1D
Max pooling 1D
Convolution 1D
Max pooling 1D
Convolution 1D
Max pooling 1D

Output dimension
(Batch size, 24, 8)
(Batch size, 12, 8)
(Batch size, 12, 16)
(Batch size, 6, 16)
(Batch size, 6, 32)
(Batch size, 3, 32)

LSTM (Batch size, 64)
Dense (Batch size, 256)
Dense (Batch size, 32)
Dense (Batch size, 12)

Table 1. Neural network layers and output shapes

The model is pretrained on batches of size 1024 over 1000 epochs,
with an RMSProp optimizer. The learning rate is initially set to 0.001
and is reduced with a factor of 0.1 when the model does not progress
after 3 epochs. Early stopping is used similarly with a patience of
50 epochs in order to regularize the model. The last model’s weights
with the lowest validation loss are then restored.

For each data contributor of 2020 the pretrained model is loaded
and trained similarly as the pretraining stage. With the only differ-
ence that the learning rate is reduced with a patience of 15 epochs
and that one model is saved for each contributor.

4.2.3 Results

The RMSE and the MAE are calculated for the six contributors using
the following equations.

RMSE = 3)

where g; is the predicted value, y; the truth value and n the number
of observation.

1 n
MAE = — §i — Yi 4
nE 19: — vl “4)

i=1

The first observation is the errors systematically increase for each
contributor over time. It is not surprising that the larger the prediction
window, the larger the error in general grown up.

A comparison between contributors was also performed (Fig. 2
and Fig. 3). As we can see, for example with the contributor 596,
the prediction curve for 30 minutes and 60 minutes follows the real
curve with an RMSE = 13.34 and MAE = 9.08 [mg/dL], and RMSE
= 27.74 and MAE = 19.13 [mg/dL]. These specific curves are also
detailed in Fig. 4.
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Figure 2. RMSE-30 vs RMSE-60 horizons for the 6 contributors of 2020
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Figure 3. MAE-30 vs MAE-60 horizons for the 6 contributors of 2020



Blood glucose on 30 minutes prediction horizon - Contributor 596
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Figure 4. Example of prediction results of contributor 540, for 30 and 60
minutes

The evaluation of the prediction from the contributor-side can be
performed by a multi-step prediction (as illustrated in Fig. 5). Predic-
tion is made through one forward pass of a horizon of the last 2 hours
data and outputs the horizon for the next hour represented by the or-
ange curve. In the given example, the model seems to have predicted
well the tendencies.

Multistep prediction of one forward pass - Contributor 596
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Figure 5. Multi-step prediction of one forward pass

A comparison of our approach with other algorithms is summa-
rized in Table 2. We notice that the RMSE of our work at horizon 30
is smallest and at 60 minutes similar to [3]. Let us highlight that in
(1) the database is different. The persistent algorithm is the baseline

model. It forecasts the blood glucose level by using the last know
value.

gt+L:bgt71,fOI'L:1,2, ,12 (5)
Prediction horizon Metrics | (1) Li’s CRNN \ (2) BASELINE \ (3) CRNN
(mg/dL) Overall
30 MAE NA 18.13 £ 0.00 11.22
RMSE 21.0.7£2.35 25.76 £ 0.00 17.45
60 MAE NA 30.70 + 0.00 23.25
RMSE 33.27 £4.79 42.00 £ 0.00 33.67

Table 2. Comparison of different algorithms: (1) Li’s CRNN from [3], (2)
baseline with persistence forecast (where the previous value is predicted),
and (3) the proposed CRNN. Let us note that (1) uses different data (not
publicly available) than from (2) and (3).

With the hypothesis of a hypo-glycemia starting below 70 mg/dL
and a hyper-glycemia starting above 150 mg/dL, we believe that our
model delivers relevant and actionable results for real patients. In our
opinion, a RMSE of 17.45 mg/dL for a 30-minute horizon indicates
that data-driven decisions could be made in regard to avoiding hypo
or hyper-glycemic related events.

5 CONCLUSION

In this paper we described a model for predicting future blood sugar
levels of people with type 1 diabetes. A CRNN approach was pro-
posed with the advantages of using only 4 different signals and very
little signal processing. The evaluation was performed using RMSE
and MAE metrics, with different horizons and on multiple contribu-
tors. The results were compared with different algorithms.The results
report low error rates given the problematic of glucose prediction,
and in our opinion could be considered for real-world implementa-
tion. Yet, several research tracks remain to be explored. For instance,
testing additional features that can influence blood sugar levels such
as stress or illness. We can also think of extracting manual features
from the given signals with signal processing methods, and defining
domain-specific imputation methods, such as for the absorption of
carbohydrates over time. It would be also interesting to further per-
sonalize predictions as suggested in [7]. Another direction could be
to use reinforcement learning approaches for the insulin recommen-
dation, such as in [8].Those self-learning approaches are adaptable
and personalize the daily insulin values to ensure glucose control,
despite inter and intra-patient variability.

ERRATUM

During the making of the camera ready version, we found an error in
the preprocessing stage thanks to the great reviews. The missing val-
ues were treated using a linear interpolation during the testing of the
model. Thereby the predictions were contaminated by future values.
This error was corrected by removing the interpolation and dealing
with missing values as explained in this paper version.

Code source
It is available at https://github.com/JonasFreibur/BLGP-HES-SO
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