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Abstract. Accurate blood glucose (BG) prediction is necessary for
daily glucose management of diabetes therapy. As glucose dynam-
ics are often affected by various factors, such as diet, physical ex-
ercise, and insulin injection, it is difficult to consider all the rele-
vant information and make a balance between the high-dimensional
inputs and learning efficiency for a deep learning network. In this
work, a novel multivariate predictor with a multi-scale long short-
term memory (MS-LSTM) network was developed to automatically
characterize the high-dimensional temporal dynamics and extract the
features of blood glucose fluctuation and temporal trends sufficiently.
Meanwhile, a multi-lag structure is designed for multiple variables,
which can extract the dependence between different variables and
blood glucose fluctuations more effectively. Furthermore, long-term
sparse information was encoded and compressed to improve the
learning efficiency of this deep learning network. The predictive ca-
pability of the proposed method was illustrated through 30-min and
60-min ahead glucose prediction in the OhioT1DM-2 Dataset. The
root means square error (RMSE) values of 30-min and 60-min ahead
predictions were 19.048 and 32.029, respectively, and the mean ab-
solute error (MAE) values of 30-min and 60-min ahead predictions
were 13.503 and 23.833. The results demonstrate the efficiency and
prediction accuracy of the offline deep learning network, especially
in the case of high-dimensional variables availability.

1 INTRODUCTION
Diabetes is a chronic disease characterized by the inability to main-
tain glucose homeostasis. Healthy pancreas controls the release of
glucagon and insulin through α-cells and β-cells, respectively, to
maintain normal blood glucose levels [7]. Type 1 diabetics can-
not produce insulin normally because the β-cells are compromised,
which leads to hyperglycemia and hypoglycemia [5], [17]. In recent
years, advances in continuous glucose monitoring (CGM) and con-
tinuous subcutaneous insulin infusion (CSII) technologies have con-
tributed to the closed-loop treatment of diabetes [1], [2], and [4]. The
subcutaneous glucose concentration prediction algorithm has the po-
tential to improve further the closed-loop treatment system for dia-
betes [8], [14], [15], and [18]. However, it is difficult to establish a
multivariate physiological model to predict blood glucose precisely
due to the influence of daily behaviors such as diet, physical exercise,
and insulin injection [6]. Recently, some multivariate data-driven
models are used to predict blood glucose levels and achieve satis-
factory results. A successful case is the multivariable LSTM network
proposed in paper [12], which has obtained better prediction results
than the support vector regression model and diabetes experts.
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Nevertheless, different behaviors have different temporal effects
on glucose fluctuation [3]. Using a unified lag for all variables may
not be able to extract information about different characteristics suf-
ficiently. Therefore, using multiple lags for each variable has posi-
tive implications for blood glucose prediction. An end-to-end recur-
rent neural network framework is proposed in paper [13], which is
equipped with an adaptive input selection mechanism to improve the
prediction performance of the multivariate time series. Based on this
work, we develop a multi-scale LSTM (MS-LSTM) network that can
capture the high-dimensional temporal dynamics and extract the fea-
tures of blood glucose fluctuation and temporal trends sufficiently.
Meanwhile, the multi-lag structure in the network can more effec-
tively extract the dependence between different variables and blood
glucose fluctuations. Compared with the traditional single-lag struc-
ture, using the multi-lag structure can extract more comprehensive
features. Furthermore, long-term sparse information is encoded and
compressed to accelerate the learning of deep networks. The MS-
LSTM model was tested independently several times on the testing
dataset, and the prediction results show that the model is excellent
and robust.

This paper is organized as follows: section 2 explains the data
preprocessing used; section 3 describes the architecture of the MS-
LSTM network; section 4 illustrates model-free prediction methods
in case of missing data; section 5 analyses the experimental results;
section 6 summarizes the main contents from this study.

2 DATA PREPROCESSING

The variables selected for prediction included BG value, basal in-
sulin dosage, bolus insulin dosage, carbohydrate intake, and times-
tamp [11]. Other variables provided were not selected for prediction,
such as galvanic skin response, skin temperature, and acceleration.
We used some data preprocessing methods, including aligning the
original data, filling in the missing data, detecting and reconciling
BG outliers, and normalizing the data. These data processing tech-
niques will be illustrated in detail in the following sections.

2.1 Data alignment

The data in OhioT1DM-2 Dataset was collected by multiple devices,
and some of the data was manually recorded by the patient, which
caused the raw data to be asynchronous [16]. Therefore, the data
needs to be aligned before feeding to the prediction model. Firstly,
a time grid with a 5-minute sample period was derived based on the
continuous glucose monitoring (CGM) data, and the missing data
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was filled with zeros. Secondly, the timestamps of some insulin injec-
tions and carbohydrate intakes information cannot precisely match
the timestamps of CGM data. They were reset to the timestamps of
CGM data with the smallest time difference to keep the temporal
correlation between the variables as much as possible [3].

2.2 CGM outlier detection and reconciliation
CGM measurements contain noise because of physical interference.
Therefore, outlier detection and reconciliation are necessary to re-
move potential noise. Firstly, a gaussian process regression (GPR)
model was trained to detect outliers of CGM measurements. The
training dataset of the GPR model was the first 288 points of the
training dataset. The input of the GPR model was CGM measure-
ments from time t− 30 to t− 5, 6 points in total, and its output was
mean (µ(t)) and variance (σ2(t)) of the CGM prediction at the time
t. Then µ(t) and σ2(t) was used to reconcile CGM outlier at the time
t as equation(1).

g(t) =


µ(t)− 4.5σ2(t) , g(t) < µ(t)− 4.5σ2(t)

µ(t) + 4.5σ2(t) , g(t) > µ(t) + 4.5σ2(t)

g(t) ,others

(1)

where g(t) is the BG level at time t.

2.3 Missing data filling
In the OhioT1DM-2 Dataset, basal insulin dosage and CGM mea-
surements have missing data in some situations. As the basal insulin
dosage has daily periodicity, it can be filled by the previous day’s
data. Although many methods are applied for missing CGM value
filling, the accumulative error will inevitably increase as the number
of filling increasing. Therefore, to degrade the accumulative error
caused by data filling, the first-order Taylor series extrapolation and
historical averages were weighted and summed to fill in the missing
CGM values as the number of continuous missing items was less than
12. The respective methods for the missing numbers greater than or
equal to 12 will be explained in detail later. It should be noted that
the missing CGM values in the training dataset will not be filled to
avoid additional noise.

2.4 Data normalization
Data normalization can accelerate deep network training and im-
prove the accuracy of the model to a certain extent. We used three
methods to normalize the data, and the results show that the model
with coefficient normalization had the best performance. Coefficient
normalization refers to only scale the amplitude of data to maintain
the distribution of the raw data as much as possible [10]. The scaling
of different variables was shown in Table 1.

Table 1. Scaling of different variables.

Variable Glucose level Timestamp Basal Bolus Meal

Scaling 1/100 1/100 1/12 1 1/10

3 MS-LSTM MODEL
In this section, we will introduce the architecture of the MS-LSTM
model and explain how the model is trained and tested.

3.1 Model architecture
As shown in Figure 1, the MS-LSTM model has a multi-scale hier-
archy structure, which can learn the short-term and long-term depen-
dence of blood glucose sequence. Meanwhile, the multi-lag structure
can extract features on time-windows of different sizes, the features
extracted on a large time-window are more abundant, and the features
extracted on a small time-window are more time-sensitive. There-
fore, compared with single-lag, the multi-lag structure can extract
more comprehensive features and more effectively extract the de-
pendence between different variables and blood glucose fluctuations.
Theoretically, the more lags used, the more comprehensive features
extracted, but correspondingly, the training time of the model will
increase. Therefore, three lags were used for all variables to balance
the training time and adaptability, as shown in Table 2, where PH
represents the prediction horizon.

Table 2. Scale levels or lags of different variables.

PH=30 PH=60

Variable Scale level or lag Scale level or lag

Blood glucose 1×7,2×7,3×7 1×9,2×9,3×9
Basal and timestamp 8,16,24 12,24,36
Bolus and timestamp 8,16,24 12,24,36
Meal and timestamp 8,16,24 10,20,30

Specifically, for predicting blood glucose after 30 minutes, the
three scales adopted for the blood glucose variable were 1×7, 2×7,
and 3×7, which means that all scale levels are 7, and the dilated sam-
pling rate is 1, 2 and 3, respectively. Three lags of the basal vari-
able were 8, 16, and 24, respectively. To ensure the unity of the out-
put dimensions, in the multi-scale hierarchical and multi-lag struc-
ture, the number of LSTM states was equal to the minimum scale of
blood glucose variable. As shown in Table 3, to sufficiently extract
the useful information of various variables, the number of LSTM
states in the feature fusion layer was 256. The number of nodes in
the fully connected layer later was 256, 64, and 1, respectively, and
some dropout layers are added between the fully connected layers to
avoid the network overfitting problem.

Table 3. Detailed information of the MS-LSTM network.

PH=30 PH=60

Structure Layer name Parameter Parameter

LSTM 7 Unit 9 UnitMulti-scale
hierarchical LSTM 7 Unit 9 Unit

LSTM 7 Unit 9 UnitMulti-lag LSTM 7 Unit 9 Unit

LSTM 256 Unit 256 Unit
FC 256 Unit 256 Unit

Dropout 0.2 0.2
FC 64 Unit 64 Unit

Dropout 0.1 0.1

LSTM and Fully
Connected (FC)
layer

FC 1 Unit 1 Unit

3.2 Training and testing
The training data was divided into a training set and a verification set
at a ratio of 9:1. The last 10% of the training dataset is closest to the
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Figure 1. Block diagram representation of the MS-LSTM network

testing dataset in time, and its distribution is most similar to the test-
ing dataset, so it was set apart as the verification set. When training
the model, each iteration was evaluated on the verification set. When
the model had not obtained better results after 300 consecutive evalu-
ations, the training would be stopped, and the model which performs
best on the verification set before would be saved. The training stop
strategy that can effectively avoid the problem of overfitting the net-
work is called early stopping. Because the 13th point on the test set
needs to be predicted, some training data was added at the beginning
of the test set to ensure that the number of prediction points meets
the requirements. Besides, for several CGM data after a noticeable
amount of continuously missing data, the model was not used for
prediction. Instead, two model-free prediction algorithms with adap-
tive weight prediction and remain prediction were used to predict,
respectively. Finally, the predictions were limited in the range of 40
to 400. The flow diagram is shown in Figure 2.
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Figure 2. Flow diagram of blood glucose prediction

Training batch size: The experiment used mini-batch for weight
adjustment, and the batch size of each update weight will affect the
accuracy of the model. In the experiment, it was found that the larger
batch size could improve the accuracy and accelerate the training
process of the model, so the batch size was set to 1024.

Loss function: The experiment compared the negative log-
likelihood (NLL) loss function, ε-insensitive loss function, mean
absolute error (MAE) loss function, and root mean square error
(RMSE) loss function. The results displayed that the model trained
with the RMSE loss function had the best performance.

Optimizer: This experiment tested the root mean square prop (RM-
SProp) optimizer and adaptive moment estimation (Adam) optimizer
[9]. The results showed that the performances of RMSProp and
Adam were similar, but Adam had a significant advantage in the
convergence speed. Therefore, Adam optimizer was used to update
model weights, and the learning rate was set to 0.0001. In summary,
the hyperparameters are shown in Table 4.

Table 4. Summary of the hyperparameters.

Hyperparameter Value

Training batch size 1024
Optimizer Adam optimizer
Learning rate 0.0001
Training stop strategy early stopping
Loss function RMSE

The experimental environment is Win10 Professional 64-bit oper-
ating system, the hardware platform is Intel Core i7 9750H proces-
sor, NVIDIA GeForce GTX 1660 Ti graphics processing unit, 16G
memory notebook computer, and the development tool is Python 3.6,
Keras 2.2.4, TensorFlow-GPU 1.12.0. The code used in the experi-
ment is available on Github. In this hardware and software environ-
ment, the average training time for the MS-LSTM model was about
10 minutes.

https://github.com/yangtao-hub/BGLP2020


4 MODEL-FREE PREDICTION
When the number of the missing CGM data is more than 11, the
predictions of the MS-LSTM model for the following several values
will cause a significant deviation. Therefore, for these CGM data,
adaptive weight prediction and remain prediction are used instead of
the model. The adaptive weight prediction algorithm uses short-term
maintainability and long-term periodicity of blood glucose levels to
make predictions. Specifically, when fewer CGM data are missing,
the prediction is close to the last CGM value before the missing data,
that is, depending on the short-term maintainability of blood glucose
levels. On the contrary, when there are more missing data, the pre-
diction is close to the CGM value at the same time of the previous
day, that is, depending on the long-term periodicity of blood glucose
levels. The process of adaptive weight prediction can be described by
equation (2)-(4).

f = nmiss/(nmiss + c) (2)

gav(t) =
1

2n+1

288+n∑
288−n

g(t− T × nback) (3)

Paw = (1− f)glast(t) + f × gav(t)) (4)

where nmiss is the number of missing data between the current pre-
diction and the last CGM measurement before the missing data. c
is a constant not less than 0, and the value in this experiment is
set to 68. f is the adaptive weight factor, depend on nmiss and
c. T is the blood glucose measurement period, the value in the
OhioT1DM-2 Dataset is 5 minutes. n is a positive integer con-
stant not less than 0, and the value in this experiment is set to 1.
nback ∈ {288− n, 288− n+ 1, ..., 288 + n}. g(t) is the BG level
at time t. gav(t) is the average value of the CGM data of 2n + 1
points at the same time on the previous day, which represents the
long-term periodicity of BG levels. glast(t) is the last CGM value
before the missing data, which represents the short-term maintain-
ability of BG levels. Finally, Paw is the adaptive weight prediction
value. As shown in Figure 3, the black points in the period from time
D to F are the predictions produced by adaptive weight prediction
algorithm.
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Figure 3. Prediction results of the three algorithms

When the first CGM data appears after the missing data, the value
would be directly used as the predicted value of the required predic-
tion horizon. So this algorithm is called remain prediction. As shown
in the sky blue point in Figure 3, the blood glucose value at time D
was the prediction value at time G.

Then, when two CGM values appeared after the missing data, as
shown about the BG values at time D and E in Figure 3. Based on

these two points, the reverse first-order Taylor series extrapolation
was performed. Then the extrapolated data and the average historical
data before the missing data were weighted and summed to ensure
the smoothness of the filled data. The green points in Figure 3 were
the extrapolated backward data, which were used by the MS-LSTM
model to predict BG level after time G.

5 RESULTS AND ANALYSIS
The performance of the model was evaluated by the root mean square
error (RMSE) and mean absolute error (MAE) between the predic-
tions and the original test data.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (5)

MAE =
1

N

N∑
i=1

|ŷi − yi| (6)

where ŷi is the predicted BG value, yi is the target value andN repre-
sents the size of the testing dataset. To be noted that, the extrapolated
values of BG were removed when evaluating the performance of the
model, which guarantees the predictions had the same number as the
test data.

According to the preceding steps, the results of four independent
experiments are summarized in Table 5, where SD represents the
standard deviation. All subjects used the same experimental param-
eters, but the RMSE of each patient varied from 15 to 22. Among
them, the smallest RMSE is 15.871 for patient 596, and the largest
RMSE is 21.934 for patient 567. The prediction results are shown
in Figure 4-5. It is worth noting that the average RMSE variance of
the MS-LSTM model is only 0.061 in 30 minutes prediction horizon,
which reflects the excellent robustness of the model.
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Figure 4. Blood glucose prediction results of subject 596 produced by the
MS-LSTM model
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Figure 5. Blood glucose prediction results of subject 567 produced by the
MS-LSTM model

The subject 567 has many consecutive spikes, which is the primary
source for the prediction error. Besides, another source of prediction



Table 5. RMSE and MAE values of the MS-LSTM model for 6 subjects.

PH=30 PH=60

Subject Test point Average
RMSE ± SD

Average
MAE ± SD

Average
RMSE ± SD

Average
MAE ± SD

540 2884 20.996 ± 0.062 15.244 ± 0.051 38.219 ± 0.029 28.675 ± 0.017
544 2704 16.687 ± 0.025 11.679 ± 0.014 27.424 ± 0.100 19.522 ± 0.030
552 2352 16.918 ± 0.064 12.726 ± 0.058 30.109 ± 0.185 23.340 ± 0.320
567 2377 21.934 ± 0.039 14.698 ± 0.027 37.155 ± 0.369 27.324 ± 0.377
584 2653 21.881 ± 0.142 15.417 ± 0.127 33.913 ± 0.026 25.362 ± 0.091
596 2731 15.871 ± 0.035 11.258 ± 0.041 25.358 ± 0.227 18.777 ± 0.137

Mean 19.048 ± 0.061 13.503 ± 0.053 32.029 ± 0.156 23.833 ± 0.162

error is the missing data, as shown in the predictions after the missing
data in Figure 6. Finally, a slight time delay is observed in the pre-
diction curve, and it is also a problem for most prediction methods.

The CGM measurements contain noise because of physical inter-
ference. We used the GPR model to detect and reconcile CGM out-
liers to the greatest extent. However, only some severe outliers were
detected and reconciled because there was no judgment standard for
outliers. There are still many outliers in the raw CGM data, which
is very unfavorable for the prediction model learning. Therefore, de-
noising CGM and obtaining high-quality data is very important to
improve the performance of the prediction model.
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Figure 6. Prediction performance in case of missing data

6 CONCLUSION
In this paper, the MS-LSTM network is developed to adaptively char-
acterize high-dimensional temporal dynamics and extract the long-
term and short-term features of glucose fluctuation. Meanwhile, a
multi-lag structure is designed for multiple variables, which can ex-
tract the dependence between different variables and blood glucose
fluctuations more effectively. The long-term sparse temporal data is
encoded and compressed to suitable for efficient learning with the
model. The mean value of the RMSE for 6 subjects is 19.048, with
standard deviation equals to 0.061 in 30-minute PH. Missing data
and rapid fluctuations in blood glucose levels are the two main fac-
tors that affect the prediction performances of the model.
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