

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

The concept of a software complex for interdisciplinary
problems solving based on self-organization principle

Alexander Berman1[0000-0001-8339-7338], Olga Nikolaychuk1[0000-0002-5186-0073],
Alexander Pavlov1[0000-0002-7753-7514]

1 Matrosov Institute for System Dynamics and Control Theory
of Siberian Branch of Russian Academy of Sciences, Irkutsk, Lermontova, 134, Russia

idstu.irk.ru

Abstract. The paper presents the concept of a software complex for solving in-
terdisciplinary problems based on self-organization features. In particular, the
basic principles and stages of self-organization process during solving an inter-
disciplinary problems of designing complex technical systems, as well as the
architecture of proposed software along with some details of implementation
are considered. The architecture of the software complex includes subject and
problem ontologies, data and knowledge bases, set of "solvers" as well as intel-
ligent scheduler. The intelligent scheduler implements the self-organization al-
gorithm and provides creation the computing environment for solving consid-
ered problem using "solvers" as a buildings blocks. The implementation of self-
organizing algorithm base on combination of knowledge representation as an
ontologies, group decision-making, component and model-oriented approaches.
Self-organization features in context of designing complex technical systems
task are implemented on the stages of defining the design methodology, deter-
mining the source data, solving the problem, and training the system. The intel-
ligent scheduler can analyze the state of current task with set of indicators and
manage it through a set of local rules. This paper presents examples of local
rules for each stage. The stages specifications in the form of technological dia-
grams that contains components used ("solvers"), their connections along with
the results of their work describe the self-organization process features related
to each stage. The software implementation are based on the capabilities of the
used platform for creating knowledge-based systems developed by the authors
and component approach applied to specialized component development.

Keywords: Interdisciplinarity, Complex Technical System, Design, Infor-
mation Technology, Subject Ontology, Problem Ontology, Self-Organization,
Local Rules Of Self-Organization.

1 Introduction

The task of designing complex technical systems is an interdisciplinary one, which
requires processing huge amounts of data and knowledge of various scientific, tech-
nical and scientific-technical disciplines. At the stage of creating technical systems,

http://idstu.irk.ru/en
http://idstu.irk.ru/en

there is always some uncertainty of strength, resource and structural reliability and
safety due to imperfection and violation of methods and means of creating objects, the
inability to adequately test elements and components of complex unique technical
systems, which leads to their sudden failures. Due to incompleteness of some sets of
data and knowledge belonging to different disciplines, the relationships between them
can not be completely defined, which makes it difficult to formulate both disciplinary
and interdisciplinary goals and may be one of the reasons of incorrectly interdiscipli-
nary tasks formulation.

These problems determine the relevance of the task of creating the technology and
the appropriate software complex ensuring the teamwork of a specialists (experts)
from various disciplines for solving interdisciplinary problems related to the design of
complex technical systems. The software complex should meet the following re-
quirements:

• common space for information exchange including mathematical, methodological
and software areas;

• interaction between specialists from the various disciplines;
• formulation of the one cooperative view point for the multiple of the expert groups;
• processing of heterogeneous information, along with data of unknown or uncertain

at design time structure model;
• the possibility of using heterogeneous software (open source code, third-party pro-

grams, own programs, hybrid systems, etc.);
• the user requirements for skills in programming and knowledge representation

languages are limited to interaction with the software complex interface in domain
terms;

• decision support at all stages of problem solving;
• high level of the automation during implementation of the new problem solving

methods and adaptation of existing ones to any changes in the initial data.
• Implementation of these requirements is based on the following approaches:
• common space for information exchange by ontological modeling,
• interaction between specialists from the various disciplines by the methods of

group decision-making,
• use of heterogeneous information and software by the separation of data represen-

tation and processing methods according to model-oriented and component-based
software development approaches,

• decision making support by applying knowledge processing methods (for example,
expert systems),

• high level of the automation by applying self-organizing algorithms.

Currently, there are methods and models of artificial self-organization for the for-
mation of coordinated solutions and control of complex objects [1, 2, 3]. As follows
from works [3, 4], a system can be considered self-organizing if it acquires some
spatial, temporal or functional structure without specific external influence. So the
artificial self-organization can be represented as a process of the automatic modifica-
tion (adaptation) of the action plan (decision-making algorithm) when changing the

properties of the controlled object, the control goal, or environmental parameters are
meet.

It is proposed to acquire the solution of the interdisciplinary problem as the schema
of interaction between "solvers" of disciplinary and interdisciplinary problems of
different competence and specialization by application of the self-organizing algo-
rithm [3]. The mechanism of self-organization provides organization the available
"solvers" into computational structure according to the parameters of the problem
model and object to study like the object properties, influencing factors, etc.

The obtained computational structure can be automatically reorganized in case of
any changes in initial states.

The purpose of this paper is to present the concept of a software for solving inter-
disciplinary problems of designing complex technical systems.

2 Architecture of the software complex

The conceptual architecture of a software complex for creating and supporting the
self-organizing systems for solving interdisciplinary tasks is defined:

, (1)

where IS – software complex, E – experts, the Dt – database, Knl – knowledge base,
Ont – the ontology of domain and problem areas, P – tasks,

– task hierarchy, Slv – "solvers", RIS – the relationships between components IS, in
particular, between experts and tasks, between tasks, between tasks and "coordina-
tors", between tasks and "solvers", Crd – "coordinators" of the task, Ind – state indica-
tors IS, a set of indicators to display of the current state of

task execution process, Pln – an intelligent scheduler that implements a self-
organizing algorithm SAlg for solving an interdisciplinary task based on local rules
LRule, UI a user interface.

The "solvers" of software complex can be divided to the basic ones and user ones
. The basic "solvers" provides the set of build-in data and

knowledge processing operations [5]: data control – SlvDt, ontological modeling –
SlvOnt, rule-based reasoning – SlvKnl, organization of two-way data exchange – SlvCom,
dialog interaction with the user – SlvUI, specification of operations based on visual
workflow notation – SlvOp.

SlvOnt provides the creation of an ontological (conceptual) model for the selected
domain with a specified level of detail.

SlvKnl provides creation of knowledge bases by visual construction of rules and
formation of initial conditions using obtained domain ontology as initial data. In cur-
rent implementation Drools system is used as rule-based reasoning engine so the code
generation function results are in format of Drools knowledge representation lan-
guage.

The SlvCom use WebSocket protocol to provide the ability to fast, asynchronous da-
ta exchange between users and/or "solvers" of the complex, as well as the server to
client interaction with a server as initiator.

SlvUI provides automatic creation of user interface based on meta descriptions us-
ing graphical controls to display the data in a simple and/or nested tables, semantic
networks and elements for selection one/multiple values from the list, and the stand-
ard set of elements for simple data types (one/many-lines input fields, the date, time,
datetime controls, checkbox for Boolean type, etc.).

SlvOp has two main functions: the creation formal specification of actions plan for
solving a certain domain problem using visual workflow notation, and the second is
the implementation of the obtained specification using the other "solvers" of software
complex and functionality of the available external systems.

Pln [3] provides an actions plan of the solving domain task process as the interac-
tion schema between "solvers" that displays both the control flow and data flow ac-
cording to model of the task. During the task execution process Pln monitors the state
of the task and in case of necessity adjusts actions plan by results of applying a local
rules to the current state according to the values of the indicators.

3 Stages of self-organization algorithm

Let's consider the stages of the proposed algorithm for self-organization of the soft-
ware for solving an interdisciplinary problems of designing technical systems. The
algorithm has four main stages:

1. Self-organization at the stage of creating a software system (see Fig. 1).

This stage implements the following:

─ Definition of the design methodology. By defining the methodology, we mean
describing the stages and tasks of the design process for an object or a certain class
of objects. Design stages and tasks are formalized in the task ontology as a hierar-
chy of conceptual tasks [6-8], where the hierarchy shows the part-whole relation-
ships. The actions plan of abstract kind is formed using visual workflow notation
based on the obtained task hierarchy.

─ Detailed formulation of tasks [8], according to the design methodology. At this
stage, the conceptual tasks defined in the previous stage are being specified. Such
type of specification consists of related domain concepts and rules along with de-
scriptions of the methods available for considered tasks. The obtained specification
would considered by the related group of experts (domain specialists) to retrieve
the common view.

─ Definition of methods for solving tasks. The algorithms of methods for solving
tasks that been described in the task ontology [8] are defined using visual work-
flow notation. A mandatory part of this stage is the description of actions in the
case of obtaining unsatisfactory result for one or several subtasks. Moreover, the
alternative algorithms that based on other implementations or provides a different

accuracy, and so on can be added to the method description. The method definition
is also have be adjusted to the common opinion by the group of experts.

Fig. 1. Stage of determining the design methodology.

─ Creating "solvers" - software components that implement the proposed methods for
solving tasks. This stage is important in case of the methods for processing weakly
structured information based on artificial intelligence methods, such as expert sys-
tems [9, 10, 11].

Scheduler - self-
organization of the
approval process

DSS to ap-
proval expert

opinions

Problem ontology
– tasks of the de-
sign methodology

Defining the design
methodology

Formulation of
tasks according to
the design method-

ology

Defining methods
algorithms for
solving tasks

Domain ontology-
concepts of the
design process

Formulation of
concepts методо-
логии проектиро-

Approval of ele-
ments of the meth-

odology with a
group of experts

Ontology
editor

The task
editor

The process
editor

(workflow)

Specification of
the methodology

model проектиро-
вания

The creation of
«solvers»

Specification of
self-organization
defining of the
methodology

Design system learning

Specification of
self-organization
of the learning

process

Scheduler -
self-organization of

the learning pro-
cess

Component
for creating
«solvers»

Within the first stage, the model of the design methodology is formed while the
self-organization algorithm is utilized for user support during the describing concepts,
tasks, methods, “solvers” and adjusting of descriptions [12, 13, 14].

2. Self-organization at the stage of setting up a software system (see Fig. 2). This
stage includes:

Fig. 2. Stage of determining the initial data of the design process.

─ Input of initial data, including a description of the structure and properties of the
object under design.

Scheduler -
self-organization
of the approval

process

DSS to ap-
proval expert

opinions

Problem ontology –
tasks of a specified

design methodology

Defining the initial
data of the design

process

The formation of
the task structure

of the design
object

Specification of
design tasks

объекта

Domain ontology –
concepts of the
design object

Defining the
structure and

properties of an
object

Approval of task
elements with a

group of experts

Ontology
editor

The task
editor

The process
editor

(workflow)

Specification of a
model of a specified
design methodology

Defining of ini-
tial data for de-

sign tasks

Specification for self-
organization of initial

data definition

Scheduler -
self-organization
of the process of

defining the initial
data

Specification of self-
organization of the
approval process

Choosing
methods for
solving tasks

Design system
learning

Specification of self-
organization of the

learning process

Scheduler -
self-organization
of the learning

process

─ Defining the specific structure of tasks / subtasks according to the specified struc-
ture and properties of the object under design. Self-organization at this stage is the
user support during analysis of the description of the object structure in the ontolo-
gy and the formation of a sequence of tasks for each element of the hierarchy ac-
cording to structure of the object under design and the description of the methodol-
ogy.

─ The obtained task structure are expanding by concrete data (instances of the do-
main ontology concepts) about the object under design. Also the correspondence
between the domain concepts and the concepts from the task description is estab-
lished.

─ Determination the runnable methods of solving tasks and most effective ones from
them based on the available initial data. The intelligent scheduler is used to check
whether the initial data is available to evaluate whether the method can be launch,
and whether the methods are runnable with the current input parameters. For ex-
ample, with the domain ontology, knowledge bases for expert systems are formu-
lated, methods are ranked by efficiency and accuracy, and the selection of the run-
nable methods is performed.

As a result of this stage, a models of the specific tasks is formed for a given object.

3. Self-organization at the stage of exploitation of the software system (see Fig. 3).
This stage includes:

─ Adjustment of task statements based on the results of their executions and expert
suggestions,

─ Changing methods for solving tasks based on the results of the executions and
expert suggestions: reducing performance requirements, addition a new method or
a new algorithm for implementing the method.

─ Adjusting the actions plan for task solving based on the results of the executions
and expert suggestions.

The process is controlled with set of indicators: the progress indicator, risk indica-
tor, the indicator formulation of the task etc. [3].

The result of this stage is the adjusted model for solving the specific task.

4. Self-organization during the learning phase of a software system:

─ Learning of the system as a result of analysis, extraction and accumulation of in-
formation (rules, precedents) at each stage of the software system operation.

─ Use of knowledge at all stages of self-organization to improve efficiency.

4 Knowledge structure of the scheduler

The main component of the software complex that implements self-organization algo-
rithms is the intelligent scheduler. Self-organization is based on the analysis the states
of set of indicators and the local rules.

The structure of knowledge base containing the local rules corresponds to the stag-
es of self-organization, in particular, consists of following parts:

Fig. 3. Stage of execution of the design process.

• self-organization in the process of determining the design methodology,
• self-organization in the process of defining the initial data,

The task
editor

Solving design tasks

Scheduler - self-
organization of

the approval
process

DSS to ap-
proval expert

opinions

Problem ontolo-
gy – tasks of a

specified design
methodology

Performing a task-
solving sequence

Analysis of the results
of solving tasks

Domain ontolo-
gy – concepts of
the design ob-

ject

Creating a task-solving
sequence

Approval of task
elements with a

group of experts

Ontology
editor

The process
editor

(workflow)

Specification of
a model of a

specified design
methodology

Adjusting the task
statement

Specification of
self-organization

of analysis of
results of task

solving

Scheduler -
 self-organization
of analysis of the
results of solving

a task

Specification of
self-organization
of the approval

process

Scheduler -
self-organization

of the task-solving
process

Design system
learning

Specification of
self-organization
of the learning

process

Scheduler -
self-organization
of the learning

process

• self-organization in the process of description the task solving algorithm,
• self-organization in the process of knowledge adjustment by expert and group of

experts,
• self-organization in the process of the system learning.

Here are examples of local rules.
Rules for self-organization of the process of determining the design methodology:

IF the stages of the methodology are not defined, THEN
start the procedure for defining the stages;
IF the task of the methodology stage is not defined, THEN
start the task definition procedure;
IF the requirements for the object under design are not
defined, THEN launch the requirements definition proce-
dure;
and others.

Rules for self-organizing the initial data definition process:

IF the initial data is not defined, THEN start the ini-
tial data definition procedure;
IF the result of the procedure for determining the ini-
tial data is not feasible, THEN start the procedure for
changing the model of the methodology;
and others.

Rules for self-organization of the problem solving process [3,15].

IF the formulation of the methodology tasks is complete
AND the definition of the initial data is complete, THEN
the procedure for solving the design problem is started;
IF the result of solving the task is unsatisfactory (for
example, it does not meet the risk criteria), THEN launch
a procedure to identify the reasons for unsatisfactory
solution of the task;
and others.

Rules for self-organization of the knowledge adjustment process [12]:

IF there is an incompleteness of the task formulation,
THEN launch a procedure to reduce (resolve) the identi-
fied incompleteness, depending on the type of incomplete
information;
IF there is an incompleteness of the source data of the
task, THEN launch the procedure to agree on the opinions
of experts on the new source data;
IF there is an incompleteness of knowledge (templates,
rules, precedents and etc.) of the task, THEN launch a

procedure to agree on the opinions of experts on new
knowledge (templates, rules, precedents and etc.) of the
problem;
IF there is an incompleteness of data on the methods of
the problem, THEN launch a procedure to agree on the
opinions of experts on new methods of the task;
and others.

Rules for self-organization of the learning process:

IF a new task formulation is being created, THEN the pro-
cedure for collecting expert opinions on the reasons for
creating a new task formulation is launched AND the case-
based knowledge base of task formulations is updated;
IF you are forming a new sequence of methods of solving
the task, THEN start the procedure of collecting expert
opinions on the reasons for the creation of a new algo-
rithm for solving the task AND funding the case-
knowledge-base algorithms (methods) of solving the task;
and others.

5 Features of software implementation

The software implementation of the software complex is proposed to be performed
using the capabilities of the platform for creating knowledge-based systems [5, 11].

This software platform is developed as a web application using the "thin" client
technology, in which the components [16, 17] ("solvers") of the complex are placed
on the server, and a standard browser program acts as a user terminal.

In the process of organizing interaction between the software complex components
along with internal client-server links of them for calling methods and receiving
(sending) data, it is suggested to limit the use of the following set of protocols: HTTP,
SOAP, and WebSocket. This set provides the ability to use a significant part of exist-
ing software systems and libraries.

To implement the components user interface, are used a well-established approach
for creating interactive web pages using HTML, CSS, JavaScript, and popular librar-
ies (jQuery, jQueryUI, jQueryGrid, and jsPlumb). The data exchange process is orga-
nized both on the basis of client-initiated requests over the HTTPS Protocol, and us-
ing bidirectional channels of the WebSocket Protocol. Currently, the server part in-
cludes two HTTP servers: Apache-based and Node.js, which are together with the
WSS Node.js server form the external part of the server.

The HTTP-Apache server provides access to the functionality of the basic "solv-
ers": SlvDt, SlvOnt, and partially to the functionality of SlvKln (knowledge base design
and code generation). HTTP Node server.js provides a solution to the problems of
authentication of the customer SlvCom and WSS server Node.js provides Slavcom with

the ability to organize bidirectional data exchange, in which each client is able to
interact with others in any order.

6 Conclusion

The article discusses the basic approaches, conceptual stages of self-organization of
the process of solving an interdisciplinary task of designing complex technical sys-
tems, as well as the architecture of the software complex and features of its imple-
mentation. The proposed approach include a combination of ontological knowledge
representation, group decision-making, component and model-oriented approaches
that ensure the implementation of a self-organizing algorithm. The stages of self-
organization include the stage of defining the design methodology, determining the
initial data, description the task solving algorithm, and the system learning. Self-
organization of the system is based on analyzing the state of set of indicators through
a system of local rules. The chosen approach to software implementation is based on
the use of modern tools and data exchange protocols and provides the tool under de-
velopment with the ability to add a new one, including by integrating software from
third parties, as well as adapting existing functionality in accordance with changes in
the requirements of the domain.

In the future, it is planned to implement proposed software complex and utilize it
to solve the tasks of designing unique mechanical and technical systems operated at
hazardous industrial facilities.

7 Acknowledgments

The research was supported by the Program of the Fundamental Research of the Sibe-
rian Branch of the Russian Academy of Sciences, project no. IV.38.1.2 (reg. no.
АААА-А17-117032210079-1). Results are achieved using the Centre of collective
usage «Integrated information network of Irkutsk scientific educational complex».

References

1. Kaljaev, I.A., Kaljaev, A.I., Korovin, Ja.S.: Principles of organization and functioning of
deserted robotic production. Mechatronics, automation, control, vol. 17, 11, 741–749
(2016).

2. Kolesnikov, A.V., Kirikov, I.A., Listopad, S.V.: Hybrid Intelligent Systems with Self-
Organization: Coordination, Consistency, Dispute, 189 p. Moscow, IPI RAN Publ (2014).

3. Berman, A.F., Nikolajchuk, O.A., Pavlov, A.I.: Self-organizing solution formation algo-
rithm to ensure the required technical condition of complex hazardous objects. In: Pro-
ceedings of the conference "System Analysis and Information Technologies", vol.1, pp.
377-384. Moscow, ISA RAN Publ (2017).

4. Haken, G.: Information and self-organization: a macroscopic approach to complex sys-
tems, Moscow, URSS: LENAND Publ. (2014).

5. Nikolaychuk, O.A., Pavlov, A.I., Stolbov, A.B.: The software platform architecture for the
component-oriented development of knowledge-based systems. In: Proceedings of the 41st
International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1234-1239, Opatija, Croatia (2018).

6. Gavrilova, T.A., Kudrjavcev, D.V., Muromcev, D.I. Knowledge Engineering. Models and
methods. Spb., «Lan'» Publ (2016).

7. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: Ontology of Tasks and Methods.
IEEE Intelligent Systems, 14(1), 20-26 (1998).

8. Berman, A.F., Nikolaychuk, O.A., Pavlov, A.I.: The Ontology Model for Automating the
Solution of Multidisciplinary Research Tasks. In: Proc. the V Intern. Workshop Critical In-
frastructures: Contingency Management, Intelligent, Agent-Based, Cloud Computing and
Cyber Security (IWCI 2018), vol. 158. pp. 1-6 (2018).

9. Cretu, L. G., Florin, D.: Model-Driven Engineering of Information Systems: Principles,
Techniques, and Practice. Apple Academic Press (2014).

10. Yurin, A.Yu., Dorodnykh, N.O., Nikolaychuk, O.A., Grishenko, M.A.: Designing rule-
based expert systems with the aid of the model-driven development approach. Expert Sys-
tems, vol. 35, 5 (2018).

11. Dorodnykh, N.O., Yurin, A.Yu.: Technology for creating rule-based expert systems using
the model transformations. SB RAS, Novosibirsk (2019).

12. Gubanov, D., Korgin, N., Novikov, D., Raikov, A.: E-Expertise: Modern Collective Intel-
ligence. Series: Studies in Computational Intelligence, vol. 558, pp. 112. Springer Interna-
tional Publishing (2014).

13. Berman, A.F., Nikolajchuk, O.A., Pavlov, A.I.: Method of acquiring multidisciplinary
knowledge based on ontology. In: Proceedings of the conference "System Analysis and In-
formation Technologies", vol. 1, pp. 295-302. Moscow, ISA RAN Publ (2017).

14. Berman, A.А., Nikolaychuk, O.A., Maltigueva, G.S., Yurin, A.Yu.: A Method of Experts’
Knowledge Approval for Industrial Safety Expertise Task. In: Series:Advances in Intelli-
gent Systems Research. Proceedings of the VIth International Workshop «Critical Infra-
structures: Contingency Management, Intelligent, Agent-Based, Cloud Computing and
Cyber Security» (IWCI 2019), vol. 169, pp. 102-107 (2019).

15. Mahutov, N.A., Berman, A.F., Nikolajchuk, O.A.: Some principles of self-organization to
manage the risk of man-made disasters. Risk analysis problems, vol. 12, 4, 34–45 (2015).

16. Nikolajchuk, O.A., Pavlov, A.I.: Using the component approach to create a research auto-
mation system. Vestnik of Computer and Information Technologies, 4 (70), 23-32 (2010).

17. George, T. Heineman, William, T.: Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley Professional, Reading (2001).

https://www.atlantis-press.com/proceedings/series/aisr
https://www.atlantis-press.com/proceedings/series/aisr

	1 Introduction
	2 Architecture of the software complex
	3 Stages of self-organization algorithm
	4 Knowledge structure of the scheduler
	5 Features of software implementation
	6 Conclusion
	7 Acknowledgments
	References

