
Algorithms for Computation of Reversible Integer

Transform from Linear Float Transform and

Minimization of Rounding Errors?

Alexei Hmelnov1[0000−0002−0125−1130]

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of
Russian Academy of Sciences, 134 Lermontov st. Irkutsk, Russia hmelnov@icc.ru

http://idstu.irk.ru

Abstract. Various compression algorithms use linear transforms to rep-
resent data vectors in di�erent coordinate systems, where they can be
compressed better. The matrices usually have �oat coe�cients, and the
data vectors are integer, so some rounding is required. And to make the
compression lossless it is required to make these transforms reversible,
i.e. to be able to exactly restore the original vectors from the results of
their transform.
In this article we'll consider a straightforward algorithm for �nding the
decomposition of linear transform matrix and the approaches for estima-
tion of the mean square approximation error and for �nding the optimal
decomposition, which minimizes the error.

Keywords: Lossless coding ·Data compression · Invertible integer trans-
form · Error estimation · Mean square error.

1 Introduction

When developing data formats for storing large volumes of multichannel data
it is worth to take into account the correlation between the channels to avoid
storing almost the same data again and achieve a better compression ratio. To
measure the correlation and decorrelate the data we can use such methods as
Karhunen-Loeve Transform (KLT) [1] to transfer the original values to a better
coordinate system, where most part of coordinates would represent di�erences
between some original channels, which are generally small. In this article we'll
consider only integer input data. Because it is improbable, that the matrix of
KLT transform would have all integer coe�cients, the result of the transform
will be represented by real values. But it is highly ine�ective to immediately use
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the �oating point values to represent the real results of the transform, because
the larger memory consumption of the �oating point values would outweigh any
advantages of the decorrelation.

So it is required to represent somehow the results of the transform by integer
values to take advantage from the decorrelation. And it is not enough to just
round the transform results, because it would cause information loss and may
not allow to restore the original input values from the stored rounded values.
Thus, we need to approximate the real-valued linear transform by some integer
transform, that will be very close to the real-valued transform and will be re-
versible. I.e. it should be possible to restore the original values from the results
of the integer approximation of the transform.

The problem of building reversible integer approximation of linear transform
was thoroughly considered in the works of Hao and Shi [2�5]. The main idea
of their approach is to represent the linear transform matrix A by a product
of elementary reversible matrices (ERM), e.g. triangular matrices with diagonal
elements of absolute value 1. The process of computation of the product of a
vector by ERM with rounding resulting vector coordinates can be organized so,
that it can be reversed. We'll consider the idea in more details in the next section.

The article [4] is the most close to our work: here the authors prove, that
matrix A with |detA| = 1 of size n × n can be decomposed into the product of
permutation matrix and at most n + 1 single-row elementary reversible matri-
ces (SERM). The algorithm of SERM decomposition by Hao and Shi is based
upon high-level matrix operations. They also develop some error estimation ap-
proach, which is based upon the in�nity norm ‖·‖∞, i.e. they estimate and try
to minimize the maximum error of vector coordinate.

In this article we'll consider a straightforward algorithm for �nding the SERM
decomposition of the transform matrix and the approaches for estimation of the
mean square approximation error and for �nding the optimal decomposition,
which minimizes the error.

2 Reversible Integer Transforms

When developing some lossless data compression format, which performs a trans-
form of integer vectors, say, the RGB color components, it is required to make
the transform reversible. So, the developers of the formats use some reversible
discrete approximations of the continuous transforms.

2.1 The Jpeg 2000 color transform

An example of simple reversible color transform is used in the JPEG 2000 �le for-
mat. The JPEG 2000 uses the following "Reversible multiple component trans-
formation" (RCT � forward transform of the RGB color space):

Yr = b(R+ 2G+B)/4c;Ur = R−G;Vr = B −G

which has the following reverse transform ("Inverse RCT"):

asya
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G = Yr − b(Ur + Vr)/4c;R = Ur +G;B = Yr +G

This transform is rather rough approximation of the exact transform of the
color space RGB to the color space YCrCb, which is de�ned by the CCIR 601
standard:

Y = 0.299R+ 0.587G+ 0.114B

Cr = 0.5R− 0.4187G− 0.0813B + 128

Cb = −0.1687R− 0.3313G+ 0.5B + 128

2.2 New color transform for remote sensing images

After analyzing correlation between color components of particular Earth remote
sensing images We have suggested the following new reversible integer transform
of the color components, which allows to obtain better compression ratio for this
kind of images:

Cr1 = b(R+G+B)/3c;Cr2 = b(R+B − 2G)/2c;Cr3 = B −R (1)

which has the following reverse transform:

C = 2Cr2 + Cr3 mod 2;G = Cr1 − bC/3c;
R = G+ (C − Cr3)/2;B = G+ (C + Cr3)/2 (2)

Let's prove, that the transform (2) is indeed the inverse of the transform (1).

Theorem 1. The color space transform for remote sensing images (1) is re-
versible, and its inverse is the transform (2).

Proof. Here we consider the operation b c as rounding down and the values like
X mod D are always positive. For example −7 mod 5 = −2 + 5 = 3. So

bX/Dc = (X −X mod D)/D

Thus

C = 2Cr2 + Cr3 mod 2 = 2b(R+B − 2G)/2c+ (B −R) mod 2

= (R+B − (R+B) mod 2)− 2G+ (B +R− 2R) mod 2

= R+B − 2G

Hence

Cr1 − bC/3c = b(R+G+B)/3c − b(R+B − 2G)/3c
= b(R+G+B)/3c − b(R+B +G)/3−Gc = G
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G + (C − Cr3)/2 = G + (R + B − 2G − (B − R))/2 = R

G + (C + Cr3)/2 = G + (R + B − 2G + (B − R))/2 = B

ut

In fact, development of this kind of reversible transforms is more like a math-
ematical trick and it is impossible to generalize this kind of results to integer
approximations of arbitrary continuous transforms.

2.3 The Main Idea of the General Approach to Construction of

Reversible Integer Approximations

To perform a reversible turn of a raster image by an angle a it is widely known
the lifting scheme:[

cosα − sinα
sinα cosα

]
=

[
1 0

1−cosα
sinα 1

] [
1 − sinα
0 1

] [
1 0

1−cosα
sinα 1

]
which can be generalized to formulate the general approach to reversible integer
approximation of transforms.

Let's consider the main idea of the approach, which can be used for almost
any continuous transform, provided that it can be rewritten in the form required
by the approach. We'll do it here in a little more general way, than in [4].

A continuous transform y = F (x) should be split into steps of the form:

y0 = k0xn + f0(x1, ..., xn−1)

y1 = k1x1 + f1(y0, x2, ..., xn−1)

yi = kixi + fi(y0, ..., yi−1, xi+1, ..., xn−1)

yn = kny0 + fn(y1, ..., yn−1)

where ki ∈ Z, ki 6= 0 and y0 is an auxiliary intermediate value, which will not
be included into the resulting vector y. Usually the coe�cients ki ∈ {−1, 1},
because larger absolute values will extend the range of yi, and it would make
ine�ective the following compression steps.

Therefore we can de�ne reversible integer approximation of the transform
y′ = F ′(x), where the vectors x and y′ have all integer components:

y′0 = k0xn + [f0(x1, ..., xn−1)]

y′1 = k1x1 + [f1(y
′
0, x2, ..., xn−1)] (3)

y′i = kixi +
[
fi(y

′
0, ..., y

′
i−1, xi+1, ..., xn−1)

]
y′n = kny0 +

[
fn(y

′
1, ..., y

′
n−1)

]
here [ ] denotes some rounding operation, like round ,ceil ,floor .
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Then we'll be able to reverse this transform by expressing from the equations
y0 and xi and rewriting the steps in backward order:

y0 = y′n/kn −
[
fn(y

′
1, ..., y

′
n−1)

]
xi = y′i/ki −

[
fi(y

′
0, ..., y

′
i−1, xi+1, ..., xn−1)

]
(4)

x1 = y′1/k1 − [f1(y
′
0, x2, ..., xn−1)]

xn = y′0/k0 − [f0(x1, ..., xn−1)]

The inversion is possible here, because fi depends on the values available both
on the forward and on the backward passes and doesn't depend on xi and y

′
i.

The complexity of the functions fi is not limited here, but hereinafter we will
consider linear transforms only.

When abs(ki) > 1 the integer transform becomes not perfectly reversible,
because for some values of y′i it will produce non-integer xi, but this fact makes
no problem for our purposes of being able to restore the values represented by
the results of the forward transform.

The error of approximation dy = y′ − y results from the combination of the
rounding error of fi and the errors induced by replacement of yi by y

′
i in the

arguments of fi.

3 Decomposition of Linear Transform into Single

Coordinate Shift Matrices

The authors of [4] introduce the concepts of elementary reversible matrices
(ERM), which can be computed in the reversible manner. They consider triangu-
lar elementary reversible matrices (TERM) and single-row elementary reversible
matrices (ERM).

The SERM is di�erent from identity matrix I in the non-diagonal cells of a
single row, it can be considered as a linear shift along the corresponding to the
row coordinate. They prove that the matrix A of the size n×n with detA = ±1
can be factorized into the product of a row permutation matrix P and n + 1
SERM matrices. The proof uses TERM factorization as an intermediate step
and it is hard to use the proof as a guide for implementation of the SERM
factorization algorithm. That's why we are going to give in this section our own
proof of an analogous theorem, which is straightforward and can be easily used
for implementation.

3.1 Straightforward Constructive Proof of the Possibility of Matrix

Factorization into the Shift Matrices

Let us show constructively that for a matrix of the size n× n with the absolute
value of determinant 1 one can construct a factorization into n + 1 matrices
B(i) of shifts along the axes of the coordinate system with unit elements on the
diagonal and a single non-zero row:

M = PLAPR = B(n) ∗ ... ∗B(1) ∗B(0)
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where

B(0) =


1
...

1
b01 ... b0,n−1 k



B(1) =


1 b12 ... b1n

1
...

1

 ... B(n) =


1
...

1
bn1 ... bn,n−1 1


here k = detPLAPR = detM = ±1.

Of the rows of the shift matrix B(i) only the i-th row (and the n-th for
the matrix B(0)) is di�erent from the corresponding row of the identity matrix
I. So, when using this kind of decomposition each step changes a single vector
coordinate. Total the transform performs n+1 coordinate change, and it requires
n+ 1 rounding operation to implement integer approximation of the transform.
The inversion of the integer approximation is performed the same way, as it was
considered before for the more general case in (4).

Theorem 2. To each result of permutations of rows and columns M = PLAPR
may correspond a particular factorization into n+1 shift by coordinate matrices.

Proof. Let's show how can we �nd the single coordinate shift decomposition of
the matrixM . Consider the transform y =Mx. Note, that the space of matrices
M is n2−1 - dimensional (because the matrix belongs to the subspace of the n2

- dimensional space of coe�cients, which is de�ned by the equation detM = 1
or detM = −1). The space of bij is also of the size (n + 1)(n − 1) = n2 − 1
(where n+ 1 is the number of equations (matrices) and n− 1 is the number of
coe�cients to be found in the equations). So the dimensions of both spaces are
equal for any n. Because detB(i) = 1 for i > 0 and detB(0) = k = detM , we
have detM = detB(n) ∗ ... ∗B(1) ∗B(0).

Let's denote

v =
n−1∑
j=1

b0jxj + kxn

the n-th coordinate of R(0)x.
Next we'll compute the coordinates of the resulting vector y.

y1 = x1+
n−1∑
j=2

b1jxj+b1nv = (1 + b1nb01)x1+
n−1∑
j=2

(b1j + b1nb0j)xj+b1nkxn (5)

On the other hand

yi =
n∑
j=1

mijxj (6)

By comparing the coe�cients at xj in the expressions for y1 (5) and (6) we have:

b1nk = m1n, 1 + b1nb01 = m11, b1j + b1nb0j = m1j for 2 ≤ j < n
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From the �rst equation we can �nd b1n, then from the second we can �nd b01,
as a result the other equations become linear in the yet unknown values of b0j .

Next we'll consider the i-th step:

yi =
i−1∑
j=1

bijyj + xi +
n−1∑
j=i+1

bijxj + binv

=
i−1∑
j=0

bij

n∑
l=1

mjlxl + kxn + xi + bin

n−1∑
j=1

b0jxj + kxn

 (7)

Here we use the values of yj represented by the coe�cients of the matrix M (6).
By grouping the members with xj we get:

yi =
i−1∑
j=1

(
i−1∑
l=1

bilmlj + binb0j

)
xj +

(
i−1∑
l=1

bilmli + binb0i + 1

)
xi

+
n−1∑
j=i+1

(
i−1∑
l=1

bilmlj + binb0j + bij

)
xj +

(
i−1∑
l=1

bilmln + bin

)
xn (8)

Let us suppose that as a result of analysis of the expressions for yj for j < i
we will know the values of b0j for j < i, then using the �rst and the last members
of the expression for yi (8) we will have the system of i linear equations:

i−1∑
l=1

bilmlj + binb0j = mij for 1 ≤ j < i

i−1∑
l=1

bilmln + bin = min

for i unknown variables: bil for 1 ≤ l < i and bin.
After solving the system using the second term in the expression for yi (8)

we obtain:
i−1∑
l=1

bilmli + binb0i + 1 = mii

Hence b0i =

(
mii −

i−1∑
l=1

bilmli − 1

)
/bin.

Thus we have extended to the step i the inductive hypothesis that it is
possible to �nd b0j for j < i using the analysis of the expressions for yj for j < i.
Note, that the induction base is also valid, because using the analysis of the
expression for y1 we have already computed the value of b01.

From the third term in the expression for yi (8) we have:

i−1∑
l=1

bilmlj + binb0j + bij = mij for i+ 1 ≤ j < n (9)
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After substitution to the equations (9) of the already computed values bil for
1 ≤ l < i and bin we can �nd the unknown variables bij :

bij = mij −
i−1∑
l=1

bilmlj − binb0j for i+ 1 ≤ j < n (10)

And after computation of b0i in (9) we can exchange i and j and also �nd
still unknown values:

bji = mji −
j−1∑
l=1

bjlmli − bjnb0i for 1 ≤ j < i (11)

Finally, on the n-th step we have:

yn =

n−1∑
j=1

bnjyj + v =

n−1∑
j=0

bnj

n∑
l=1

mjlxl +

n−1∑
j=1

b0jxj + kxn

 (12)

Similarly to the already considered general case, we can group the tems with xj
to obtain:

yn =
n−1∑
j=1

(
n−1∑
l=1

bnlmlj + b0j

)
xj +

(
n−1∑
l=1

bnlmln + k

)
xn (13)

As a result we have the following system of n linear equations:
n−1∑
l=1

bnlmlj + b0j = mnj for 1 ≤ j < n

n−1∑
l=1

bnlmln + k = mnn

(14)

for n− 1 unknown variable bnl , 1 ≤ l < n. I.e. one of the equations (14) will be
redundant. The reason for the redundancy is that the condition detM = ±1 = k
is automatically satis�ed due to the structure of the matrices involved in the
decomposition.

Since the redundancy can consist in the fact that all the coe�cients in the
equation with unknowns bnl, will be equal to 0 or that one of the equations will
be expressed through others, we should solve the set of equations (14) by the
version of Gauss algorithm for overdetermined sets of equations.

Some of the computations involved in the proof include division by values,
which may be zero for some M . And solving of the systems of linear equations
here may also fail. That`s why we say "may correspond" in the theorem state-
ment. But, once we have found a solution by the algorithm, we can be sure, that
it is the only solution of the problem of �nding decomposition for the matrix
M . ut
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Later on we will consider the process of �nding the optimal decomposition
of the matrix A by looking through all the combinations of row and column
permutations PL and PR. So, when the process of �nding the decomposition
for a particular matrix M will fail, it will be just required to consider another
version of M .

4 Finding the Best Computation Order

Let`s recall, that M = PLAPR, i.e. it is a result of permutation of rows and
columns of the matrix A. Thus, it is required to �nd the best order of computa-
tion of the coe�cients bij . We will minimize the mean square deviation of the
results of the integer approximation from the results of the original continuous
transformation. For the small dimensions n we can a�ord to use the exhaustive
search of all the (n!)2 variants of permutations. The exhaustive search will sim-
ply skip the variants, which cause division by zero during computation of the
matrix M decomposition.

To select the best of the variants we should be able to estimate and compare
the errors, caused by the variants of approximations. Let us consider a method for
estimating the mean square di�erence of the results of the integer approximation
of the transform from the results of the original continuous transform.

4.1 Mean Square Error of the Rounding Operation for Linear

Expressions with Real Coe�cients

Let's denote by v′ the integer version of v.
Hereinafter, the expression [x] denotes the operation of rounding x, and

{x} = [x]− x (15)

denotes the di�erence between the result of rounding and the original value.
When rounding a linear expression on integer variables with rational coef-

�cients the size of the set of possible results of rounding depends on the least
common multiple (LCM) of the denominators of the coe�cients. Subsequently
we'll call real rational coe�cients with large denominators. And the term rational
will be used for the rational coe�cients with small denominators.

Assuming that rounding of an expression x having some real coe�cients is
performed to the nearest integer for large ranges of x, we can consider the value
{x} as a random variable, uniformly distributed over the interval [−0.5, 0.5).
Then

{x}2 =

∫ 0.5

−0.5
x2dx =

1

12
(16)

When we deal with the matrices A produced from some real-world data, say,
as a result of Karhunen-Loeve Transform (KLT), the estimate (16) will always
be in e�ect, because it is highly improbable to get rational elements here.
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4.2 Estimation of integer approximation errors

When some expression uses several rounded values, we can consider the rounding
errors of the values as independent random variables when the rounded values
di�er from each other.

Once U and V - are independent random variables, and W = aU + bV , then

W 2 = (aU + bV )2 = a2U2 + b2V 2

But if U = V then the rounding error will be higher:

W 2 = (aV + bV )2 = (a+ b)
2
V 2

Thus, to calculate the mean square rounding errors of linear expressions it
is required to sum the squares of the coe�cients at the sub-expression errors δi
multiplied by δ2i .

Let's denote

dv = v′ − v =


n−1∑
j=1

b0jxj

 = δ0

y′i = xi +

i−1∑
j=1

bijy
′
j +

n−1∑
j=i+1

bijxj + binv
′

 (17)

yi = xi +
i−1∑
j=1

bijyj +
n−1∑
j=i+1

bijxj + binv =

xi +
i−1∑
j=1

bijy
′
j +

n−1∑
j=i+1

bijxj + binv
′ −

i−1∑
j=1

bijdyj − bindv

dyi = y′i − yi =


i−1∑
j=1

bijy
′
j +

n−1∑
j=i+1

bijxj + binv
′

+
i−1∑
j=1

bijdyj + bindv (18)

Let's call

δi =


i−1∑
j=1

bijy
′
j +

n−1∑
j=i+1

bijxj + binv
′

 (19)

From (18) we can see that dyi depends on dyj for j from 0 to i− 1, and also
on δi and δ0 . We can substitute into (18) for dyj the corresponding expressions
(18) to �nally get:

dyi = δi +
i−1∑
j=0

Dijδj (20)

Here Dij are the coe�cients to be found.
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Let's �nd the coe�cients Dij by substituting into (18) the expressions for
dyj from (20)

dyi = δi +
i−1∑
j=1

bij

(
δj +

j−1∑
l=0

Djlδl

)
+ binδ0

= δi +

i−1∑
j=1

bijDj0 + bin

 δ0 +
i−1∑
j=1

bijδj +
i−2∑
l=1

δl

i−1∑
j=l+1

bijDjl

dyi = δi +

i−1∑
j=1

bijDj0 + bin

 δ0 + bi,i−1δi−1 +
i−2∑
j=1

bijδj +
i−2∑
j=1

δj

i−1∑
l=j+1

bilDlj

As a result we have:

dyi = δi+

i−1∑
j=1

bijDj0 + bin

 δ0+bi,i−1δi−1+
i−2∑
j=1

bij + i−1∑
l=j+1

bilDlj

 δj (21)

The formula (21) describes the process of computation of Dij using the values
already computed for j from 0 to i− 1.

It is also required to consider separately the initial value of i:

dy1 = δ1 + b1nδ0

When computing the average square of the expressions (21) we will assume

that δ2i = 1
12 because we suppose here, that the coe�cients bij are real.

5 Tests

Let`s consider the results of the algorithm usage for random rotation matrices.
Table 1 shows some values, computed by the algorithms for a 3× 3 matrix. The
columns of the table correspond to the vector components. The rows of the table
are:

� NErr - the number of di�erences of the coordinates of source vectors from the
coordinates of the results of the forward transformation of the vectors by the
obtained reversible integer approximation and back by its inverse detected
in the loop over an area in the space of the vectors;

� sqD - root mean square error of the results of continuous transform from the
results of its reversible integer approximation computed in the loop over the
area in the space of the vectors;

� sqDNet - root mean square of deviation of the coordinates of the results of
continuous transform from their rounded values (it allows us to estimate the
lower bound for sqD);
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� DCalc - root mean square error of the results of continuous transform from
the results of its reversible integer approximation estimated by our algorithm;

� Top# - the permutation of columns, which gives the minimum of DCalc;
� Left# - the permutation of columns, which gives the minimum of DCalc;
� A - the transform matrix;

Table 1. Test results for a random 3× 3 matrix of rotations

1 2 3

NErr 0 0 0

sqD 0.381290171321118 0.337411519990808 0.350700141728564

sqDNet 0.288674515065362 0.288675136393005 0.288675146079434

DCalc 0.381289822912763 0.337400208005412 0.404471841500362

Top# 3 1 2

Left# 1 2 3

A1 0.501140304449431 0.0653853697257877 -0.862892315808962

A2 0.671762008580112 0.59919861058942 0.4355419944117

A3 0.545521951056733 -0.797925922936165 0.25635916683771

For the matrix 3× 3 from Table 1 we have the root mean square error

Error = 0.650244800045056

and the following reversible integer approximation

v = x2 + [0.578125087465738 ∗ x3 − 0.53671762651506 ∗ x1]
y1 = x3 + [−0.397744145953282 ∗ x1 − 0.862892315808962 ∗ v]
y2 = x1 + [0.419964254965846 ∗ y1 + 0.797925922936165 ∗ v]
y3 = v + [0.608264013914563 ∗ y1 − 0.502304008291562 ∗ y2]

For the matrix 5× 5 from Table 2 we have the root mean square error

Error = 0.768078871487727

and the following reversible integer approximation

v = x4 + [0.2739172 ∗ x3 − 0.8386267 ∗ x2 − 0.00005832195 ∗ x1 + 0.1419508 ∗ x5]
y4 = x3 + [−0.5215370 ∗ x2 − 0.006188384 ∗ x1 − 0.04225347 ∗ x5 − 0.3529485 ∗ v]
y1 = x2 + [0.1916207 ∗ y4 − 0.002794371 ∗ x1 + 0.28758131 ∗ x5 + 0.8573734 ∗ v]
y5 = x1 + [0.006326542 ∗ y4 + 0.01397231 ∗ y1 − 0.005955142 ∗ x5 − 0.01004929 ∗ v]
y3 = x5 + [0.05669100 ∗ y4 − 0.774736 ∗ y1 + 0.006511915 ∗ y5 + 0.5056881 ∗ v]
y2 = v + [−0.07052526 ∗ y4 − 0.7576750 ∗ y1 + 0.007944399 ∗ y5 − 0.4683665 ∗ y3]
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Table 2. Test results for a random 5× 5 matrix of rotations

1 2 3 4 5

NErr 0 0 0 0 0

sqD 0.30612224853 0.37192683870 0.22420601944 0.36796009227 0.36985305466

sqDNet 0.28867676698 0.28867526034 0.22420595547 0.28867576619 0.28866127050

DCalc 0.30612805880 0.37197777795 0.28871523643 0.36792735991 0.37300974146

Top# 3 2 1 5 4

Left# 4 1 5 3 2

A1 0.90332131205 -0.2255448942 -0.0061677990092 -0.092354780375 -0.35294852408

A2 0.40794441137 0.23776469377 -0.0040262521598 0.39158903935 0.78974117353

A3 0.008662154017 0.010322802042 0.99990530920 -0.0024945274352 -0.001247718504

A4 -0.12626603596 -0.62100756867 0.0092514304866 0.76315266428 -0.1261701622

A5 -0.039671395903 -0.7119273070 0.0070378409831 -0.50568805317 0.48560864030

Table 3. Test results for a random 7× 7 matrix of rotations

1 2 3 4 5 6 7

NErr 0 0 0 0 0 0 0

sqD 0.3846963 0.3202919 0.3138482 0.3830634 0.394112 0.312817 0.4199523

sqDNet 0.2886750 0.2886750 0.2886689 0.2886647 0.2886753 0.2884511 0.2886757

DCalc 0.3846966 0.3202547 0.3138602 0.3830685 0.3941317 0.31305 0.5059632

Top# 7 3 5 4 2 6 1

Left# 7 6 4 3 2 1 5

M1 0.1839351 -0.3193916 0.1334853 0.113963 -0.2213811 -0.09188760 0.8808507

M2 -0.3417553 0.6397698 -0.1804105 -0.1702700 0.3857258 0.2043536 0.4709703

M3 -0.02518445 0.4264799 0.8528390 -0.08033195 -0.2374124 -0.1614647 -0.03546056

M4 -0.8741814 -0.439128 0.2010590 -0.01850904 0.04347172 -0.01722685 0.004371392

M5 0.2798122 -0.3364512 0.3273608 -0.566333 0.5675667 0.241562 0.01108168

M6 -0.02110229 -0.0127339 0.04954787 -0.03171776 -0.4384360 0.8962660 -0.02031064

M7 -0.07618058 0.02455606 -0.26880 -0.793401 -0.4791590 -0.2485626 0.02184048
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For the matrix 7× 7 from Table 3 we have the root mean square error

Error = 1.0025704864004

and the following reversible integer approximation

v = x1 + [−0.92645 ∗ x7 − 0.85131 ∗ x3 + 0.39344 ∗ x5 − 1.1726 ∗ x4 − 0.33471 ∗ x2 + 0.22740 ∗ x6]

y7 = x7 + [0.43048 ∗ x3 − 0.21308 ∗ x5 + 1.1468 ∗ x4 + 0.073452 ∗ x2 − 0.29219 ∗ x6 + 0.88085 ∗ v]

y6 = x3 + [0.094575 ∗ y7 − 0.34555 ∗ x5 + 0.27354 ∗ x4 + 0.53641 ∗ x2 + 0.12488 ∗ x6 + 0.38766 ∗ v]

y4 = x5 + [−0.097879 ∗ y7 + 0.42127 ∗ y6 − 0.17059 ∗ x4 − 0.47099 ∗ x2 − 0.22297 ∗ x6 − 0.14765 ∗ v]

y3 = x4 + [−0.86507 ∗ y7 − 0.057838 ∗ y6 − 0.0070872 ∗ y4 + 0.13813 ∗ x2 − 0.26645 ∗ x6 + 0.79336 ∗ v]

y2 = x2 + [−0.27060 ∗ y7 − 0.59006 ∗ y6 + 0.22352 ∗ y4 − 0.72340 ∗ y3 + 0.23846 ∗ x6 + 0.53843 ∗ v]

y1 = x6 + [−0.14534 ∗ y7 − 0.27618 ∗ y6 + 0.13728 ∗ y4 − 0.29855 ∗ y3 − 0.41459 ∗ y2 + 0.24856 ∗ v]

y5 = v + [−0.95442 ∗ y7 − 0.28899 ∗ y6 − 0.097297 ∗ y4 − 1.2704 ∗ y3 − 0.69614 ∗ y2 − 0.41733 ∗ y1]

The examples considered demonstrate, that the root mean square error grows
steadily with the increase of the matrix size. The largest error we usually have
for the vector component, which is computed last. And even for the matrix 7×7
it was slightly over 0.5, which is quite acceptable for most use cases.

6 Conclusion

In contrast to the previous works on the reversible integer transforms we give a
straightforward proof of the possibility to construct a reversible integer approx-
imation of a linear transform, represented by matrix with unit determinant.

We have developed a method to estimate the mean square of rounding errors
for the transform matrices with real coe�cients and using the estimates we
perform a brute-force search of the best computation order, which minimizes
the error estimation.

For the matrices of rational coe�cients with small denominators it is still
required to rectify the error estimates, but a thorough examination of the re-
lated questions would substantially increase the size of this article beyond the
prescribed limits.

The algorithms suggested in the article are detailed enough to be easily im-
plemented in software. And the tests performed show, that they allow us to
compute high quality reversible approximations of linear transforms.

We have a successful experience of using the reversible integer transforms
in conjunction with a specialized compression algorithm [6] for compression of
multichannel images.
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