

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Technology for Prototyping Expert Systems Based on
Transformations (PESoT): a Method

Aleksandr Yurin[0000-0001-9089-5730]

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of
Russian Academy of Sciences, Lermontov St. 134, Irkutsk, Russia

iskander@icc.ru

Abstract. The development of intelligent systems and their software compo-
nents (modules) continues to be a complex and time-consuming task. One of the
ways to improve the efficiency of this process is to use the principles of genera-
tive and visual programming, as well as the model transformations in the con-
text of conceptualization, formalization, and automatic codification of
knowledge. This work is devoted to the description of one of the elements of
the information technology for Prototyping Experts Systems and these compo-
nents based on Transformations (namely, PESoT), in particular, to the method.
This method implements and redefines the basic principles of the model-driven
approach: models and the development process in the form of a chain of se-
quential transformations of models with more abstraction to ones with less ab-
straction and obtaining interpreted program codes and specifications at the end
of this chain. Domain conceptual models and specific spreadsheets are used as
source (computational-independent) models. The method is designed for non-
programming users and reduces the time for creating prototypes of intelligent
modules and expert systems by automating the codification stage and using ex-
isting domain models.

Keywords: Information Technology, Prototyping, Experts System, Method,
Model Transformation, Code Generation

1 Introduction

The creation of intelligent systems and their software components (modules) contin-
ues to be a difficult and time-consuming task. The solving of this task requires the
development of programming theory, as well as the creation of special means.

Researches in this area have been conducted since the advent of intelligent systems
and at this moment they can be divided into three main groups:

1. Approaches and software for ontological and cognitive modeling (Protégé,
FreeMind, Xebece, TheBrain, XMind, IBM Rational Rose, StarUML, etc.), that ori-
ented on non-programming users, and support modeling by the domain terms.

2. Classical programming tools in the form of editors, shells, and frameworks (Ex-
pert System Designer, Expert System Creator, ARITY Expert Development Package,

CxPERT, Exsys Developer, etc.), that oriented on programmers, and require an in-
depth study of programming languages.

3. Integrated approaches and software platforms (AT-Technology, MOKA, Com-
monKADS, OSTIS, IACPaaS), that combine features of previous groups of research-
es.

So, we can define the following main disadvantages of existing solutions:
 narrow specialization from a viewpoint of a support of formats and program-

ming languages for expert systems and knowledge bases;
 a low integration capability with visual modeling software;
 the complexity of the reusing previously developed conceptual (domain)

models;
 high requirements for users in the field of programming.

In this connection, the involving non-programming users to the development pro-
cess and automation of conceptualization, formalization, and codification are promis-
ing trends.

One of the ways to fulfill these conditions is to use the principles of generative and
visual programming, as well as model transformations in the context of conceptual-
ization, formalization and automatic codification.

These principles are implemented separately in various methods and tools. Howev-
er, in most cases, existing solutions are focused on a narrow range of target platforms
and have high qualification requirements for developers. The integrated use of the
considered principles is implemented within a group of approaches based on model
transformations. Currently, this group of approaches is known as Model-Driven Engi-
neering (MDE) [1].

We used a standardized MDE that applies some standards in the field of software
engineering, such as UML, XMI, and MOF, for the development of new information
technology. Our technology, shortly PESoT [2], consists of:

 methods and tools for creating expert systems and knowledge bases (that use
the logical rules formalism) based on model transformations;

 the original UML-based graphical notation for building models of logical
rules – a Rule Visual Modeling Language (RVML) [3];

 the domain-specific declarative language for describing transformations – a
Transformation Model Representation Language (TMRL) [4];

This work is devoted to the description of one of the elements of this technology,
in particular, the method.

2 Background

2.1 Main Principles of Model-Driven Engineering

Model-Driven Engineering (MDE) or Model-Driven Development (MDD) is a soft-
ware design approach that uses the information models as the major artifacts, which,
in turn, can be used for obtaining other models and generating programming codes [1,
3, 5]. This approach enables programmers and non-programmers (depending on the
implementation) to create software based on conceptual models.

The main MDD principles are the following:
 A model is an abstract description of a system (a process) by a formal lan-

guage. As a rule, models are visualized with the aid of certain graphic nota-
tions and serialized (represented) in XML.

 A metamodel is a model of a formal language used to create models (a model
of models).

 A four-layer metamodeling architecture is a concept that defines the different
layers of abstraction (M0-M3), where the objects of reality are represented at
the lowest level (M0), then a level of models (M1), a level of metamodels
(M2) and a level of a meta-metamodel (M3).

 Model transformation is the automatic generation of a target model from a
source model with the accordance of a set of transformation rules [6]. In this
case, each transformation rule describes the correspondence between the ele-
ments of a source and a target metamodels.

There are many works devoted to the model transformations. At the same time,
model transformations can be considered from different viewpoints [7]: by the type of
results (Model-to-Model (M2M); Model-to-Text (M2T) and Text-to-Model (T2M));
by modeling languages used (endogenous, exogenous); by the abstraction level of
models (vertical, horizontal); by the transformation direction (unidirectional, bidirec-
tional). Currently, there are some ways to implement the model transformation: graph
grammars (graph rewriting) (e.g., VIsual Automated model TRAnsformations
(VIATRA2), Graph REwriting And Transformation (GReAT), etc.); visual design of
transformation rules and category theory (e.g., Henshin); transformation standards
(e.g., Query/View/Transformation); declarative and procedural programming lan-
guages; languages for transforming XML documents (e.g., eXtensible Stylesheet
Language Transformations, etc.).

There are examples of successful use of MDE for the development of database ap-
plications (e.g., ECO, for Enterprise Core Objects), agent-oriented monitoring appli-
cations, decision support systems, embedded systems (software components) for the
Internet, and rule-based expert systems [8].

Today, the main MDE implementations (initiatives) are the following: OMG Mod-
el Driven Architecture (MDA), Eclipse Modeling Framework (EMF), Model Integrat-
ed Computing (MIC), Microsoft Software Factories, JetBrains MPS.

MDA is the most standardized MDE that uses the following software standards:
MOF, XMI, CWM, UML, and QVT.

So, we can formalize MDE [3, 9]:
CODEtoPSMPSMtoPIMPIMCIM FFFPDMPSMPIMCIMUMLMOFMDE −−−−= ,,,,,,,, -to-

,

where MOF (Meta Object Facility) is an abstract language for describing models (a
metamodel description language); UML (Unified Modelling Language) is a unified
modeling language; CIM (Computation Independent Model) is a model that hides any
details of the implementation and processes of software, and describes only the soft-
ware and environment requirements; PIM (Platform Independent Model) is a model
that hides details of the software implementation that depend on the platform, and
contains elements that do not change when the software interacts with any platform;
PSM (Platform Specific Model) is a model of software that taking into account im-

plementation details and processes, dependent on a specific platform; PDM (Platform
Description Model) is a set of technical characteristics and descriptions of the tech-
nologies and interfaces that make up the platform; PIMCIMF PIMtoCIM →−− : ,

PSMPIMF PSMtoPIM →−− : , CODEPSMF CODEtoPSM →−− : are the rules for models trans-
formations.

This formalization was used in the development of PESoT technology.

2.2 Main Elements of the PESoT Technology

To overcome the shortcomings described in the introduction, we developed the PE-
SoT technology that includes methods and tools for prototyping rule-based expert
systems and decision-making software components for intelligent systems.

The following tasks were solved when developing the PESoT technology:
 to analyze the modern approaches, methods, and tools for creating rule-based

expert systems and knowledge-bases based on the transformations;
 to develop principles (elements of theory, algorithms, methods) for creating

rule-based expert systems and knowledge-bases based on the transformations;
 to develop languages and software to support the proposed methods;
 to test the developed methods and software when solving practical and educa-

tional tasks.
The main results of the solved tasks, as well as the elements of PESoT technology,

are the following:
 a method for creating rule-based expert systems and knowledge bases based

on the sequential transformations;
 a method for automated creating domain models as computational-

independent models based on transformation, both conceptual models (using
XMI, XTM) [10] and spreadsheets of a specific structure (using CSV) [11];

 a method for automated creating software components-converters for concep-
tual models transformations [12];

 a UML-based graphical notation for designing rule-based models – a Rule
Visual Modeling Language (RVML) [3];

 a domain-specific language for the description of transformations – a Trans-
formation Model Representation Language (TMRL) [4];

 Personal Knowledge Base Designer (PKBD) – a tool for creating knowledge-
bases and expert systems [13];

 Knowledge Base Development System (KBDS) - a tool for creating model
transformation software components [14];

 The results of testing when developing software to solve problems in the field
of:
o reliability and safety of technical systems (a module for defining the caus-

es of damage and destruction of elements of technical systems of the soft-
ware complex "Expertise of ISI» [15]; knowledge bases for predicting
degradation processes in petrochemistry (systems for identifying technical
states of constructions) [16]; an intelligent failure analysis process sched-
uler [17]; a module for creating conceptual models based on the analysis
of tables from reports on industrial safety expertise [18];

o detection of banned messages and clients who violate the rules for using
the SMS informing service of the «SMS organizer» platform [11];

o developing a domain-specific knowledge base editor [19];
o educational tasks within the educational process on the basis of the Insti-

tute of data analysis and information technologies of the Irkutsk national
research technical University (IrNITU) [3].

Next, we will consider the first result and element of the PESoT technology – the
method of creating expert systems and knowledge bases based on transformations.

3 Method

The developed method is based on MDE principles and standards in the field of soft-
ware engineering.

The main features of the method (its novelty) are:
 application of model transformations in the context of knowledge engineering

and creation of a certain type of software: rule-based expert systems;
 qualitative redefinition of the main stages of the standardized MDE, in partic-

ular, Model Driven Architecture (MDA);
 development and use of original languages and software;
 support for certain languages of modeling and creating knowledge bases (as

part of our testing).

3.1 Formalized Statement

The following formalization of the proposed method is proposed:
ES

CODEtoPSM
ES

PSMtoPIM
ES

PIMtoCIM
ESESESESESES FFFPDMPSMPIMCIMLMOFMDE −−−−−−= ,,,,,,,,

where LES is a set of languages and formalisms used for modeling; in our case
},,,,,{ RVMLCTDTETCMUMLLES = where UML is a Unified Modelling Lan-

guage; CM is a concept or mind maps formalism; ET is an event trees formalism; DT
is a formalism for the representation of decision tables; CT is a formalism for the
representation of caninicalised tables; RVML is a Rule Visual Modeling Language;

CIMES is a computation-independent model for PESoT, in our case, it are domain
models represented with the aid of LES;

PIMES is a platform-independent model for PESoT, in our case this model repre-
sent logical rules in our notation RVML;

PSMES is a platform-specific model for PESoT, in our case this model takes into
account the features of the programming language, we use RVML;

PDMES is a set platform description models for PESoT, in our case
},,,{ PKBDPHPDROOLSCLIPSPDM ES = .

ES
CODEtoMP

ES
PSMtoPIM

ES
PIMtoCIM FFF −−−−−− S,, are the rules for model transformations.

3.2 Main Stages

The process of creating prototypes of knowledge bases and expert systems is repre-
sented by the sequence of stages described below (Fig. 1.).

Fig. 1. Stages and models of PESoT.

Stage 1: Building domain models. The results of this stage are:
 a domain model;
 a model of a rule-based expert system.

The models acquired will be considered as a CIM and can be represented in the
forms of an OWL-ontology, UML-models (in particular, as UML class diagrams),
concept (mind) maps, decision, or canonical tables.

We do not concretize the ways of forming these models. Оn the one hand, relevant
concepts emerge in a bottom-up fashion by analyzing the domain and the model spec-
ification. On the other hand, a top-down approach is followed through the analysis of
relevant existing ontologies and data models. But, the efficiency of this stage can be
improved by reusing the existing models created using various ontological and con-
ceptual (cognitive) editors, CASE-tools or office suites (e.g., Protégé, OntoStudio,

Ontology, Concept map,
UML class diagram,

Decision table,
Canonical spreadsheet

Logical rules model 1
(RVML)

PDM

Platform description
(CLIPS, ..., PHP)

Transformation
rules

PIM

Domain model
Model of rule-
based expert

system

CIM

PSM

KB codes
(CLIPS, DROOLS, PHP)

ES codes
(PKBD specification)

1. Building domain models
(Concepts and relationships)

2. Building platform-Independent models

2.1. Description of templates for facts
and rules

4. Generating source codes and
specifications

5. Testing

Logical rules
description

3. Building platform-specific models

Logical rules model 2
(RVML)

2.2. Description of template instances

Logical rules
description

ES architecture
description

CmapTools, FreeMind, TheBrain, Xmind, IBM Rational Rose Enterprise, StarUML,
Microsoft Excel, etc.).

It is very important that the domain model of this stage be semantically significant,
that is, it should describe any cause-and-effect relationships in a particular domain.
So, in addition to the relationships of ‘is-part-of’ and ‘is-a’, the relationship ‘depends-
on’ is introduced; this relationship describes of cause-and-effect relationships. In the
case of UML class diagrams, the types of relationships are defined by the mechanism
of stereotypes.

A model of a rule-based expert system is formed at the level of the requirements
for the composition of its main modules. Since the type of created systems is defined
earlier - this is a rule-based expert system, and then the corresponding template
(which defines the main architectural elements and includes the relevant concepts) is
used to form this model. The main architectural elements of the expert system are:
«input form»; «output form» etc., which are derived from «graphic user interface
form»; «inference engine», which is derived from «handler»; «knowledge-base».
Next, we built-in this model in our tool.

Most of the software that supports the MDA approach (e.g., Bold for Delphi) does
not realize this stage and only suggests to develop the software starting at the next
stage. In this case, the domain model (even presented in the form of the ontology) is
considered as a PIM that describes the main concepts and business logic (that is ac-
ceptable for databases). In the case of developing intelligent systems, this stage is
necessary and corresponds to the stage of knowledge conceptualization and can be
considered as one of the proposed modifications of the MDA/MDD.

Stage 2: Building platform-independent models. The results of this stage are:
 description of logical rules;
 a detailed description of an ES architecture.

The models of this stage resulted from the transformation of a CIM. In the process
of a CIM transformation, the concepts are transformed into the fact templates and rule
elements such as the conditions and actions, and the cause-and-effect relationships are
transformed into logical rules. RVML is used for visualization and subsequent clarifi-
cation of PIM elements.

For the implementation of this stage and subsequent stages, we used PKBD [13]
with the built-in model of the expert system architecture.

Stage 3: Building platform-specific models. The number of these models is deter-
mined by the number of platforms, for which an ES is created. PSMs result from au-
tomatic transformations of PIMs by special tools with consequent modification by the
end-user.

In our case, the end-user is to specify the RVML models of rules taking into ac-
count the features of a certain knowledge representation language (e.g., CLIPS) such
as priorities of rules, ‘by default’ values of slots and a certainty factor.

Stage 4: Generating source codes and specifications. At this stage, the interpreta-
tion of RVML diagrams is performed automatically using PKBD. The results of this
stage are as follows:

 a knowledge base code for a certain programming language (e.g., CLIPS);
 specifications of an expert system for the PKBD interpreter.

Source codes and specifications are created syntactically correct and they are inde-
pendent of the semantic content of the models.

Stage 5: Testing. At this stage, the obtained program codes are tested in special
software (in our PKBD interpreter).

Since the generation of source codes is completely automatic and syntactically cor-
rect, the end-user can test only the semantic correctness of the designed models by
«running» them for different values of the initial facts. The PKBD interpreter uses the
generated code and also synthesizes the elements of the user interface forms for ac-
cess to the PSM model elements.

The testing criteria are the correctness of the logical inference and the correctness
of its results.

It should be noted that the end-users (e.g., domain experts or analysts) are actively
involved in designing a CIM and a PIM and partially a PSM. All of the model trans-
formations and generation of program codes are implemented with specialized soft-
ware that includes a PDM.

The described sequence of stages almost coincides with the MDA approach but the
stage’s content is redefined based on features of the rule-based expert systems (ES)
engineering.

We shall further consider in detail the models presented and its metamodels.

3.3 Models and Metamodels

The description of the models and their transformations is important for the MDA
approach. We represent the models in set-theoretic form.

The CIM can be presented in the form of the ontology and described as follows:
ESRBDES ,OntOntCIM _=

,
where DOnt is the domain ontology (e.g., the reliability of technical systems);

ESRBOnt _ is the ontology of rule-based ESs that includes the description of the main
architectural elements, which are necessary for the implementation of the approach
proposed.

The domain ontology DOnt includes the concepts (i.e., the classes and instances of
classes) and the relationships between them:

DD R,Obj,D,CN,BTOnt Pr_=
,

where DBT _ is the list of basic data types; { }collection object, literal,_ =DBT
; CN are the names of classes; Pr are the names of class properties; Obj are the
concepts (constants, objects); lastly, DR is the finite set of relationships between
concepts. We have },,{ D

c
D
pr

D
ais

D RRRR −= , where D
isaR are the ‘is-a’ relationships be-

tween classes CN , D
prR are the relationships between classes and properties, and

btcncnRpr D
pr _, where Pr∈pr , CNcn∈ , DBTCNbtcn __ ∪∈ ; thus, the

property ipr in the subject domain D describes class jcn . Finally, D
сR are the

cause-and-effect relationships (the ‘depends-on’ relationships) between concepts.

A detailed description of this model presented in [3]. To provide correct CIM
transformation we develop its metamodel with the use of MOF (Meta Object Facility)
(Fig.2).

Fig. 2. A fragment of a CIM metamodel.

Fig. 3. A fragment of a PIM (PSM) metamodel.

The PIM is described with two models and can be represented as follows:
ESRBKBRBES ,UMLRVMLPIM __= ,

where KBRBRVML _ is a model of the knowledge base and ESRBUML _ is a model
of the ES architecture. A detailed description of these models presented in [3]. The
PIM metamodel corresponds to the PSM metamodel and can be represented with the
aid of MOF (Fig.3).

3.4 Transformations

For our method, it is necessary to implement a sequence of exogenous horizontal
transformations:

 the M2M-transformation for PIMCIMT ES
PIMtoCIM →−− : ;

 the M2M-transformation for PSMPIMT ES
PSMtoPIM →−− : ;

 the M2C-transformation for CodePSMT ES
CodetoPSM →−− : .

This transformation can be represented in the form of a table (Table 1).

Table 1. A fragment of a mapping table of models’ elements: CIM to PIM (PIM and PSM are
equal), and PSM to Code).

CIM elements PIM (PSM)
elements

Code elements

CLIPS DROOLS PHP
Class (name, descrip-
tion)

Template (name,
description)

deftem-
plate

declare class

Property Slot (description,
value)

slot <Property> var

Property value Slot value default "<value>" "<value>"

Relationship Rule (nodal ele-
ment)

defrule rule …when …
then … end

if (…) {…}

The model transformation rules are implemented in the form of specifications on

the imperative programming language Object Pascal for PKBD, and on TMRL and
PHP for KBDS.

The implemented specifications meet the requirements of completeness, formality,
and flexibility. These specifications contain all the necessary (within the approach
proposed) information for solving the task, all objects of the model are well formal-
ized, at the same time the specifications are compact enough and understandable
(readable).

4 Implementation

The proposed method is implemented by the original software, namely, Personal
Knowledge Base Designer and Knowledge Base Development System.

4.1 Personal Knowledge Base Designer (PKBD)

PKBD [13] is a tool for prototyping rule-based expert systems and knowledge bases.
It is implemented as a desktop application designed for non-programmers.

PKBD supports RVML, and has a modular architecture that provides the ability to
add modules (dynamic link libraries) that provide generation of source codes and
integration with domain models designers. Currently, CLIPS, Drools, PHP, IBM Ra-
tional Rose, StarUML, XMind, CMapTools, and Microsoft Excel support DLLs are
included.

Main functions of PKBD are:
 designing elements of rule bases (fact templates, facts, and rules) by non-

programmers using a set of wizards and defined sources of conceptual mod-
els;

 checking the integrity of the developed knowledge bases (syntactic and se-
mantic control);

 representing knowledge base elements using RVML;
 generating knowledge base codes in the CLIPS, Drools, and PHP formats;
 testing developed knowledge base codes (logical inference) using the inte-

grated CLIPS rule engine;
 integrating with CASE-tools: IBM Rational Rose, StarUML, XMind, Protégé,

and CMapTools, regarding import and transformation of conceptual models
to highlight the main entities (concepts) and relationships for creating
knowledge base drafts;

 integrating with TabbyXL [20] in terms of import and transformation of ca-
nonical spreadsheet tables to highlight the main entities (concepts) and rela-
tionships for creating knowledge base drafts;

 integrating with Microsoft Excel in terms of import and transformation of de-
cision tables [11] to highlight the main entities (concepts) and relationships
for creating knowledge base drafts.

 interacting with the KBDS service.

4.2 Knowledge Base Development System (KBDS)

KBDS [12, 14] is a tool for the development of software components (modules) that
transform conceptual models presented in the XML format (the most common format
for the exchange and storage of the different conceptual models) to source codes or
other models. It is implemented as a web application designed for non-programmers.

KBDS supports TMRL, and has built-in modules that provide generation of source
codes and integration with domain models designers. Currently, CLIPS, OWL DL,
IBM Rational Rose, and CMapTools are included.

Main functions of KBDS are:
 the source code generation for CLIPS and OWL DL;
 the automated synthesis of an ontological and a rule-based model (the internal

representation of knowledge in the KBDS) based on the analysis of input
conceptual models;

 the use of RVML for the representation and modeling the logical rules;

 the visual representation and modeling knowledge in the form of the graph-
based ontological model.

5 Testing and Discussion

The method was tested when solving educational and practical (real-world) tasks [3,
9, 15, 18, 22-24]. In particular, when solving educational tasks when creating proto-
types of the simplest knowledge bases based on UML class diagrams and CMapTools
concept maps, the method and software tools allowed in some cases to reduce the
creation time by 60% [3].

In the case of real-world tasks, we used an indirect method to evaluate effective-
ness of the PESoT method.

The indirect method of evaluation considered the main stages of expert systems
engineering and the time of their implementation. At the same time, the conceptual-
ization stage was decomposed into stages of problem identification, retrieving, and
structuring knowledge, according to [24] (Table 2).

Table 2. Оценка времени разработки ЭС косвенным способов.

Stages of expert systems
engineering

Standard method [24]
(weeks)

PESoT
(weeks)

Problem identification 1-2 0.75-1.5

Retrieving 4-12 3-8

Structuring 2-4 1.5-3

Formalizing 4-8 3-6

Programming 4-8 -

Testing 1-2 1-2

Total 16-36 9.25-20.5

Thus (Table 2), the development of expert systems by the standard method on average
lasts from 4 to 9 months. When applying PESoT, the implementation stage is exclud-
ed from the development process, since automatic code generation is used, this reduc-
es the expert systems development time by 1-2 months.

Also, when implementing the stages of retrieving, structuring, and formalizing
knowledge, the knowledge engineer is excluded from the development process (or the
participation time is reduced).

Based on these facts and the worst assumptions about the achievability of these ef-
fects, the execution time of these stages will be reduced by 25%, i.e. by 0.5-1.5
months. The final time reduction will be from 1.5 to 3.5 months.

It should also be noted that according to the concept of MDE, the main focus of
application development is transferred from the actual programming stage to the stage

of creating the model. At the same time, by creating a model once, the developer gets
the basic ability to generate source codes for other supported languages.

Therefore, an additional effect occurs when you need to transfer development to a
new technology platform since you can use the old platform-independent model and
develop a new only the platform-dependent one. When using the proposed method,
the expert system development time will be only 1.5 to 2.5 months, since it will re-
quire repeated work only at the testing stage. Of course, this is only possible if there is
software that provides code generation for the target language.

Besides, the PESoT method provides:
- reducing the risk of design errors: on a relatively simple and completely custom-

er-based platform-independent model (as opposed to a traditional model cluttered
with implementation details), it is easy to find and correct such errors;

- using cognitive graphics at the stage of knowledge retrieval;
- eliminating the programming errors due to automatic code generation.

6 Conclusions

In this work, we consider a method for creating rule-based expert systems and
knowledge bases. This method is an element of PESoT technology; its features are the
following: a redefined chain of model transformations, original means of implementa-
tion: language and software.

This method reduces the time for prototyping expert systems and knowledge bases
by automating the codification stage and using existing domain models. Evaluation of
the method is presented in [3].

The practical significance of the results is defined by their use in the educational
process of IrNRTU, as well as when working with the "IrkutskNIIhimmash" joint-
stock company and LLC "Centrasib".

7 Acknowledgments

The research was supported by the Program of the Fundamental Research of the Sibe-
rian Branch of the Russian Academy of Sciences, project no. IV.38.1.2 (reg. no.
АААА-А17-117032210079-1), project no. IV.38.1.3 (reg. no. АААА-А17-
117032210077-7). Results are achieved using the Centre of collective usage «Inte-
grated information network of Irkutsk scientific educational complex».

References

1. Da Silva, A.R.: Model-driven engineering: A survey supported by the unified conceptual
model. Computer Languages, Systems & Structures 43, 139–155 (2015). DOI:
10.1016/j.cl.2015.06.001

2. Dorodnykh, N.O., Yurin, A.Yu.: Technology for creating rule-based expert systems based
on model transformations, Novosibirsk, SB RAS (2019). (in Russian) DOI:
10.15372/TECHNOLOGY2019DNO

3. Grishenko, M.A. Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Yu.: Designing rule-
based expert systems with the aid of the model-driven development approach. Expert Sys-
tems 35(5), 1–23 (2018). DOI: 10.1111/exsy.12291

4. Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models.
CEUR Workshop Proceedings (ITAMS-2018) 2221, 70–75 (2018).

5. Cretu, L.G. Florin, D.: Model-Driven Engineering of Information Systems: Principles,
Techniques, and Practice. Apple Academic Press (2014).

6. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Prac-
tice and Promise, 1st ed., Addison-Wesley (2003).

7. Mens, T., Gorp, P.V.: A Taxonomy of Model Transformations. Electronic Notes in Theo-
retical Computer Science 152, 125-142 (2006).

8. Nofal, M.A., Fouad, K.M.: Developing web-based Semantic and fuzzy expert systems us-
ing proposed tool. International Journal of Computer Applications 112(7), 38-45 (2015).

9. Dorodnykh, N.O., Yurin, A.Y., Stolbov, A.B.: Ontology Driven Development of Rule-
Based Expert Systems. Proceedings of the 3rd Russian-Pacific Conference on Computer
Technology and Applications (RPC), 1-6 (2018). DOI: 10.1109/RPC.2018.8482174

10. Dorodnykh, N.O., Yurin, A.Yu.: Towards Ontology Engineering Based on Transformation
of Conceptual Models and Spreadsheet Data: A Case Study. Advances in Intelligent Sys-
tems and Computing. Computational Methods in Systems and Software (CoMeSySo 2019)
1046, 233-247 (2019). DOI: 10.1007/978-3-030-30329-7_22

11. Dorodnykh, N.O., Yurin, A.Yu.: Development of Software Decision-Making Modules
Based on a Model-Driven Approach. CEUR Workshop Proceedings. Russian Advances in
Artificial Intelligence: selected contributions to the Russian Conference on Artificial intel-
ligence (RCAI 2020) 2648, 265-279 (2020).

12. Bychkov, I.V., Dorodnykh, N.O., Yurin, A.Yu.: Approach for the development of software
components for the creation of knowledge bases based on conceptual models. Computa-
tional technologies 21(4), 16-36 (2016). (in Russian)

13. Yurin, A.Yu., Dorodnykh, N.O.: Personal knowledge base designer: Software for expert
systems prototyping. SoftwareX 11, 100411 (2020). DOI: 10.1016/j.softx.2020.100411

14. Dorodnykh, N.O.: Web-based software for automating development of knowledge bases
on the basis of transformation of conceptual models. Open Semantic Technologies for In-
telligent Systems 1, 145–150 (2017).

15. Berman, A.F., Nikolaichuk, O.A., Yurin, A.Yu., Kuznetsov, K.A.: Support of Decision-
Making Based on a Production Approach in the Performance of an Industrial Safety Re-
view. Chemical and Petroleum Engineering 50(1-2), 730–738 (2015). DOI:
10.1007/s10556-015-9970-x

16. Nikolaychuk, O.A., Yurin, A.Y.: Computer-aided identification of mechanical system's
technical state with the aid of case-based reasoning. Expert Systems with Applications 34,
635-642 (2008). DOI: 10.1016/j.eswa.2006.10.001

17. Berman, A.F., Nikolaychuk, O.A., Yurin, A.Yu.: Intelligent planner for control of failures
analysis of unique mechanical systems. Expert Systems with Applications 37, 7101–7107
(2010). DOI: 10.1016/j.eswa.2010.03.005

18. Dorodnykh, N.O., Yurin, A.Yu., Shigarov, A.O.: Conceptual Model Engineering for In-
dustrial Safety Inspection Based on Spreadsheet Data Analysis // Communications in
Computer and Information Science. Modelling and Development of Intelligent Systems
(MDIS 2019) 1126, 51–65 (2020). DOI: 10.1007/978-3-030-39237-6_4

19. Yurin, A.Yu., Berman, A.F., Nikolaychuk, O.A., Dorodnykh, N.O., Grishenko, M.A.: The
domain-specific editor for rule-based knowledge bases. Proceedings of the 41st Interna-
tional Convention on Information and Communication Technology, Electronics and Mi-
croelectronics (MIPRO), 1130-1135 (2018). DOI: 10.23919/MIPRO.2018.8400176

20. Shigarov, A., Khristyuk, V., Mikhailov, A.: TabbyXL: Software platform for rule-based
spreadsheet data extraction and transformation. SoftwareX 10, 100270 (2019). DOI:
10.1016/j.softx.2019.100270

21. Berman, A.F., Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Y.: Knowledge bases engi-
neering on the basis of fault trees analysis. CEUR Workshop Proceedings. Information
Technologies: Algorithms, Models, Systems (ITAMS 2018) 2221, 25-31 (2018).

22. Yurin, A.Yu., Berman, A.F., Nikolaychuk, O.A., Dorodnykh, N.O.: Knowledge Base En-
gineering for Industrial Safety Expertise: A Model-Driven Development Approach. Stud-
ies in Systems, Decision and Control 199, 112-124 (2019). DOI: 10.1007/978-3-030-
12072-6_11

23. Yurin, A.Yu., Dorodnykh, N.O., Nikolaychuk, O.A., Grishenko, M.A.: Prototyping Rule-
Based Expert Systems with the Aid of Model Transformations. Journal of Computer Sci-
ence 14 (5), 680-698 (2018). DOI: 10.3844/jcssp.2018.680.698

24. Jackson P.: Introduction To Expert Systems. 3rd edition. Addison Wesley (1999).

	1 Introduction
	2 Background
	2.1 Main Principles of Model-Driven Engineering
	2.2 Main Elements of the PESoT Technology

	3 Method
	3.1 Formalized Statement
	3.2 Main Stages
	3.3 Models and Metamodels
	3.4 Transformations

	4 Implementation
	4.1 Personal Knowledge Base Designer (PKBD)
	4.2 Knowledge Base Development System (KBDS)

	5 Testing and Discussion
	6 Conclusions
	7 Acknowledgments
	References

