

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Domain-oriented specialization tools for knowledge-based
systems development platform

A.I. Pavlov [0000-0002-7753-7514] and A.B. Stolbov [0000-0001-6513-7030]

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of the Russian
Academy of Sciences, 134 Lermotov st., Irkutsk, Russia

{asd,stolboff}@icc.ru

Abstract. New details of the implementation of the data representation and ed-
iting component of the knowledge-based systems development platform is pro-
posed in the paper. The two modes of considered component is described. The
typical component structure along with the core to client component parts
communication issues are presented. The main UI control elements are listed
and grouped according to the criteria of the number of efforts that applied de-
velopers spend in the course of making UI. On the top of controls from the first
group considered component provides user interface for data control component
and implements unified user interface for any valid component of the platform.
The second group is responsible for user interface of the platform as a whole
and also for problem-oriented functions of the core components (for example,
rule or workflow editors). The third group relies on a predefined set of parame-
terized typical database manipulations and supports the applied developer in the
process of UI customization. The implementation of two techniques is consid-
ered on the case of the conceptual model design component extension.

Keywords: Knowledge-Based Systems, User Interface, Component-Based De-
velopment.

1 Introduction

Knowledge-based systems (KBSs) are specialized computer-based tools for storing,
processing, and visualization of the data and knowledge in order to solve a wide range
of problems in the decision support and information management. As stated in [1],
KBSs "can aid human cognitive deficiencies by integrating various sources of infor-
mation, providing intelligent access to relevant knowledge, and aiding the process of
structuring decisions". KBSs have been successfully applied in many different do-
mains but in the near future, one can expect significant growth of its applications due
to the successful distribution of IT systems in so many areas. So modern KBSs should
be consistent with contemporary IT level and continuous work for new KBSs devel-
oping and refinement of existing ones is still an actual problem.

In a series of publications [2-5] the authors make a contribution to the discussed
problem by proposing the knowledge-based systems development platform (KBSDP).

Previously, the description idea was primarily to show platform usability as a univer-
sal tool for making typical products: a set of system, core, auxiliary, and applied com-
ponents was considered with different levels of detail and attention. Meanwhile, the
platform can be discussed from another viewpoint: how applied KBS developers can
set up the typical results produced by the platform for some domain-specific needs.
The current paper partially covers the mentioned issue focusing on end-user interac-
tion aspects for which domain friendly customization is an important factor.

The data representation and editing component was briefly presented among others
in [1, 5] to help with the description of KBSDP architecture elements. The main con-
cern was devoted to the relation of it with the data control component and to the sup-
ported at that time set of user interface (UI) control elements. But in the current paper
UI related problems are discussed in a broader sense.

In the next sections of the paper the overview of KBSDP functionality related to UI
design support and client-server communication features in the context of UI are de-
scribed. An illustrative example of the conceptual model design component extension
is considered. Some implementation issues are also discussed.

2 User interface design and customization features of
knowledge-based systems development platform

2.1 Available functionality overview

The design and implementation process of the user interface part of the software sys-
tems is a difficult and time-consuming task. Moreover, this process requires continu-
ous modifications and refinements regarding changes as in the problem-solving part
of the system and in utilized tools or current fashion of UI design. As confirmed in
[6], generally the user-interface development process takes up to 50% of development
and 40% maintenance time as well as 50% of the code of the whole software. Up to
date a lot of efforts has been devoted to UI methods, libraries, frameworks for differ-
ent platforms and their versions. At present, the main user interface development
activity occurs in web space and a lot of new tools and methodologies are emerging.
In this situation, a program from which it is expected to be maintained in the long
term has to be developed with innate flexibility in its architecture.

To address this problem KBSDP internally contains the possibility of expansion on
different levels: on program interface level [2] to support system and problem-
oriented component interoperability and on user interface level to provide domain-
oriented customization. Let's express this idea in a more detailed and structured man-
ner. As stated previously [5] typical component Styp has the following structure:

 Styp=<{BUI}, BCore, [{BExt}] >,

where BUI – client part with the user interface, BCore – available to the user server
part with component’s functionality, BExt – optional different extensions of server part
with limited access, which are mainly used for integrating existing software systems,
such as the Drools or the Madkit engines. In this paper we continue to consider typi-

cal component architecture in the context of component interaction with end-user and
applied KBS developers.

From the data flows viewpoint communication between BCore and BUI parts can be
done in the following ways:

 C=<CData | CDB |CDS>,

where CData is based mainly on the functionality of data control component (Sdata)
[2]; CDB relies on a predefined set of parameterized typical database manipulations;
CDS is the most general case (DS means any Data Source) where expandable set of
domain-oriented or problem-oriented operation identified by a unique name, imple-
mented by the applied developers directly by themselves and processed on a server by
any technique (PHP script, executing a program, redirecting requests to remote re-
sources, etc.).

The CData type of communication formalizes the data exchange process for a stand-
ard set of operations at the level of database entities (tables, persistent classes): re-
trieving, inputting, modifying, and deleting information for one or more elements of
the selected entity (table rows, objects). In this case, entities are identified by their
name in the database, entity properties are accessed by their internal name (standard
prefix + ordinal number). The conditions for selecting elements for retrieving or data
modification operations are defined using IConditionsOfSearching program interface,
described in [2].

The CDS provides a process of data exchange in cases of the execution of the opera-
tions, due to their domain or problem specificity, have an extremely low potential for
reuse and are characterized only by a name and a set of parameters.

The SUI component is designed to automate the implementation of BUI blocks of
KBSDP components and contains a set of controls of various levels of purpose and
complexity, ranging from a simple dialog box with an input field to a table that pro-
vides rich information representation with the ability to sort, search, and edit. There
are two main modes of using SUI: library mode, where the developer creates a user
interface by combining calls of controls from SUI with their own code; constructor
mode, when the developer creates a description of the user interface in a special edi-
tor without writing a code.

The current implementation of SUI is done in Javascript using functionality of fol-
lowing free libraries: jQuery, jQueryUI, jQueryGrid, jsPlumb to basic set of controls
for representation data in tabular format, performing data editing operation in unified
way, organizing user interface for accessing to functions of components in style of
oriented graph, etc. The control elements from the SUI component can be divided in 3
types:

 SUI=< SUI-Std, SUI-Platform, SUI-Lib>,

where the SUI-Platform block contains controls intended for implementing the user in-
terface at the level of KBSDP and its components, for example, it is an GUI for ac-
cessing platform functions using a visual model of the oriented graph or the GUI of
the rule editor, etc. Each of these controls depends on a specific data model, so to use

them, the application developer needs either to have access to the server part of the
corresponding component, or to implement a similar model together with its pro-
cessing tools. Because the controls are more specialized, to use them it is only needed
to specify the container on the html page because the server interaction parameters are
determined by the set of named operations from the CDS defined in the control.

In the next section, SUI-Std and SUI-Lib are considered in more detail.

2.2 The user interface implementation issues

The SUI-Std block provides a user interface for accessing the functionality of data con-
trol component (SData). The main controls of this block are: table to browse the con-
tents of a selected database, table to browse the information of a selected database
entity, the customizable form for edit data of object, control for browse structural
model of database or its selected part like schema. The main feature of these controls
is their ability to be configured automatically, when the applied developer only needs
to specify the name of this entity and the HTML element where it should be placed.
During configuration, the control independently accesses the SData and, using the enti-
ty name, gets its description in the required format, which is used to form the appro-
priate user interface. For example, to browse the information of selected database
entity the control generates related number of columns and configures forms for edit-
ing and searching information. For this control, SData converts the database entity
metadata from an internal view in the form of the IDescriptionOfDatabaseObject
interface [2] to the jQueryGrid library table format. Thus, by explicitly metadata us-
age, SUI-Std provides for the SData component both a unified view of the user interface
and detailed consideration of the database entity structure simultaneously. At the
same time, the SUI-Std controls have the highest degree of versatility and reuse.

An important function of SUI-Std is to provide the KBSDP component with a stand-
ard user interface. In this case, it is assumed that the control for viewing information
in the form of a table will be used to view and edit the properties of the state and be-
havior of the component. In this case, the source data for generating the parameters of
the jQueryGrid table is information available through the IComponent interface [2].
The only difference in this case is additional processing of behavior description ele-
ments, in which tables formed based on information from the IMethodDescription
interface [2] are supplemented with a special button that allows launching this meth-
od. As a result of this function execution, the developer is presented with a dialog box
with a table, where the first row is responsible for the state of the component, and the
rest for the behavior. A nested table is associated with the component state row,
where each column is responsible for a property, and each row that is responsible for
a component method opens a nested table whose columns are method parameters.
Using the proposed component prototyping scheme allows one to reduce the overall
time spent on component development by eliminating the user interface creation
stage, which is especially important when the component is intended for various types
of calculations.

The SUI-Lib block contains all control elements adopted to make the BUI part of the
component. In these sense SUI-Std and SUI-Platform are constructed based on SUI-Lib by the

platform developers. The applied developers can also use SUI-Lib block control ele-
ments but in general they can spend a lot of efforts. To facilitate the SUI-Lib block us-
age some controls have versions (SUI-Lib-DB) with the build-in support for CDB commu-
nication type. In this case, it is possible to reduce time and efforts spent on BUI devel-
opment process as most of the server-client and event handling routines are precon-
figured.

For example, the subclasses of EposTableView provide the functionality for pro-
cessing data in tables depends on the specified type of relation database: own data in
tables (without foreign keyed data), recursion in one table (to represent, for example,
concept hierarchy) one-to- many, many-to-many relationship. to describe desired
table elements for display and edit. The EposTableView class is parameterized with an
instance of EposRecordInDBDataSource.

The EposRecordInDBDataSource structure describes desired table elements for
display and edit. The developer has to specify a table name and a list of columns in
the form of ColumnDataInDB structure, that includes the name of column, title for
displaying, and a specification of GUI control – an instance of EposUIControl sub-
classes, with parameters (for example, true/false flag for "is key, "string" for "data
type", "true" for "can edit", "id" properties).

To provide data manipulations, currently, SUI-Lib-DB supports the following sub-
classes of abstract class EposUIControl:

• EposUITextControl – a KBSDP wrapper for input html control;
• EposUINumbertControl – a KBSDP wrapper for input html control with integer or

real number validation;
• EposUIBigTextControl – a KBSDP wrapper for textarea html control;
• EposUIEnumControl – a KBSDP wrapper for input checkbox html control.

These set is intended to support literal datatypes (numeric, text, Boolean), but theo-
retically there is no restriction on the GUI element to be warped by SUI-lib or SUI-Lib-DB.

At last the EposObjectView class provides functionality for combining different
types of SUI-Lib-DB views that from a developer viewpoint must be visually represented
for the user at the same layout (for example, information about some object type). The
EposObjectView is parameterized with the name of html container, a title, and URL
for server script and a list of particular views inherited from the base class EposTa-
bleView.

3 An illustrative example

3.1 Description and motivation of example

As an illustrative example for the ways how applied developers can design and cus-
tomize components in KBSDP, the extension of one of the core components is con-
sidered. Namely, SCM – the conceptual model design component [2] is being refined.
The original version of SCM has the following functionality: creating a hierarchy of
concepts, defining attributes and assigning them to concepts, establishing relations,

making instances. The basic SCM data model CM [2] represents the following infor-
mation:

 CM=<Concept, Attribute, Relation, Concept Instance>,

 <Concept>=<Name> <Description> {<Attribute>},

 <Attribute>=<Name> <Attribute type> <Default value>,

 <Attribute type>= Literal | Concept,

 <Relation>=<Concept> <Name> <Relation type><Concept>,

 <Relation type>=Literal.

Here, Concept, Attribute, Relation, Literal and other related terms can be referred
to the definitions commonly known in the computer science and knowledge engineer-
ing domains.

The BUI part of SCM is implemented by the platform developers and currently has a
rich GUI [2], including a semantic network view to represent, for example, Relation,
hierarchical table view for a list of concepts, or accordion view for visual layout of
actions and properties. All these control elements are configured and combined to-
gether by a lot of code and so in previously defined terms it corresponds to SUI-Platform
block of SUI component.

Nowadays, when the problem complex ontology development is considered it is
urgent to acquire as much information on the design stage as possible. The sources of
information, diversity in definitions and synonyms, creators profiling and other useful
data must be identified and formally described. These problems are currently in focus
of computer science and knowledge engineering domains [7, 8].

So, the mentioned basic CM model currently is not enough for complex ontology
or conceptual model design and a new information must be added for processing in
SCM component. Based on our experience in conceptual modeling we apply the Anno-
tation data model shown on figure 1.

Fig. 1. Annotation data model

Further, let's consider the case when, for some reason, the platform developer does
not intend (in the short term) to add new functionality about annotating the conceptual
model. Meanwhile, for applied developers the platform provides two possible ways to
facilitate the process of design and customization of new SCM-A component. These
ways are considered in the next section.

3.2 Designing and customizing component for annotating the
conceptual model

The SCM-A was tested for designing two conceptual models each of each is the re-
sult of integration and adaptation of a number of ontolgies. One conceptual model is
Conceptual Model of Infrastructure Logistics (CMIL) [9] based on [10] and other 5
ontolgies. Another conceptual model is now under development and is based on [11].

The figures 2 and 3 illustrate the result of making GUI for annotating CMIL with
the help of different SUI parts. On the figure 2 the SUI-Std related interface is presented.
It was generated automatically based on description of entities defined by unified
interface implemented by the SCM-A component.

Fig. 2. SUI-Std based user interface of SCM-A component

On the figure 3, BUI part of SCM-A component is made with the help of SUI-Lib-DB.

Fig. 3. SUI-Lib-DB based user interface of SCM-A component

To build this interface an applied developer in the code of web page for each anno-
tation element has to create:

• an instance of EposDataSource (particularly its subclass – EposRecordInDBData-
Source) to describe desired table elements for display and edit;

• a view container (instance of EposObjectView);
• a set of required view types (subclasses of EposTableView).

Then he adds the main control element based on the tree GUI element from SUI-Lib.
And for each node of the tree he defines association with a certain view (EposOb-
jectView). All other stuff, including client-server communication, appropriate data
updating when elements changed or selected is done automatically based on SUI-Lib-DB
functionality and CDB communication facilities.

The former variant of obtained interfaces supports few opportunities for customiza-
tion but also requires few efforts from the applied developer. Meanwhile in the last
variant applied developer can choose what he wants to show to the end-user and com-
bine selection and editing dialogs in arbitrary number with flexible layout.

4 Conclusions

The paper deals with the knowledge-based systems development platform in the as-
pect of user interface design and customization. The available options for building
user interface are considered. First option is a standard and unified user interface for
virtually any valid knowledge-based systems development platform component. It is
best suited when fast prototyping of component is a major factor. This way is also
may be recommended for the applied developers as it requires fewer efforts compare
with other techniques. The main disadvantage is the lack of customization due to
universality. On the opposite side from the effort and customization viewpoint is de-
velopment of the special user interface solutions that express problem-oriented or
domain-oriented specificity of the considered task on the top of the user interface
library of the platform. In this case, the applied developers have a high customization
possibility because they manually coding the desired user interface from the set of
platform control elements. And in the middle of these two user interface design tech-
niques there is another one based on templating the server-client and event handling
routines of the platform. As an illustrative example the problem of the conceptual
model design component extension is considered. The implementation of the first and
the third techniques is described.

5 Acknowledgments

The research was supported by the Program of the Fundamental Research of the Sibe-
rian Branch of the Russian Academy of Sciences, project no. IV.38.1.2 (reg. no.
АААА-А17-117032210079-1), project no. IV.38.1.3 (reg. no. АААА-А17-
117032210077-7). Results are achieved using the Centre of collective usage «Inte-
grated information network of Irkutsk scientific educational complex».

References

1. Alor-Hernndez, G., Valencia-Garca, R. (eds.): Current Trends on Knowledge-Based Sys-
tems. Intelligent Systems Reference Library series. Springer, Cham Switzerland (2017).

2. Nikolaychuk O.A., Pavlov A.I., Stolbov A.B.: The software platform architecture for the
component-oriented development of knowledge-based systems. In: Proceedings of the 41st
International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pp. 1234–1239. IEEE (2018).

3. Pavlov, A.I., Stolbov, A.B., Dorofeev, A.S.: The workflow component of the knowledge-
based systems development platform. In: Bychkov, I.V., Karastoanov D. (eds.) Proceed-
ings for 2nd Scientific-practical Workshop Information Technologies: Algorithms, Mod-
els, Systems (ITAMS), CEUR Workshop Proceedings, vol. 2463, pp. 47–58. CEUR-
WS.org, Irkutsk Russia (2019).

4. Pavlov, A.I., Stolbov, A.B.: The Application of the Knowledge-Based Systems Develop-
ment Platform for Creating Scenario Analysis Support Tools. Advances in Intelligent Sys-
tems Research, 169, 43–48 (2019). https://doi.org/10.2991/itids-19.2019.36

5. Pavlov, A.I., Stolbov, A.B., Dorofeev, A.S.: The architecture of the software tool for the
agent-based simulation models specification development. In: Bychkov, I.V., Karastoanov
D. (eds.) Proceedings for 2nd Scientific-practical Workshop Information Technologies:
Algorithms, Models, Systems (ITAMS), CEUR Workshop Proceedings, vol. 2463,
pp. 112–121. CEUR-WS.org, Irkutsk Russia (2019).

6. Meixner, G., Paterno, F., Vanderdonckt, J.: Past, Present, and Future of Model-Based User
Interface Development. i-com 10, 2–11 (2011). 10.1524/icom.2011.0026.

7. Arakaki, F.A., Vesu, A., Rachel, C., Amorim da Costa, S., Placida, L.V.: Dublin Core:
State of Art (1995 to 2015). Informacao & Sociedade-estudos 28(2): 7–20 (2018).
http://hdl.handle.net/11449/166289

8. Kotis, K., Vouros, G., Spiliotopoulos, D.: Ontology engineering methodologies for the
evolution of living and reused ontologies: status, trends, findings and recommendations.
The Knowledge Engineering Review 35, 1–34 (2020). 10.1017/S0269888920000065.

9. Lempert, А.А., Stolbov, А.B.: An approach to knowledge bases development for support
of complex research in infrastructure logistics. Information and Mathematical Technolo-
gies in Science and Management 3(11), 45–54 (2018). 10.25729/2413-0133-2018-3-05.

10. Anand, N., Yang, M., van Duin, J.H.R., Tavasszy, L.: GenCLOn: An ontology for city lo-
gistics. Expert Systems with Applications 39, 11944–11960 (2012).

11. Elag M., Goodall, J.L.: An ontology for component-based models of water resource sys-
tems. Water Resour. Res. 49, 5077–5091 (2013).

http://hdl.handle.net/11449/166289

	1 Introduction
	2 User interface design and customization features of knowledge-based systems development platform
	2.1 Available functionality overview
	2.2 The user interface implementation issues

	3 An illustrative example
	3.1 Description and motivation of example
	3.2 Designing and customizing component for annotating the conceptual model

	4 Conclusions
	5 Acknowledgments
	References

