

Copyright © 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

PKBD.Onto: A Plugin for Ontological Schemas
Generation

Nikita Dorodnykh[0000-0001-7794-4462], Aleksandr Yurin[0000-0001-9089-5730] and Anastasia
Vidiya

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of
Russian Academy of Sciences, Lermontov St. 134, Irkutsk, Russia

tualatin32@mail.ru, iskander@icc.ru

Abstract. The use of Semantic Web technologies (including ontologies) for in-
telligent systems and knowledge bases engineering is a widespread practice, it
is true especially for tasks of conceptualization and formalization. However,
tools and approaches used for these tasks in most cases provide only a manual
manipulation of concepts and relationships. In this regard, the use of various in-
formation sources for automated ontology engineering is relevant. One of these
sources is spreadsheets. In this paper, we propose an approach for the automat-
ed creation of ontological schemas based on the analysis and transformation of
spreadsheets data. The feature of our approach is the original relational canoni-
calized form of spreadsheets. This form is used for preprocessing spreadsheets
and unifying the input data. The proposed approach is implemented in the form
of a plugin (PKBD.Onto) for Personal Knowledge Base Designer - software for
prototyping rule-based expert systems. The main stages of the approach, the ar-
chitecture and functions of the plugin, and the case study are also described.

Keywords: Spreadsheets, Canonical Spreadsheet, Ontological Schema, OWL,
Model Transformation, Code Generation

1 Introduction

The use of Semantic Web technologies, including ontologies [8], for intelligent sys-
tems and knowledge bases engineering is a widespread practice. In most cases, ontol-
ogies and special software (e.g., Protégé, ONTOedit, Menthor Editor, Semaphore
Ontology Editor, OntoStudio, WebOnto, Fluent Editor, etc.) are used by analysts and
domain experts for tasks of knowledge conceptualization and formalization. However,
these tools provide a weak integration with external information sources (e.g., data-
bases, texts, tables, conceptual models, etc.) in terms of importing domain concepts
and relationships. This fact reduces the efficiency of the ontology engineering pro-
cess. One of the information sources that can be used for the automated creation of
ontologies is spreadsheets. Today, a large volume of arbitrary tables has been accu-
mulated worldwide [9] and presented in the spreadsheet-like formats (HTML,

mailto:tualatin32@mail.ru

EXCEL, and CSV). Arbitrary tables are a valuable data source in business intelli-
gence and data-driven research.

In our previous papers [5, 14] we proposed an approach for automated analysis and
transformation of spreadsheets into conceptual domain models in the form of UML
class diagrams. In this paper, we propose to apply this approach for ontological sche-
mas generation (ontologies at the TBox level) in the OWL2 DL format [6]. A feature
of the proposed approach is the use of the original canonicalized form for representa-
tion of spreadsheets, which provides the unification of input data.

Our approach is implemented in the form of the plugin, namely, PKBD.Onto, for
Personal Knowledge Base Designer (PKBD) [15] – software for prototyping rule-
based expert systems. A case study for the proposed approach and the plugin descrip-
tion are also presented.

2 Background

2.1 Method for Spreadsheets Transformation

A big volume of arbitrary tables (e.g. cross-tabulations, invoices, roadmaps, and data
collection forms) circulates in spreadsheet-like formats. Spreadsheets are character-
ized by a wide variety and heterogeneity of layouts, styles and content. This diversity
determines the two groups of solutions for their processing:

 ad-hoc solutions, which are oriented on certain layout or domain;
 universal solutions that use pre-processing arbitrary spreadsheets to transform

them into some unified canonicalized format for further automated processing
[12, 13].

This work uses the results of the project for the development of a framework for
creating systems of data extraction from arbitrary spreadsheets. It is a reason why we
use the TabbyXL [11] canonical spreadsheet format designed for the analysis of
spreadsheets from Industrial Safety Inspection (ISI) reports [14].

We use the following spreadsheet structure in a canonicalized form:
{ },,, CHRHDCS CSV = (1)

where D is a data block that describes literal data values (named “entries”) belonging
to the same data type (e.g., numerical, textual, etc.); RH is a set of row labels of the
category; CH is a set of column labels of the category. The values in cells for heading
blocks can be separated by the “|” symbol to divide categories into subcategories.
Thus, the canonical table denotes hierarchical relationships between categories (head-
ings).

The analysis of canonicalized spreadsheets is carried out line by line. At the same
time, cells can contain several values (concepts) with the separator (“|”). A cell value
with the separator (“|”) is interpreted as a hierarchy of classes (concepts) or attributes
(properties).

In our approach we use the following heuristic-based rules [14] for the transfor-
mation of arbitrary spreadsheets to a canonicalized form:

Rule 1: IF RH corresponds only one CH THEN RH transformed to a class with
properties from CH.

Rule 2: IF RH corresponds only one CH and at the same time RH contains two
values with the separator (“|”) THEN RH transformed to a class with properties from
CH and with an additional property "Name" that corresponds to RH-2.

Rule 3: IF RH contains two values with the separator (“|”) and they correspond to
two CH values with the separator (“|”), THEN RH transformed to the first class, CH
transformed to the second class and a relationship stated between them.

Rule 4: IF RH corresponds to three CH values with the separator (“|”), THEN RH
transformed to the first class with properties CH-1, and CH 2 and 3 transformed to the
second class and a relationship stated between them.

All obtained parent-child relationships are interpreted as the association and the
cardinality of “1..*” is determined by default.

By default attribute values are set based on the D column.
The main results of this algorithm are fragments of conceptual models. These

fragments need to aggregate, including operations for clarifying the names of con-
cepts, their properties and relationships, and also their possible merging and separa-
tion.

The following rules used for automatic aggregation of conceptual models frag-
ments:

Rule 1: Merge two classes when they have equal names from duplicate fragments
of class diagrams.

Rule 2: Merge two classes when they have the same structure, i.e. when sets of at-
tributes are equal. In this case, only the first class with this structure stays in the mod-
el.

Rule 3: Merge two classes when they have similar names. The resulting fragments
of class diagrams can describe the same objects or processes. We suggest using a
simple string comparison method based on the Levenshtein distance [10] to determine
the similarity between two names of classes. If the distance is less than or equal to
three, then we assume the classes to be similar. Note that this is not enough, so we
also look at the structure of classes (names of attributes must partly match).

Rule 4: Create a new association between two classes if homonymous classes and
attributes exist. In this case, a name in one class is equivalent to the attribute name in
another class. At the same time, the attribute of the same name is removed.

Rule 5: Remove duplicate associations between classes.
Manual merging and separation operations are performed by using PKBD.

2.2 PKBD: a Tool for Knowledge Base Engineering

We used PKBD when solving problems of knowledge bases of expert systems engi-
neering, in particular, in the field of ISI [1]. PKBD is implemented as a desktop appli-
cation designed for non-programmers. The main purpose of PKBD is to prototype
knowledge bases that use the formalism of logical rules.

One of PKBD features is a support of the Rule Visual Modeling Language
(RVML) [7]. RVML is considered as a UML extension. Other PKBD features are the
following:

• a modular architecture that provides the ability to add modules for sup-
porting knowledge programming languages. Currently, CLIPS and Drools
are supported;

• integrability with conceptual modeling tools when importing and export-
ing concepts and relationships.

The PKBD architecture determines the interaction of the following main software
components:

• a knowledge base management module, it provides storage of projects in
the EKB format (the proprietary XML-like format);

• a user interface subsystem includes the following modules: software wiz-
ards for manipulating knowledge base elements, a GUI generation, a Tiny
RVML editor;

• a subsystem for supporting programming language modules, it provides
connection and disconnection of modules, access to their functions for
generating program codes;

• a module of integration with conceptual models sources: IBM Rational
Rose, StarUML, XMind, CMapTools, and TabbyXL;

• a rule engines control module provides activation of rule engine for test-
ing knowledge bases;

• a module of interaction with the web-based software called Knowledge
Base Development System (KBDS) [3].

Main functions of PKBD are:
• designing elements of rule bases (fact templates, facts, and rules) by non-

programmers using a set of wizards and defined sources of conceptual
models;

• checking the integrity of the developed knowledge bases (syntactic and
semantic control);

• representing knowledge base elements using RVML;
• generating knowledge base codes in the CLIPS format;
• testing developed knowledge base codes (logical inference) using the in-

tegrated CLIPS rule engine;
• integrating with CASE-tools: IBM Rational Rose, StarUML, XMind, and

CMapTools, regarding import and transformation of conceptual models in
order to highlight the main entities (concepts) and relationships for creat-
ing knowledge base drafts;

• integrating with TabbyXL [11] in terms of import and transformation of
canonical spreadsheet tables in order to highlight the main entities (con-
cepts) and relationships for creating knowledge base drafts;

• interacting with the KBDS service.
We used PKBD as an open software platform and developed a PKBD.Onto plugin.

This plugin implements our approach for ontological schemas generation in the
OWL2 DL format.

3 Proposed Approach

3.1 Method

The method for generating ontological schemas is based on principles of a model
transformation. A model transformation is one of the key concepts in Model-Driven
Engineering (MDE) [2].

From a formal point of view our method can be represented as a chain of horizon-
tal exogenous transformations:

OWLXMLCSV OSCMCST →→: , (2)
where CSVCS is a source spreadsheet presented in a canonicalized form and saved
in CSV format using TabbyXL. The structure of a canonical spreadsheet is described
in Section 2.1; XMLCM is a conceptual model resulted from spreadsheet transfor-
mation, which is a form for the internal representation of domain concepts and rela-
tionships for PKBD; OWLOS is a target ontological schema in the OWL2 DL format.

Using (2), let’s describe XMLCM in more detail:

RLDTCCM XML ,,= ,
where C is a set of classes; DT is a set of datatypes; RL is a set of relationships
between C . Let’s refine C from (3) as follows:

{ } niATnamecccC iiin ,1,,,...1 === , when iname is a class name; iAT is a

set of class attributes, { }kiii aaAT ,1, ,...,= , kjvaluetypenamea jjjji ,1,,,, ∈= ,

when jname is an attribute name; jtype is an attribute datatype, DTtype j ∈ ; jvalue
is a possible attribute value.

{ } nirhslhstypenamerlrlrlRL iiiiin ,1,,,,,...1 === , when itype is a relationship
type (inheritance, dependency, association, aggregation, composition, realization);

iname is a relationship name; ilhs is a left side of a relationship,

jlhslhsi ccdnamelhs ,,= , when lhsname is a name of a class role at the left relation-

ship side, lhscd is a cardinality of the left relationship side, jc is a link of a class at

the left relationship side, Cc j ∈ ; irhs is a right side of a relationship,

krhsrhsi cycardinalitnamerhs ,,= , when rhsname is a name of a class role at the right

relationship side, rhscd is a cardinality of the right relationship side, kc is a link of a

class at the right relationship side, Cck ∈ . Wherein, { }*..1,1..*,0,1..0,0, =rhslhs cdcd .

Using (2), let’s describe OWLOS in more detail:
DTDPOPCOSOWL ,,,= ,

when C is a set of classes; OP is a set of object properties; DP is a set of datatype
properties; DT is a set of XML Schema datatypes. A detailed description of the
OWL 2 DL specification is given in [6].

Analysis and transformation of source spreadsheets (CSVCS) and formation of a

conceptual model (XMLCM) are discussed in detail in [5, 14]. In this paper, we will
describe in detail how to obtain ontological schemas (OWLOS). For this, using (2),
let’s describe a transformation operator (T):

OSOSMOSMCMCMCS TTTT −−−= ,, ,
XMLCSV

CMCS CMCST →− : , OSMCMT XML
OSMCM →− : ,

OWL
OSOSM OSOSMT →− : ,

where CMCST − is a set of rules for transformation of a source spreadsheet in the CSV

format into a conceptual model, for example, a UML class diagram; OSMCMT − is a
set of rules for transformation of a conceptual model into an ontological schema mod-
el; OSOSMT − is a set of rules for transformation of an ontological schema model into
OWL ontology code at the TBox level.

Wherein: OSM is an ontological schema model designed for a unified representa-
tion and storage of knowledge extracted from various information sources. This mod-
el abstracts from features of knowledge representation languages and their dialects
used for the implementation of ontologies (e.g., OWL, RDFS, etc.).

So, using sets of transformation rules (OSMCMT − and OSOSMT −), ontological

schemas generation (OWLOS) includes four main stages.
Stage 1: Analysing and transforming an XML structure of PKBD internal

knowledge representation for conceptual models. This stage involves extracting ele-
ments, their properties, and relationships from an XML tree (the depth-first search for
elements).

Stage 2: Forming an ontological schema model. The main objective of this stage is
obtaining typical ontological fragments in the form of a set of classes and their rela-
tionships (object and datatype properties), which describe a certain domain and based
on the extracted XML elements.

Stage 3: Generating an ontological schema code in the OWL format based on an
ontological schema model.

Transformations themselves can be described using special transformation lan-
guages, for example, Transformation Model Representation Language (TMRL) [4]. In
this work, we use a general-purpose language to implement transformations. Moreo-
ver, all transformations can be represented in tabular form (Table 1).

Table 1. Main correspondences between elements of a conceptual model, an ontology schema
model, and OWL constructions.

CM OSM OWL

Model Ontology owl:Ontology

Class Class owl:Class

Generalization (class) Class (superclass) rdfs:subClassOf

Class (name) Class (name) rdf:about

Association Relationship owl:ObjectProperty

AssociationEnd (class) Rhs owl:ObjectProperty
(rdfs:domain)

AssociationEnd (class) Lhs owl:ObjectProperty
(rdfs:range)

Attribute Property owl:DatatypeProperty

Attribute (name) Property (name) owl:DatatypeProperty
(rdfs:domain)

Attribute (value) Property (value) owl:DatatypeProperty
(rdfs:range)

Attribute (description) Property (description) rdfs:comment

Stage 4: Editing an obtained ontological schema. This stage is additional and rep-

resents a refinement (modification) of OWL code obtained with the aid of various
ontological modeling tools, for example, Protégé and others.

So, the main result of these stages is a set of ontology classes and their properties,
which define an ontological schema at the TBox level.

3.2 PKBD.Onto: a Plugin for PKBD

The PKBD.Onto plugin is implemented in the form of a Dynamic Link Library (DLL)
that is dynamically connected via a unified PKBD API.

The unified PKBD API for supporting integration modules with external software
in terms of import and export contains three functions:

• getting a description of DLL including name and version (“DllInfo” func-
tion);

• getting a detailed description of DLL (“About” function);
• executing a main function of DLL, while a conceptual model in the PKBD

format, a resulting file name, and a list of possible parameters are passed
as a parameter (“Execute” function).

In the PKBD.Onto plugin architecture (Fig. 1) can be distinguished following
components:

• supporting a PKBD format of conceptual models, which provides access
and manipulation of model elements;

• transforming the input model to the OWL2 DL format;
• transforming the input model to a set of linked data in the RDF format

(can be viewed as a mean for obtaining a set of specific facts).

DllInfo

About

Execute

XML PKBD Parser

OWL DL Generator

RDF Generator

Fig. 1. A PKBD.Onto plugin architecture.

3.3 Case Study

Currently, PKBD is used in the educational process at Irkutsk National Research
Technical University (IrNRTU), Institute of Information Technology and Data Sci-
ence. Therefore, as an example, let’s consider the educational task of developing an
ontological schema fragment.

Information on minerals in the form of arbitrary spreadsheets is used as source data
(Fig. 2). To unify the input data, a source arbitrary spreadsheet was preprocessed and
a canonical spreadsheet resulted (Fig. 3).

Next, the canonical spreadsheet is analyzed using PKBD, in particular, by the
PKBD.Onto plugin. Conceptual model elements are extracted as a result of this analy-
sis. These elements can be visually represented as an RVML schema (Fig. 4). The
obtained model requires modification, namely, all minerals were aggregated into a
“Diamond” class (template), which must be renamed to “Mineral”.

Fig. 2. An example of a source arbitrary spreadsheet (before preprocessing).

Fig. 3. A fragment of a canonical spreadsheet.

Fig. 4. A conceptual model in the form of a RVML schema resulted from the analysis of a

canonical spreadsheet.

Based on the modified conceptual model (Fig. 4), we generated the code of the onto-
logical schema in the OWL format. Then, this code can be verified in Protégé (Fig. 5).

Fig. 5. A fragment of the ontological schema (Protégé).

4 Conclusions

In this paper, we describe a method and tool for ontological schemas generation (on-
tologies at the TBox level) in the form of a plugin for Personal Knowledge Base De-
signer. Spreadsheets reduced to a canonicalized form and saved in the CSV format
were used as source data. Resulting OWL ontology codes are syntactically correct and
can be evaluated by end-users.

The PKBD.Onto plugin allows one to create rapid prototypes of spreadsheet-based
ontologies for a specific domain. Modified and refined ontologies can be used for
intelligent systems and knowledge bases engineering [1].

5 Acknowledgments

This work was financially supported by the Council for Grants of the President of
Russia (grant No. MK-1647.2020.9), Program of the Fundamental Research of the
Siberian Branch of the Russian Academy of Sciences, project no. IV.38.1.2 (reg. no.

АААА-А17-117032210079-1), project no. IV.38.1.3 (reg. no. АААА-А17-
117032210077-7). Results are achieved using the Centre of collective usage «Inte-
grated information network of Irkutsk scientific educational complex».

References

1. Berman, A.F., Nikolaichuk, O.A., Yurin, A.Yu., Kuznetsov, K.A.: Support of Decision-
Making Based on a Production Approach in the Performance of an Industrial Safety Re-
view. Chemical and Petroleum Engineering 50(1-2), 730–738 (2015). DOI:
10.1007/s10556-015-9970-x

2. Da Silva, A.R.: Model-driven engineering: A survey supported by the unified conceptual
model. Computer Languages, Systems & Structures 43, 139–155 (2015). DOI:
10.1016/j.cl.2015.06.001

3. Dorodnykh, N.O.: Web-based software for automating development of knowledge bases
on the basis of transformation of conceptual models. Open Semantic Technologies for In-
telligent Systems 1, 145–150 (2017).

4. Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models.
CEUR Workshop Proceedings (ITAMS-2018) 2221, 70–75 (2018).

5. Dorodnykh, N.O., Yurin, A.Yu., Shigarov, A.O.: Conceptual Model Engineering for In-
dustrial Safety Inspection Based on Spreadsheet Data Analysis // Communications in
Computer and Information Science. Modelling and Development of Intelligent Systems
(MDIS 2019) 1126, 51–65 (2020). DOI: 10.1007/978-3-030-39237-6_4

6. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2:
The next step for OWL. Web Semantics: Science, Services and Agents on the World Wide
Web 6(4), 309–322 (2008). DOI: 10.1016/j.websem.2008.05.001

7. Grishenko, M.A. Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Yu.: Designing rule-
based expert systems with the aid of the model-driven development approach. Expert Sys-
tems 35(5), 1–23 (2018). DOI: 10.1111/exsy.12291

8. Guarino, N.: Formal Ontology in Information Systems. In: the First International Confer-
ence on Formal Ontology in Information Systems (FOIS’98) 46, 3–15 (1998).

9. Lehmberg, O., Ritze, D., Meusel, R., Bizer, C.: A large public corpus of web tables con-
taining time and context metadata. Proceedings 25th International Conference Companion
on World Wide Web, 75–76 (2016). DOI: 10.1145/2872518.2889386

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.
Tech. Rep. 8, Soviet Physics Doklady (1966).

11. Shigarov, A.O., Khristyuk, V.V., Mikhailov, A.M.: TabbyXL: Software platform for rule-
based spreadsheet data extraction and transformation. SoftwareX 10, 100270 (2019). DOI:
10.1016/j.softx.2019.100270

12. Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbi-
trary to relational tables. Information Systems 71, 123–136 (2017).
https://doi.org/10.1016/j.is.2017.08.004

13. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards Ontology
Generation from Tables. World Wide Web 8(3), 261–285 (2005). DOI: 10.1007/s11280-
005-0360-8

14. Yurin, A.Yu., Dorodnykh, N.O.: A Reverse Engineering Process for Inferring Conceptual
Models from Canonicalized Tables. Proceedings of the 2019 International Multi-
Conference on Engineering, Computer and Information Sciences (SIBIRCON) 485–490
(2020). DOI: 10.1109/SIBIRCON48586.2019.8958458

https://doi.org/10.1016/j.is.2017.08.004

15. Yurin, A.Yu., Dorodnykh, N.O.: Personal knowledge base designer: Software for expert
systems prototyping. SoftwareX 11, 100411 (2020). DOI: 10.1016/j.softx.2020.100411

	1 Introduction
	2 Background
	2.1 Method for Spreadsheets Transformation
	2.2 PKBD: a Tool for Knowledge Base Engineering

	3 Proposed Approach
	3.1 Method
	3.2 PKBD.Onto: a Plugin for PKBD
	3.3 Case Study

	4 Conclusions
	5 Acknowledgments
	References

