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Abstract. In this paper we define the notion of causes of events in
trajectories of dynamic domains from the standpoint of an agent acting
in this domain. We assume that the agent’s knowledge about the domain
is axiomatized in P-log with consistency restoring rules – a powerful
knowledge representation language combining various forms of logical
and probabilistic reasoning. The proposed model of causality is tested on
a number of examples of causal domains frequently used in the literature.

Keywords: causality, answer set programming, P-log

1 Introduction

This paper contributes to a research program aimed at finding precise mathe-
matical formalization of substantial parts of commonsense knowledge and devel-
oping commonsense reasoning methods in knowledge representation languages
based on Answer Set Prolog (ASP). We concentrate on causal reasoning, which
seems to be of vital importance for our understanding of the world. The nature
of causality and various causal relations has, for a long time, been debated by
philosophers, physicists, statisticians, researchers in AI, etc. For recent work see,
for instance, [5,6,13,16]. But despite the amazing progress, we do not yet have
fully adequate understanding of the subject. There are still different interpreta-
tions of the intuitive meaning of causality, answers provided to causal questions
by various formalisms do not always match the intuition, and some “causal
stories” simply cannot be expressed in existing languages. In our approach we
address these problems by using rich knowledge representation language capable
of expressing non-trivial causal relations as well as various forms of common-
sense background knowledge. We opted for logic programming language P-log
with consistency-restoring rules (cr-rules) [1,3,10]. It is an extension of ASP with
well known methodology for representing defaults and their direct and indirect
exceptions, recursive definitions, probability, direct and indirect effects of actions
(including parallel and non-deterministic actions), time, etc. Its non-monotonic
reasoning system combines standard ASP reasoning, abduction, and probabilis-
tic computation. We are primarily interested in dynamic domains and, as in
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many theories of action and change, view the agent’s knowledge base as a de-
scription of possible trajectories of the domain. The events in these trajectories
are caused by actions. This is different from a large body of work in which the
agent’s knowledge is represented by structural equations, causal logic or other
formalisms emphasizing purely causal reasoning at the expense of background
knowledge. Usually, but not always, these works provide counterfactual account
of causality. There is, however, a number of recent approaches (see, for instance,
[4,7,8,14]) which seem to share our philosophy. There are, however, many sub-
stantial differences related to the power of our KR-language and other factors.
The multiplicity of interpretations of the word cause is partially addressed by
concentrating on what is often referred to as actual causes. In our approach time
(or at least ordering of events) is an integral part of this notion. We further deal
with this problem by dividing causes of events into those which consist of delib-
erate actions, those which contain at least one accidental (but known) action,
and those which include some exogenous actions not native to the agent’s model
of the world. The methods of testing our definitions and KR methodology are
determined by our goal. We view our work as a step in an attempt to pass what
J.Pearl calls Mini-Turing Test [17]: “The idea is to take a simple story, encode
it on a machine in some way, and then test to see if the machine can correctly
answer causal questions that a human can answer.” So, naturally, we use this
to test accuracy of our modeling and relationship with other approaches. (Of
course, only a few of such examples are presented in this paper.) To make sure
that wrong answers to these questions are not caused by inadequate represen-
tation of the problem, we pay serious attention to developing KR methodology
which properly combines causal and background knowledge about the domain.
The paper is organized as follows. We assume some knowledge of P-log and de-
fine notions of background theory T and scenario S. The former contains general
knowledge about the domain while the latter describes a particular story to be
analyzed. Together they form the knowledge base of an agent, T (S), referred
to as causal theory. Next section contains definitions of three types of causes
accompanied by some explanatory examples. This is continued by analyses of
causal relations in several simple stories, followed by conclusion and future work.

2 Representing Agent’s Knowledge

Knowledge of an agent will be represented by a P-log program tailored for rea-
soning about effects of actions and causes of events, Regular function symbols of
a program will be partitioned into fluent, action, static and auxiliary and used
to form fluent, action, static and auxiliary terms respectively. We assume that
actions are Boolean. The last parameter of functions from the first two groups is
of a special sort called time-step (usually represented by natural numbers); time-
steps are not allowed in statics. Recall that P-log terms formed by random are
of the form random(m, f(x̄), p). This expression can also be viewed as an atom
(a shorthand for random(m, f, p) = true), which states that, as the result of a
random experiment m which is either genuine or deliberately interfered with,



f(x̄) should take the value from {Y : p(Y ) ∩ range(f)}. In addition, we require
that for every time steps t1 and t2 occurring in m, f respectively, t2 > t1 if f is
a fluent, and t2 ≥ t1 if f is an action. Finally, both m and random(m, f(x̄), p)
are viewed as action terms. Sometimes we say that f(x̄, t) is an instance of ab-
stract fluent (action) f(x̄) and that the value y of f(x̄, t) is the value of abstract
fluent (action) f(x̄) at time-step t. Atoms formed by action terms are called
action atoms. Similarly for fluent and static atoms. We are especially interested
in properties of events – statements describing occurrences of actions and values
of fluents at given time-steps. More precisely an action event is a collection of
action atoms. Similarly for fluent events. An event is a fluent event or an action
event. The causal theory representing the agent’s knowledge consists of a par-
ticular story (also called domain scenario or recorded history of the domain) to
be analyzed and background theory representing agent’s general knowledge.

Scenario is a recorded history of time-stepped observations and deliberate (in-
tended) actions which happened in the domain up to the current time-step.
The initial time-step of a scenario is usually assumed to be 0. Observations
are expressions of the form obs(atom), actions are of the form do(a(x̄, t) = y);
do(a(x̄, t) = true) indicates a deliberate execution of action a(x̄, t); do(a(x̄, t) =
false) – a deliberate refusal of such execution. Another form of do-operator
is similar to do-operator of the original P-log [3] and Pearl’s causal networks
[16]. If random(m, e(x̄, t), p) is a random experiment and y is a possible value
of e(x̄, t) then do(m, y) represents an intervention into random experiment m
which forces e(x̄, t) to take value y. If the value y of e(x̄, t) is simply observed
this is recorded as obs(e(x̄, t) = y). Whenever possible, we omit do from the
description of actions in our scenarios.

Background theory is a P-log program T which contains no deliberate actions
and observations and whose regular part (obtained from T by removing cr-rules)
is consistent. T contains a set of causal mechanisms or causal laws of the form

m : a(x̄) = y ← body, not ab(m), not interfere(a(x̄), y)1 (∗)

if a is an action and

m : a(x̄) = y ← body, not ab(m)

if a is a fluent. In both rules body is non-empty and contains no default nega-
tion, m is the mechanism’s name, ab and interfere are auxiliary functions;
interfere(a(x̄), y) holds if action a(x̄) is deliberately assigned value different
from y; ab(m) captures indirect exceptions to m. Each causal mechanism is ac-
companied by Contingency Axiom

ab(m)
+← body

1 If a(x̄) is formed by random(r, f(ū), p), then m is omitted and the causal mechanism
is named r. Random experiments are normally named by action terms.



If the causal mechanism is not defeasible, then the contingency axiom and the
corresponding “not ab(m)” from the body of a causal law can be omitted. In-
tuitively, the first two rules say that normally body is a sufficient cause for
head. The guard interfere(a(x̄), y) present in rule (∗) allows deliberate actions
to defeat triggering defaults. We will use shorthand interfere(a(x̄)) to denote
interfere(a(x̄), true). The Contingency Axiom for n allows causal mechanism m
to be defeated by observations. It is a consistency-restoring rule of a version of
ASP called CR-Prolog [2]. It says that “causal mechanisms m may be disabled,
but such a possibility is very rare and, whenever possible, should be ignored”.
For more details, see [9]. In addition, a rule r of a causal theory must satisfy the
following conditions:

– If a time-step t occurs in r then some time-step occurs in head(r).
– If t occurs in head(r) then (a) if head(r) is a fluent atom then time-steps of

fluents and actions in body(r) do not exceed t and t − 1 respectively, (b) if
head(r) is an action atom then no time-step in body(r) exceeds t.

Let us illustrate the notion of causal theory by formalizing two informal examples
frequently used in the literature on causation.

Example 1 (Firing Squad). A certain chain of events is required for a lawful
execution of a prisoner. First, the court must order the execution. The order
goes to a captain, who signals the soldiers on the firing squad (denoted by a and
b) to shoot. We’ll assume that they are obedient and expert marksmen, so they
only shoot on command, and if either of them shoots, the prisoner dies.

Background theory FS for this example contains abstract actions court order,
captain order, shoot(a) and shoot(b), inertial abstract fluent dead and standard
auxiliary symbols ab and interfere. FS consists of causal mechanisms:

[m1(T )] : captain order(T + 1)← court order(T ),
not ab(m1(T )),
not interfere(captain order(T + 1))

(1a)

which is a defeasible version of dynamic causal law used in actions languages.
Two other rules:

[m2(G,T )] : shoot(G,T + 1)← captain order(T ),
not ab(m2(G,T )),
not interfere(shoot(G,T + 1))

(1b)

[m3(G,T )] : dead(T + 1)← shoot(G,T ),
not ab(m3(G,T ))

(1c)

are defeasible triggers. We also have the contingency axioms:

ab(m1(T ))
+← court order(T ) (2a)

ab(m2(G,T ))
+← captain order(T ) (2b)

ab(m3(G,T ))
+← shoot(G,T ) (2c)



and the closed world assumptions (CWA) for actions:

¬shoot(G,T )← not shoot(G,T ) (3a)

¬captain order(T )← not captain order(T ) (3b)

¬court order(T )← not court order(T ) (3c)

The CWA for deliberate action court order will be accompanied by an indirect
exception:

court order(T )
+← (4)

We also need inertia axioms for dead:

¬dead(T + 1)← ¬dead(T ),not dead(T + 1) (5a)

dead(T + 1)← dead(T ),not ¬dead(T + 1) (5b)

Despite the fact that the story insists that the guards only shoot on command,
the corresponding causal law is defeasible. This is essential since we would like
to consider scenarios in which guards may refuse to follow the orders or simply
fail to do so by unspecified reasons. Similarly for other causal mechanisms.

Example 2 (Flipping a Coin). Theory TC has “transient” fluent agreed to play
(players agreed to start the game), and a “transient” fluent h (the coin landed
heads). Transient fluents are partial functions which do not satisfy inertia. TC
also contains action flip (flip the coin); h is defined at time-steps immediately
following flip. Causal mechanism

random(flip(T ), h(T + 1))← agreed to play(T ),not ab(m(T )),
not interfere(random(flip(T ), h(T + 1)))

states that agreed to play triggers a random experiment flip which ends in
heads or in tails. We also need the contingency axiom and CWA for actions.

Agent’s knowledge base and its models: A scenario S is encoded in P-log
as follows: obs(A), where A is time-stepped by 0 is encoded by A; if the time-step
of A is greater than 0 then obs(A) is encoded by a constraint: “← not A”. Do-
statements of S remain unchanged. We denote this encoding by enc(S). Agent’s
knowledge base is given by causal theory

T (S) =def T ∪ enc(S) ∪DO

where S is a scenario of T and DO is a collection of axioms enforcing the intuitive
meaning of do:

– for every do(a(x̄, t) = y) from S axioms:

a(x̄, t) = y ← do(a(x̄, t) = y)

interfere(a(x̄, t), Y )← Y 6= y,do(a(x̄, t) = y)

where the former axiom connects do with an actual occurrence of an action,
and the latter allows a deliberate action interfere with a defeasible trigger
assigning values to action a(x̄);



– for every do(m, y) from S, where m is the name of random experiment
random(m, a(x̄, t), p), axioms

do(m, a(x̄, t), y)← do(m, y)

interfere(a(x̄, t), Y )← Y 6= y,do(m, y)

where the former axioms guarantees that on random experiments do coin-
cides with the original do of P-log and the latter defines interference with
random experiments.

We only consider S for which T (S) is a coherent P-log program in which multi-
plicity of models can only be a result of general axiom (19) from [1] for random.
As any such program, T (S) comes with the definition of its possible worlds and
probability function. A possible world W of T (S) can be viewed as a possible
trajectory of a dynamic system associated with the program and written as

W = 〈σ(tf ), α(tf ), . . . , σ(i), α(i), . . . α(tl − 1), σ(tl)〉

where α(i) is the set of all action events from W time-stepped by i and σ(i) is
the set of all fluent atoms of W time-stepped by i and statics from W . Note that
though all actions from α(i) start at i, their effects may manifest themselves at
different time-steps.

Definition 1 (Model). A model of scenario S of T is a possible world of T (S).

Let us demonstrate this notion by going back to the Firing Squad example.

Example 3 (Firing Squad: models). Let us fix FS from Example 1. Then, in the
model of the scenario S0 = 〈obs(¬dead(0))〉 the prisoner is alive at every time
step of the model. There are no actions. Scenario
S1 = 〈obs(¬dead(0)), court order(0)〉 has one model, M2:

¬dead(0), court order(0), ¬dead(1), captain order(1)
¬dead(2), shoot(a, 2), shoot(b, 2), dead(3), interfere(court order(0), false).

When displaying a model we usually omit negations of actions derived by the
CWA and the do statements.
Scenario S2 = 〈obs(¬dead(0)), court order(0),¬shoot(a, 2),¬shoot(b, 2)〉 is more
interesting. Deliberate actions ¬shoot(a, 2),¬shoot(b, 2) from S together with
axioms from DO cancel axiom m2(G, 2). The only model M of S2 contains

¬dead(0), court order(0), ¬dead(1), captain order(1),¬shoot(a, 2),¬shoot(b, 2),
¬dead(2), interfere(shoot(a, 2)), interfere(shoot(b, 2)), ¬dead(3)

(In what follows we omit atoms formed by interfere in the models). Next con-
sider scenario S3 = 〈obs(¬dead(0)), court order(0), obs(¬dead(3))〉 with a non-
initial observation which contradicts the effects of our causal mechanisms. The

2 The model can be computed using our prototype P-log solver. For more details, refer
to https://github.com/iensen/plog2.0/tree/master/plogapp/tests/causality.

https://github.com/iensen/plog2.0/tree/master/plogapp/tests/causality


contradiction can be resolved by assuming that the captain was not able to follow
the court order or that his order could not have been executed by the guards.
This is done by the Contingency Axioms. In CR-Prolog the contradiction can be
avoided by finding abductive support - a minimal collection R of cr-rules whose
application restores consistency of the program, i.e., the regular part Πr of pro-

gram Π together with the result, α(R), of replacing
+← in rules from R by← has

an answer set. We define ΠR =def Π
r ∪α(R). M is a model of Π if it is a model

of ΠR for some abductive support R of Π. In this case we say that R generates
M . There are different ways to compare abductive supports. In what follows we
mainly assume that support A is better than B if A ⊂ B. In our case there are
two ways to resolve the contradiction. One abductive support is R1 consisting
of contingency axioms for m2(a, 1) and m2(b, 1). The axioms derive ab(m2(a, 1))
and ab(m2(b, 1)) and hence disable m2(a, 1) and m2(b, 1). By inertia, FSR1 will
conclude ¬dead(3) which leads to the first model M1 of FS:

ab(m2(a, 1)), ab(m2(b, 1)), ¬dead(0), court order(0), ¬dead(1), captain order(1)
¬dead(2),¬shoot(a, 2),¬shoot(b, 2), ¬dead(3)

Contradiction can also be avoided by abductive support R2 consisting of the
contingency axiom for m1(1). In FSR2 causal connection between court and
captain orders will be disabled and, by CWA, no order will be given by the
captain. This will lead to the second model M2 of FS:

ab(m1(0)), ¬dead(0), court order(0), ¬dead(1),¬captain order(1)
¬dead(2),¬shoot(a, 2),¬shoot(b, 2), ¬dead(3)

In scenario S4 = 〈obs(¬dead(0)), obs(dead(3))〉 the only way to satisfy the last
observation is to use rule (4) of FS and assume court order(0).The resulting
model, M , consists of all atoms from the model of S1 except for those formed
by do and interfere.

Example 4 (Flipping a Coin (Models)). It is easy to see that all models of sce-
nario S0 = 〈agreed to play(0)〉 contain random(flip(0), h(1)) (which we shorten
to flip(0)). The experiment generates two possible outcomes h(1) and ¬h(1).
Thus, S0 has two models: M1 = {agreed to play(0), f lip(0), h(1)} and M2 =
{agreed to play(0), f lip(0),¬h(1)}. Scenario S1 = 〈agreed to play(0), obs(h(1))〉
has only one model M1. Finally, S2 = 〈agreed to play(0),do(flip(0), true)〉 has
only one model M1 ∪ {do(flip(0), h(1), true)}.

3 The Definitions

Our framework is based on the following assumptions: An agent is supplied
with a (fixed) background theory T and a scenario S with the last time step n,
which consists of observations and the complete collection of deliberate actions
which occurred in the domain up to that time. In addition, we assume that every
uninterrupted random experiment of a scenario is immediately followed by the
observation of its outcome. Scenarios which do not satisfy these assumptions



will be called illegal. In what follows we introduce three different types of cause:
deliberate, accidental and exogenous. The best explanation of an event is given
by finding its deliberate cause. If this is impossible we attempt to find causes
which include accidental (not deliberate) actions. As the last resort we allow
causes containing unknown exogenous actions.

Deliberate Cause: Our definition of a deliberate cause can be viewed as a
formalization of the following intuition:

“A cause of e(x̄, k) = y is a deliberate action event α which initiates a
chain of events bringing about e(x̄, k) = y. Moreover, α must be in some
sense minimal, i.e. no parts of α can be removed without loss of causal
information about e(x̄, k) = y.”

An expression “chain of events” from our informal description will be mod-
eled by notion of proof 3 M be a set of ground literals, and M− = {not l :
l is not satisfied by M}.

Definition 2 (Proof).

– A sequence P = 〈r0, l0, r1, l1 . . . , rn, ln〉 where ls are literals from M and rs
are rules or names of random experiments of program Π is called a proof of
ln in M from Π (M,Π ` ln) if
• For every i, body(ri) is satisfied by {l0, . . . , li−1} ∪M−,
• li is the head of ri or
• li is e(k) = y and li−1 is random(n, e(k), p) representing a non-interrupted

random experiment (i.e., there is no y such that do(n, e(k) = y) is in S),
ri is n, and p(y) ∈ {l0, . . . , li−1}

• No proper sub-sequence of P satisfies the above conditions.
If M is a possible world of Π we simply say that P is a proof of ln in M ;

– A scenario S of background theory T derives event e(k) = y in M (or simply
T (S) derives e(k) = y) if there is a proof of e(k) = y in M from T (S); S
derives e(k) = y if S derives e(k) = y in every model of S.

The idea of a deliberate (or intentional) action is formalized as follows.

Definition 3 (Deliberate Action). Let S′ be the result of removing action
event a(i) = y from a scenario S of T . We say that a(i) = y is deliberate in T (S)
if no model of S′ contains a(i) = y.

To define a cause of an event e(k) = y in a scenario S of T we introduce a
notion of the event’s inflection point - a time-step i ≤ k such that i−1 is the last
time-step of S in which the value of e(k) is not predicted to be y. To make this

3 A similar notion of a proof is given in [7]. Important and substantial differences
include special treatment for P-log literals formed by do and random, literals with
default negation, and cr-rules.



precise we need some notation: Let S[i] consists of observations of S made at
points not exceeding i and all actions S which occurred at steps not exceeding
i− 1, i.e. S[i] =def {obs(f(j) = y) ∈ S : j ≤ i} ∪ {a(j) = y ∈ S : j < i}.

Definition 4 (Inflection Point). Step i is the inflection point for e(k) = y
in T (S) if (a) T (S[i − 1]) does not derive e(k) = y and (b) for every j ∈ [i, k],
T (S[j]) derives e(k) = y.

Definition 5 (Deliberate Cause). Let S be a scenario of T , obs(e(k) = y) ∈
S, M be a model of S generated by a (possibly empty) abductive support R,
and i be the inflection point of e(k) = y in TR(S). A non-empty set α of actions
from S is called a cause of e(k) = y (with respect to T (S)) in M if

(a) TR(S[i− 1] ∪ α) derives e(k) = y in M ,
(b) for every β ⊂ α there is a proof of e(k) = y from TR(S[i − 1] ∪ α) in M

which is not a proof of e(k) = y from TR(S[i− 1] ∪ β) in M .

We say that α is a possible cause of e(k) = y in S if it is a cause of e(k) = y in
some model of S; α causes e(k) = y in S if it causes e(k) = y in all models of S.

Consider scenario S1 from Example 3. Clearly, the inflection point for dead(3)
in S1∪{obs(dead(3))} is 1. It’s cause is court order(0) with the proof consisting
of applications of causal mechanisms of FS. The same is true for dead(4). Now
consider a theory T with action a, inertial fluent f and causal law f(T ) ←
a(T − 1). Clearly M = {¬f(0),m(0),¬f(1), a(1), f(2)} is the only model of
scenario S = 〈obs(¬f(0)), random(m(0), a(1)), obs(a(1))〉. The only deliberate
action random(m(0), a(1)) of S is the only cause of f(2) in M . We often read
this as: f(2) is caused by the outcome a(1) of random experiment m(0). This
reading will be used throughout the paper.

Causes Containing Accidental Actions. To see the need for causes with
accidental actions consider scenario S4 = {obs(¬dead(0)), obs(dead(3))} from
Example 3. Since S4 contains no deliberate actions, dead(3) has no deliberate
cause. One can, however, argue that action court order(0) should be a cause
of dead(3) in the unique model M of S4 even though it is not deliberate. This
intuition can be justified by the following informal principle:

Execution of a non-deliberate (accidental) action could be a part of an
event’s cause if it’s deliberate execution could.

One should, however, be careful in formalizing this intuition. An attempt to do
that by simply adding the action to the original scenario does not work. Since
court order is derived by FS in the model of S4, it is not deliberate in scenario
S5 = S4 ∪ {court order(0)} and hence such a scenario is not legal.

One way to avoid the difficulty is to remove from FS rule (4) and consider S5 to
be a scenario of a new theory FS∗; court order(0) is deliberate in FS∗(S5). After
this “surgery”, somewhat reminiscent of Pearl’s surgery on causal networks,



dead(3) would indeed be caused by court order(0). Another small operation is
required in scenarios containing random events. The new scenario should also
be extended by the observation of the outcome of this experiment taken from
the corresponding model. These observations lead to the following definition.
Let M be a model of a scenario S of T , E be an action atom accidental in
T (S), c(E,M) be E if E is regular, or random(m, f) followed by observation of
outcome f = y of m in M if E is random(m, f). If α is an action event then
c(α,M) =def {c(E,M) : E ∈ α}. We say that a rule r generates the value of
term a(i) if head(r) is a(i) = y for some y or is of the form random(m, a(i), p).
By surg(T, α) we denote a theory obtained from T as follows. For every a(i)
such that α contains random(m, a(i), p) or a(i) = y for some y remove from T
every rule generating the value of a(i).

Definition 6 (Causes Containing Accidental Actions). Given a model M
of scenario S of T and action event α ⊂M , α is an accidental cause of e(k) = y
in M with respect to T (S) if there is an action event β ⊂M such that

– M is a model of scenario S∗ =def S∪c(β,M) of T1 = surg(T, β) (Note that,
by construction, all actions of S∗ are deliberate), and

– α is a deliberate cause of e(k) = y in M with respect to T1(S∗).

Now let us go back to scenario S4 from Example 3 and show that the cause of
dead(3) in model M of S4 is court order(0). The model contains court order(0)
included in it by cr-rule (4) of theory FS. Let α = β = {court order(0)}. It is
easy to check that court order(0) is a deliberate cause of dead(3) in scenario S∗4 =
S4 ∪ {court order(0)} of surg(FS, β) obtained from FS by removing rule (4).
Note, that captain order(1) will not be a cause of dead(3) in M since M is not
a model of S4 ∪ {captain order(1)}. Finally, consider scenario S3 from Example
3. As was shown there it has two models: M1 in which guards refuse to shoot
and M2 in which captain does not follow his order. One can check that refusal
to shoot is the cause of ¬dead(3) in M1. In M2 the cause is ¬captain order(1).

To see how the definition works for random events consider the unique model
M1 of scenario S1 = 〈obs(agreed to play(0)), obs(h(1))〉 from Example 4. The
inflection point for h(1) in S1 is 1. The scenario contains no deliberate actions and
hence h(1) has no deliberate cause. It is, however, not difficult to show that, by
Definition 6, h(1) is caused by a random experiment flip(1). In the model M2 of
S2, however, h(1) is the result of deliberate intervening action do(flip(1), true).

The difference between Pearl’s actions and observations is important not only
for computing probability of events but also for discovering their causes. So far,
we have been looking for causes of events occurring in a model M among actions
from M . Now we allow to search for causes among a specific type of actions not
present in M .

Causes Containing Exogenous Actions.



If an event has no cause consisting of deliberate and accidental actions
then it may be useful to admit causes containing unknown, exogenous
actions responsible for bringing about events in the initial state of the
scenario and/or abnormality relations in causal mechanisms of the theory.

The definition is omitted due to space limitation. We simply illustrate the in-
tended behavior. Consider scenario S0 = 〈obs(¬dead(0)), obs(¬dead(3))〉 of FS
from Example 3. The cause of ¬dead(3) in the only model M0 of S0 is the ex-
ogenous action which brought about ¬dead(0). The cause of ¬f(1) in the only
model of scenario S = 〈obs(¬f(0)), a(0), obs(¬f(1))〉 of theory

m(T ) : f(T )← a(T − 1),not ab(m(T ))

is the exogenous action which brought about ¬f(0).

4 Examples

This example, often used to highlight difficulties with counterfactual approach
to causation, (see, for instance, [12]) deals with so called “late preemption”.

Example 5 (Breaking the Bottle). Suzy and Billy both throw rocks at a bottle.
Suzy’s rock arrives first and shatters the bottle. Billy’s arrives second and so does
not shatter the bottle. Both throws are accurate: Billy’s would have shattered the
bottle if Suzy’s had not.
The background theory, TS of the story, with steps ranging from 0 to 2 contains
actions throw(suzy) and throw(bill) with static attributes duration(suzy) =
1 and duration(bill) = 2 for durations of agents’ throws, causal mechanism
m(A, T1)

shattered(T2)← throw(A, T1), duration(A) = D,T2 = T1 +D,
¬shattered(T2 − 1),not ab(m(A, T1))

determining the effect of throwing, contingency axiom for this rule and the in-
ertia axiom for shattered. Consider scenario
S0 = 〈obs(¬shattered(0)), throw(suzy, 0), throw(bill, 0)〉. The only model M0 of
S0 is: {¬shattered(0), throw(suzy, 0), throw(bill, 0), shattered(1), shattered(2)}.
Step 1 is the inflection point for shattered(1) and shattered(2) in M0 and their
only cause is throw(suzy, 0). Next consider S1 = S0∪{obs(¬shattered(1))} and
its unique model

M1 = M0 ∪ {¬shattered(1), ab(m(suzy, 0))}) \ {shattered(1)}

Step 1 is still the inflection point for shattered(2) in M1, which is now caused
by throw(bill, 0); ¬shattered(1) ∈ M1 is caused by an exogenous action which
brought about ¬shattered(0). Next consider
S2 = 〈obs(¬shattered(0)), throw(bill, 0), throw(suzy, 1)〉. It is easy to check that
in its only model shattered(2) has two causes: throw(bill, 0) and throw(suzy, 1).
Here is another example, taken from [11].



Example 6 (Hall’s Neuron Net). Consider a neuron net from Figure 1.

a d

f e

c b

Fig. 1.

If a link from neuron n1 to neuron n2 is ended by an arrow, then n1 stimulates
n2; if it is ended by a bullet, then n1 inhibits n2; e is a “stubborn” neuron,
requiring two stimulatory signals to fire. For other neurons one stimulating signal
is sufficient.

A background theory NN for this example will have sorts for neurons, an ac-
tion stim(S) which stimulate neurons from set S, Boolean fluents stimulated
and inhibited, and statics link and stubborn. The net will be represented by a
collection of atoms link(a, d, stm), link(a, f, inh), etc., where link(X,Y, stm) /
link(X,Y, inh) indicates that X stimulates/inhibits Y , and facts stubborn(e) ∪
{¬stubborn(N) : N 6= e}. We will need two time steps: 0 and 1 with 0 being used
for the execution of actions and 1 for their effects, and two inputs of action stim:
s1 and s2 defined by statics: member(c, s1), member(c, s2), member(a, s2).

The causal mechanisms of NN are

[m0(X,S)] : stimulated(X, 1)← stim(S, 0),member(X,S)

[m1(X,Y )] : stimulated(Y, 1)← ¬stubborn(Y ),¬inhibited(Y, 1),
link(X,Y, stm), stimulated(X, 1)

[m2(Y )] : stimulated(Y, 1)← stubborn(Y ),¬inhibited(Y, 1),
card{X : link(X,Y, stm), stimulated(X, 1)} > 1

[m3(X,Y )] : inhibited(Y, 1)← link(X,Y, inh), stimulated(X, 1)

We assume that all neuron directly stimulated by stim are included in its pa-
rameter S, which eliminates the possibility of parallel stim actions, i.e. we have

¬stim(S1, I)← stim(S2, I), S1 6= S2

Finally, we need the inertia axiom for the fluents, and CWA with indirect excep-

tions for action stim: ¬stim(S, 0) ← not stim(S, 0) and stim(S, 0)
+← . Let us



consider NN together with a scenario S0 = init∪{obs(stimulated(e, 1))} where
init = {obs(¬stimulated(X, 0)), obs(¬inhibited(X, 0)) : neuron(X)}. The regu-
lar part of NN(S0) is inconsistent. There are two ways to restore consistency
using the cr-rule, and therefore two models of S0: M1 containing stim(s1, 0) in
which e is stimulated via neurons c, f , and b and M2 which contains stim(s2, 0).
In M2 neuron f is inhibited and e is stimulated via neurons a, c, d, and b. Clearly,
in the first model stimulated(e, 1) is caused by stim(s1, 0) and in the second by
stim(s2, 0). Hence in S0, stimulated(e, 1) has two possible causes. One can argue
that stim(s2, 0) shall not be an actual cause of stimulated(e, 1) in S0 since there
is a better “minimally sufficient” candidate stim(s1, 0). Indeed, since s1 ⊂ s2,
action stim(s1) is simpler than stim(s2) but we believe that this does not pre-
clude stim(s2, 0) from being viewed as a valid possible cause of stimulated(e, 1)
in S0. This seems to agree with the Hall’s view.

Example 7 (Adopted from [15] to our language).
Consider background theory with actions e1, e2, inertial fluents d1, d2,d3, l, causal
mechanisms:

[m1] : d1(1)← e1(0) [m2] : d2(1)← e1(0) [m3] : d3(1)← e2(0)

rules:
l(1)← d1(1) l(1)← d2(1), d3(1)

and inertia axioms for fluents. Consider scenario:

S = {e1(0), e2(0), obs(¬d1(0)), obs(¬d2(0)), obs(¬d3(0)), obs(¬l(0))}

Our definition agrees with the author of [15] and produce two causes of l(1):
C1 = {e1(0)} and C2 = {e1(0), e2(0)}. However, consider now background the-

ory T2 obtained from T by adding CR-rules e1(0)
+← and e2(0)

+← and a new
scenario S2 = {obs(¬d1(0)), obs(¬d2(0)), obs(¬d3(0)), obs(¬l(0)), obs(l(1))}. In-
tuitively, we would expect C1 and C2 to also be the causes of l(1) in T2(S2).
However, the subset-minimal preference relation does not produce this result.
In the extended version we define a new preference relation which minimizes
the number of applied cr-rules not relevant to actions and observations from the
scenario. It produces desired results for this and other examples.

5 Conclusion

The paper outlines a new approach to analyzing causes of events in trajecto-
ries of dynamic domains. The fuller version, available from https://www.depts.
ttu.edu/cs/research/krlab/documents/causal2020 extended.pdf, contains more
examples and a more detailed comparison with other approaches. In future, we
plan to conduct some mathematical investigation of causal theories. Even though
in some respects our formalism is a more powerful modeling tool than that of
structural equations and graphical models advocated by Pearl and many others
it remains to be seen if it can also expand their computational power.

https://www.depts.ttu.edu/cs/research/krlab/documents/causal2020_extended.pdf
https://www.depts.ttu.edu/cs/research/krlab/documents/causal2020_extended.pdf
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