
Dynamic Epistemic Logic with ASP Updates:
Application to Conditional Planning
Pedro Cabalara, Jorge Fandinnob and Luis Fariñas del Cerroc

aUniversity of Corunna, SPAIN
bUniversity of Potsdam, GERMANY
cInstitut de Recherche en Informatique de Toulouse, Universty of Toulouse, CNRS, FRANCE

Abstract
Dynamic Epistemic Logic (DEL) is a family of multimodal logics that has proved to be very successful
for epistemic reasoning in planning tasks. In this logic, the agent’s knowledge is captured by modal
epistemic operators whereas the system evolution is described in terms of (some subset of) dynamic logic
modalities in which actions are usually represented as semantic objects called event models. In this paper,
we study a variant of DEL, that we call DEL[ASP], where actions are syntactically described by using
an Answer Set Programming (ASP) representation instead of event models. This representation directly
inherits high level expressive features like indirect e�ects, quali�cations, state constraints, defaults, or
recursive �uents that are common in ASP descriptions of action domains. Besides, we illustrate how this
approach can be applied for obtaining conditional plans in single-agent, partially observable domains
where knowledge acquisition may be represented as indirect e�ects of actions.

Keywords
Answer Set Programming, Dynamic Epistemic Logic, Epistemic Logic Programs, Epistemic Speci�ca-
tions, Conditional Planning, Equilibrium Logic, Non-Monotonic Reasoning

Introduction

Automated planning is the �eld of Arti�cial Intelligence concerned with the generation of
strategies to achieve a goal in a given dynamic domain. A planner usually starts from a formal
representation of the domain, a particular instance of the problem and the goal to achieve. The
planner output is some strategy, expressed in terms of actions that cause the state transitions
to reach the goal. The most common situation is that such a strategy is just a sequence of
actions called a plan. In Classical Planning [1] some simplifying restrictions are assumed: the
system has a �nite number of states, the world is fully observable and the transition relation is
deterministic and static (i.e. transitions are only caused by the execution of actions). However, a
rational agent may easily face planning problems that require relaxing these assumptions. For
instance, a robot may not possess all the information about the environment, either because its
sensors have a limited scope, or because its actions may have non-deterministic e�ects that
require observation for �nding out the real outcome. Removing the assumptions of determinism
and fully observable world naturally leads to two important questions [2]: (i) how does a plan

EELP’20: Second Workshop on Epistemic Extensions of Logic Programming, September 19th, 2020, Rende, Italy
email: cabalar@udc.es (P. Cabalar); fandinno@uni-potsdam.de (J. Fandinno); farinas@irit.fr (L. Fariñas del Cerro)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:cabalar@udc.es
mailto:fandinno@uni-potsdam.de
mailto:farinas@irit.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

look like in this new context? and (ii) how to represent the changes in the agent’s knowledge along
the plan execution?

Regarding (i), two new categories of plans have been de�ned in this context: conformant plans
and conditional plans. A conformant plan is a sequence of actions that guarantees achieving
the goal regardless unknown values of the �uents in the initial situation or the precise e�ect
of the non-deterministic actions. If we further allow sensing actions (acquiring knowledge
from the environment) then the structure of a sequential plan is not reasonable any more: a
conditional plan may contain “if-then-else” constructs that allow the agent to follow di�erent
strategies depending on the knowledge she acquired when executing the plan. Approaches to
both conformant and conditional planning have been broadly studied in the literature [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].

With respect to question (ii), several approaches studied the e�ects of sensing actions [4,
6, 18, 19, 21, 22, 28, 29, 30, 31]. One prominent line of research is based on Dynamic Epistemic
Logic (DEL) [32, 33], a multi-modal approach where the agent’s knowledge is captured by modal
epistemic operators whereas the system evolution is described in terms of (some subset of)
dynamic logic [34] modalities. For instance, the DEL expression [watch](K rain ∨K∼rain)
represents that, after any possible outcome of sensing action watch, the agent knows whether
rain holds or not. Di�erent variants of DEL have been successfully applied to the problem
of planning with non-deterministic, partially observable multi-agent domains [18, 19, 21, 22,
35]. Although DEL has proved to be very convenient for epistemic reasoning in planning,
it shows some important drawbacks when analysed from a Knowledge Representation (KR)
viewpoint. This is because, for representing actions and their e�ects, DEL uses the so-called
event models [36, 37], that inherit some of the expressive limitations of the STRIPS planning
language [38]. In particular, event models do not allow some important KR features, like the
treatment of indirect e�ects, action quali�cations, state constraints or recursive �uents, that are
quite common in modern representation of action theories.

One popular KR formalism that naturally covers these expressive features is Answer Set
Programming (ASP) [39, 40, 41], a well-established paradigm for problem solving and non-
monotonic reasoning based on the stable models semantics [42, 43]. The use of ASP for classical
planning was introduced in [44, 45], leading to a methodology adopted by di�erent high-level
action languages (see [46] and references there) and, more recently, to a temporal extension of
ASP [47]. Besides, there exists a growing list of ASP applications [48], many of them dealing with
classical planning problems. When moving to conformant planning, though, the application
of ASP is still under an exploratory stage. Most of the attempts in this direction relied on a
extension called epistemic speci�cations [49] that incorporate modal constructs (called subjective
literals) for representing the agent’s knowledge. However, the semantic interpretation of this
formalism is still under debate and only some preliminary implementations are still available –
see [50] for a recent survey. On the other hand, the use of ASP to obtain conditional plans was
still an unexplored territory.

In this paper, we study the case of single-agent planning and combine both approaches, DEL
and (epistemic) ASP, to exploit the advantages of both formalisms in a single language. Our
proposal, called DEL[ASP], relies on replacing event models by epistemic logic programs. In that
way, the basic event to describe the transition between two epistemic models becomes an ASP
epistemic speci�cation, while we keep the same dynamic logic operators for temporal reasoning

among transitions. On the one hand, with respect to DEL, the new approach provides all the
expressive power of ASP for action domains: indirect e�ects, quali�cations, state constraints,
defaults, or recursive �uents are directly inherited from ASP. Moreover, when a classical planning
scenario (represented in ASP) becomes partially observable, the new approach allows keeping
the scenario representation untouched, possibly adding new epistemic rules to describe the e�ects
of sensing actions. On the other hand, with respect to (non-temporal) epistemic ASP, dynamic
operators provide a comfortable way for explicitly representing, and formally reasoning about
conformant and conditional plans.

The rest of the paper is organised as follows. In the next section, we provide some background
on the formalisms that conform our proposal. After these preliminaries, we introduce the
formalism of DEL[ASP] and explain its behaviour using some examples. Then, we study the
representation of conditional plans in this formalism. Finally, we discuss some related work and
conclude the paper.

Preliminaries

In this section, we provide some background on planning in DEL, planning in ASP, and the ASP
extension of epistemic speci�cations, since these three components will be present in DEL[ASP]
up to some degree. In the case of DEL, we will present a slight generalisation of [19, 21] that
admits abstract updating objects. These objects correspond to event models for standard DEL,
which we denote here as DEL[E], and will become epistemic speci�cations for DEL[ASP]. For the
case of epistemic logic programs, we will use a recent logical formalisation [51] that avoids the
problem of self-supported conclusions present in the original semantics [49]. This logic, called
Founded Autoepistemic Equilibrium Logic (FAEEL) is a combination of Pearce’s Equilibrium
Logic [52], a well-known logical characterisation of stable models, with Moore’s Autoepistemic
Logic (AEL) [53], one of the most representative approaches among modal non-monotonic
logics.

Dynamic Epistemic Logic with Abstract Updating Objects

Given a set of propositional symbols P and a set of updating objects O, a (dynamic epistemic)
formula ϕ is de�ned according to the following grammar:

ϕ ::= ⊥ | p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∼ϕ | Kϕ | [o]ϕ

where p ∈ P is a proposition and o ∈ O an updating object. The modal epistemic operator K
represents the (planning) agent’s knowledge: formula Kϕ means that “the agent knows ϕ.”
The symbol “∼” stands here for classical negation (we reserve the symbol “¬” for intuitionistic
negation later on). A formula ϕ is called objective if the operator K does not occur in it. It
is called subjective if it has at least some proposition and every proposition is in the scope
of K. As usual, we de�ne the following abbreviations: ϕ ↔ ψ def= (ϕ → ψ) ∧ (ψ → ϕ),
(ϕ← ψ) def= (ψ → ϕ), and > def= ∼⊥. We also de�ne the dual of K as follows: K̂ϕ def= ∼K∼ϕ.
We keep the Boolean operators ∨,∧,→,⊥ and avoid de�ning ones in terms of the others, since
this will not be valid when we use an intuitionistic reading later on. By LE(P) we denote the
language containing all dynamic epistemic formulas over P.

We provide next an abstract semantics that just relies on two basic concepts: epistemic models
that represent the agent’s knowledge; and the updating evaluation, a pair of generic functions
that describe how updating objects cause transitions among those models.

De�nition 1 (Epistemic Model). Given a (possibly in�nite) set of propositional symbols P and
a (possibly in�nite) set of possible worlds W, a model is a tripleM = 〈W,K, V 〉 where

– W ⊆W is a �nite set of worlds,

– K ⊆W ×W is an accessibility relation on W , and

– V : W −→ 2P is a valuation function.

D(M) = W denotes the domain ofM. An epistemic model is a model whereK is an equivalence
relation: it is further called information cell ifK is an universal relation. A belief model is a model
where K = W ×W ′ with W ′ = W \ {w0} for some w0 ∈ W . By M we denote the set of all
possible epistemic models over P and W.

We assume that the modeller coincides with the planning agent (the one whose knowledge is
captured by the epistemic models). This is usually called an internal point of view, as opposed
to the external one where the modeller is a di�erent agent, an omniscient and external observer
who can di�erentiate the actual world and knows its con�guration [54, 55]. Adopting the
internal orientation translates in the lack of a designated world (all worlds in the model are
equally possible). A second consequence is that, even for single-agent epistemic models, we
cannot replace the equivalence relation by a universal one.

Before going into further technical details, let us introduce the following scenario from [21],
which will be our running example throughout the paper.

Example 1. After following carefully laid plans, a thief has almost made it to her target: the vault
containing the invaluable Pink Panther diamond. Standing outside the vault, she now deliberates
on how to get her hands on the diamond. She knows the light inside the vault is o�, and that the
Pink Panther is on either the right or the left pedestal inside. Obviously, the diamond cannot be
on both the right and left pedestal, but nonetheless the agent may be uncertain about its location.
Note that the thief is perfectly capable of moving in the darkness and take whatever is on top
any of the pedestals, but she is not able to know whether the diamond has been taken or not. It
is assumed that there are four possible actions: move, flick, take_left and take_right. The
action move changes the location of the thief from outside the vault (∼v) to inside the vault (v)
and vice-versa. The action flick turns on the light (l). Furthermore, if the thief is in the vault (v)
and the light is on (l), the thief can see (s) where the Pink Panther is. Finally, actions take_left
and take_right respectively take the diamond (d) from the left (∼r) or right (r) pedestal if the
diamond is in the intended pedestal.

The set of propositions for the example isP = {v, l, r, s, d}. Figure 1 depicts three consecutive
epistemic models,M0,M1 andM2, respectively corresponding to the initial state of Example 1
and the resulting states after performing the sequence of actions move and then flick.

For improving readability, we represent the world valuations as strings of propositions
and underline those that are false. For instance, the valuation for w1 in Figure 1a is depicted

w1 : vlrsd

M0

w2 : vlrsd

(a) Initial epistemic model

w1 : vlrsd

M1

w2 : vlrsd

(b) Result of move on M0

w1 : vlrsd

M2

w2 : vlrsd

(c) Result of flick on M1

Figure 1: Sequence of epistemic modelsM0,M1,M2 that result from actions move and then flick

starting in the initial stateM0 of Example 1.

as vlrsd and corresponds to the set of true atoms {r}, making false all the rest. The initial
model, M0 represents the triple 〈W0,K0, V0〉 where we have two worlds W0 = {w1, w2}
universally connected, that is, K0 = W0 × W0 = {(w1, w2), (w2, w1), (w1, w1), (w2, w2)}
with valuations V0(w1) = {r} and V0(w2) = ∅. This means that the agent knows that the
thief is outside the vault (v), the light is o� (l), she cannot see where the Pink Panther is
(s) and she does not have the diamond (d). The two connected worlds reveal that she does
not know whether the Pink Panther is on the right pedestal (world w1) or on the left one
(world w2). The epistemic modelM1 in Figure 1b re�ects the same con�guration, with the
only exception that now the thief is in the vault (v), as a result of moving inside. That is,
M1 = 〈W0,K0, V1〉 with V1 satisfying V1(w1) = {v, r} and V0(w2) = {v}. Finally,M2 shows
the epistemic model that results from performing action flick onM1. In this third model,
two relevant changes occur: �rst, l and s became true in both worlds, since �icking turns on
the light, and then, the thief can see the interior of the vault. Second, more importantly, the
two worlds became completely disconnected, something that reveals that the agent has now
complete knowledge of the world con�guration in the two possible cases, w1 and w2. Formally,
we have that M2 = 〈W0,K2, V2〉 with K2 = {(w1, w1), (w2, w2)} and with V2 satisfying
V2(w1) = {v, l, r, s} and V2(w2) = {v, l, s}.

As we can see, the accessibility relation needs not be universal: for instance, we had (w1, w2) 6∈
K2 inM2 above. In general, when (w,w′) 6∈ K we say that the two worlds are indistinguishable
at plan-time, given epistemic model M = 〈W,K, V 〉 with {w1, w2} ⊆ W . In the example,
model M2 tells us that, before executing the plan, the agent cannot tell which of the two
possibilities represented by worlds w1 (diamond on the right) and w2 (diamond on the left)
will correspond to the actual world. However, once she executes the plan, she will acquire that
knowledge in both cases: w1 and w2 are disconnected, so uncertainty in the agent’s knowledge
is completely removed. As a result, at that point, she will be able to make a decision whether
she should perform the take_right or take_left action.

If, on the contrary, two worlds w,w′ are connected (w,w′) ∈ K in some epistemic model, we
say that they are indistinguishable at run-time. This expresses a higher degree of uncertainty,
since the agent has no way to tell which world corresponds to “reality” either before or during

the plan execution. For instance, at modelM1 we have (w1, w2) ∈ K1 meaning that, during the
plan execution, the agent will not be able to decide (at that point) whether actions take_right
or take_left will work.

Until now, we have only described the information captured by epistemic models and pre-
sented an example with transitions among them, but did not specify how those transitions
were obtained. For that purpose, we will only assume, by now, the existence of a pair of generic
functions called updating evaluation de�ned below.

De�nition 2 (Updating evaluation). Given a set of models M over set of worlds W and a set of up-
dating objects O, an updating evaluation is a pair 〈⊗,R〉 of partial functions⊗ : M×O −→M
andR : M×O −→ 2W×W satisfyingR(M, o) ⊆ D(W)×D(⊗(M, o)).

Function ⊗ takes an initial modelM and some updating object o and provides a successor
modelM′ = ⊗(M, o). We will usually write ⊗ in in�x notation and assume that it is left
associative so thatM⊗o stands for⊗(M, o) andM⊗o1⊗o2 stands for (M⊗o1)⊗o2. Relation
R(M, o) matches worlds from the initial modelM and its successor modelM′ =M⊗ o. We
will also writeRM,o instead ofR(M, o).

At this point, we have all the elements for de�ning the satisfaction of dynamic epistemic
formulas.

De�nition 3 (Satisfaction). Let 〈⊗,R〉 be an updating evaluation. Then, given an epistemic
model M = 〈W,K, V 〉 and world w ∈ W , satisfaction of formulas is given by the following
recursive de�nition:

– M, w 6|= ⊥,

– M, w |= p i� p ∈ V (w),

– M, w |= ϕ1 ∧ ϕ2 i�M, w |= ϕ1 andM, w |= ϕ2,

– M, w |= ϕ1 ∨ ϕ2 i�M, w |= ϕ1 orM, w |= ϕ2,

– M, w |= ϕ1 → ϕ2 i�M, w 6|= ϕ1 orM, w |= ϕ2,

– M, w |= ∼ϕ i�M, w 6|= ϕ,

– M, w |= Kϕ i�M, w′ |= ϕ for all w′ with (w,w′) ∈ K, and

– M, w |= [o]ϕ i�M⊗ o andRM,o are de�ned andM⊗ o, w′ |= ϕ
holds for all w′ with (w,w′) ∈ RM,o.

As usual, we write M |= ϕ i� M, w |= ϕ for every world w ∈W . Furthermore, given a
theory Γ, we writeM |= Γ i�M |= ϕ for every formula ϕ ∈ Γ. We say that theory Γ entails
formula ψ, also written Γ |= ψ, i�M |= Γ impliesM |= ψ for any epistemic modelM∈M.

It is easy to see that the semantics for the dynamic-free fragment of the language (i.e., without
[·] operator) corresponds to modal logic S5 (see [56] for instance).

Dynamic Epistemic Logic with Event Model Updates: DEL[E]

Let us now see how these de�nitions apply to the case in which updating objects are event
models [36]. The following is an adaptation of the de�nition from [21]. A �rst peculiarity of
event models is that, when making an updateM⊗ o = M′, the resulting epistemic model
M′ uses world names of the form (w, e) where w is a world from the updated epistemic
model M and e is a world (or event) from the event model o. For this reason, along this
section, we assume that the global set of available world names W is closed under formation
of pairs. In other words, W satis�es (w,w′) ∈ W for all w,w′ ∈ W. For instance, given
a unique “atomic” world name w0 ∈ W, the set W would contain in�nitely many pairs
(w0, w0), ((w0, w0), w0), (w0, (w0, w0)), . . . and so on.

De�nition 4 (Event Model). An event model overP andW is a quadruple E = 〈E,K, pre, post〉
where

– E ⊆W is a �nite set of worlds called events,

– pre : E −→ LE(P) assigns to each event a precondition, and

– post : E −→ (P −→ LE(P)) assigns to each event a postcondition, for some propositions
in P.

– K ⊆ E × E

By D(E) = E we denote the domain of E . A pair 〈E , e〉 with e ∈ E is called a pointed event
model.

De�nition 5 (Event updating evaluation). Let M = 〈W,K, V 〉 be an epistemic model and
E = 〈E, K̂, pre, post〉 an event model, both over P and W. The product update M ⊗ E def=
〈W ′,K′, V ′〉 is another epistemic model where

– W ′ = { (w, e) ∈W × E | M, w |= pre(e) } ⊆W is a set of worlds,

– K′ = { ((w1, e1), (w2, e2)) ∈W ′ ×W ′ | (w1, w2) ∈ K and (e1, e2) ∈ K̂ },

– V ′((w, e)) = { p ∈ P | M, w |= post(e)(p) } for every (w, e) ∈W ′,

Given a pointed event model 〈E , e〉, the event updating evaluation is a pair 〈⊗,R〉 with

– M⊗ 〈E , e〉 def= M⊗E

– R(M, 〈E , e〉) def= { (w,w′) ∈W ×W ′ | w′ = (w, e) }.

For simplicity, we will usually write [E , e]ϕ instead of [〈E , e〉]ϕ. We will also use the following
shorthands

[E]ϕ def=
∧

e∈D(E)

[E , e]ϕ 〈E〉ϕ def= ∼[E]∼ϕ

The following result shows that, indeed, the semantics described above coincides with the
semantics from [21] for the case of event models.

Proposition 1. LetM be an epistemic model, w ∈ D(M) be a world inM, 〈E , e〉 be pointed
event model and ϕ ∈ LE(P) be a formula. Then,

– M, w |= [E , e]ϕ i�M, w |= pre(e) impliesM⊗E , (w, e) |= ϕ,

Proof. By de�nition, we haveM, w |= [E , e]
i�M⊗ 〈E , e〉, w′ |= ϕ for all w′ with (w,w′) ∈ RM,〈E,e〉
i�M⊗E , w′ |= ϕ for all w′ with (w,w′) ∈ RM,〈E,e〉.
Note now that, by de�nition, we have eitherRM,〈E,e〉 ∩ ({w} ×D(M⊗E)) = {(w, (w, e))}
orRM,〈E,e〉 ∩ ({w} ×D(M⊗E)) = ∅. Hence, the above holds
i�M⊗E , (w, e) |= ϕ orRM,〈E,e〉 ∩ ({w} ×D(M⊗E)) = ∅,
i�M⊗E , (w, e) |= ϕ orM, w 6|= pre(e)
i�M, w |= pre(e) impliesM⊗E , (w, e) |= ϕ.

The following result helps undertanding the semantics of (non-pointed) event models.

Proposition 2. LetM be an epistemic model,w ∈ D(M) be a world inM, E be an event model
and ϕ ∈ LE(P) be a formula. Then,

– M, w |= [E]ϕ i�M⊗E , (w, e) |= ϕ for every e ∈ D(E) such thatM, w |= pre(e),

– M, w |= 〈E〉ϕ i�M, w |= pre(e) andM⊗E , (w, e) |= ϕ for some e ∈ D(E).

Proof. The second statement follows directly from its de�nitions. For the third, we haveM, w |=
〈E〉ϕ i�M, w |= ∼[E]∼ϕ i�M, w 6|= [E]∼ϕ
i�M, w |= pre(e) does not implyM⊗E , (w, e) |= ∼ϕ for some e ∈ D(E)
i�M, w |= pre(e) andM⊗E , (w, e) 6|= ∼ϕ for some e ∈ D(E)
i�M, w |= pre(e) andM⊗E , (w, e) |= ϕ for some e ∈ D(E).

Going back to our running example, Figure 2 depicts the event models corresponding to the
actions of Example 1. For instance, Figure 2a depicts the event model of the action take_left
with a single event e1 whose precondition is v ∧ ∼d and whose postcondition {d 7→ ∼r}
states that, in the next state, d is assigned the truth value that formula ∼r had in the previous
state. More interestingly, Figure 2c depicts the event model of the action flick which has two
events e1 and e2 with the same postcondition but di�erent preconditions. The precondition of
e1 makes it applicable when the thief is in the vault and the diamond is on the right pedestal
while the precondition of e2 is analogous but for the left pedestal.1 In this sense, when the action
flick is executed in the epistemic modelM1 (Figure 1b), it follows that only w1 satis�es the
preconditions of e1 and only w2 satis�es the preconditions of e2. As a result, we can see that
M1 ⊗ flick has two worlds, that is, D(M1 ⊗ flick) = {(w1, e1), (w2, e2)}. Furthermore,
since events e1 and e2 are disconnected, we also get that worlds (w1, e1) and (w2, e2) are
disconnected. In fact, the epistemic modelM1⊗flick is isomorphic to the modelM2 depicted
in Figure 1c and can be obtained just by renaming each world wi inM2 as (wi, ei).

1Note how we must specify the diamond’s location in both preconditions, although the only real physical
requirement for flick is being inside the vault. This need for specifying unrelated preconditions may obviously
become a representational problem.

e1 : 〈v ∧ ∼d, {d 7→ ∼r}〉

(a) take_left

e1 : 〈v ∧ ∼d, {d 7→ r}〉

(b) take_right

e1 : 〈v ∧ r, {l 7→ >, s 7→ >}〉

e2 : 〈v ∧ ∼r, {l 7→ >, s 7→ >}〉

(c) flick

e1 : 〈v ∨ ∼l, {v 7→ ∼v}〉

e2 : 〈∼v ∧ l ∧ r, {v 7→ ∼v, s 7→ >}〉

e2 : 〈∼v ∧ l ∧ ∼r, {v 7→ ∼v, s 7→ >}〉

(d) move

Figure 2: Event models corresponding to the actions of Example 1. The first element of the pair assigned
to each world corresponds to its preconditions while the second one corresponds to its postconditions.
For instance, in (a) the precondition is v ∧ ∼d and the postcondition {d 7→ ∼r}. This postcondition
means that, in the next state, d takes the value that formula ∼r had in the previous state.

e1 : 〈v ∧ r, {l 7→ >, s 7→ >}〉

e2 : 〈v ∧ ∼r, {l 7→ >, s 7→ >}〉

(a) flick′

w1 : vlrsd

M′
2

w2 : vlrsd

(b)

Figure 3: (a) Event model corresponding to a variation of the action flick of Example 1 without
observing the position of the diamond. (b) Epistemic model obtained a�er executing the action flick′

in the modelM1.

Note that the existence of two disconnected events in the action flick encodes the observa-
tion that happens when the light is turned on, that is, the agent obtains the knowledge about
the actual place of the diamond. For instance, if we consider the action flick′ depicted in
Figure 3a, and obtained from the action flick by connecting events e1 and e2, we can see that
M1 ⊗ flick′ is isomorphic to the epistemic modelM′2 depicted in Figure 3b. ModelM′2 only
di�ers fromM2 in that worlds w1 and w2 are now connected, revealing that the agent cannot
tell where is the diamond. In other words, flick′ encodes the same ontic changes in the world
than flick but does not capture the agent’s observation about the position of the diamond.

Finally, Figure 4a (modelM3) corresponds to an state where the thief is inside the vault
with the diamond in her possession. Intuitively, this model represent the result of executing
action take_left or take_right according to the agent’s knowledge about the position of the
diamond, whereas Figure 4b represents modelM4 =M3 ⊗ move, that is, the result of moving
(outside the vault) afterwards.

w1 : vlrsd

M3

w2 : vlrsd

(a)

w1 : vlrsd

M4

w2 : vlrsd

(b)

Figure 4: Epistemic models representing (a) the state corresponding to execution of action take_left
or take_right according to the agent’s knowledge about the position of the diamond and (b) the result
of executing move onM3 in (a).

Planning in Answer Set Programming

In this subsection, we informally describe the ASP methodology for representing problems of
classical planning: for a more formal approach we refer to [45, 57].

Our purpose is, by now, merely introductory, trying to illustrate the main representational
features of ASP planning that are relevant for the current discussion. For this reason, we delay
the introduction of a formal semantics for later on, when epistemic ASP is introduced.

ASP speci�cations or logic programs are sets of rules of the form:

a← b1, . . . , bn,not c1, . . . ,not cm

where ← is a reversed implication, so its left hand side is called the rule head and its right
hand side receives the name of rule body. The rule head a is a proposition or the symbol ⊥:
when the latter happens, the rule is a constraint forbidding that the body holds. The elements
in the body (bi and not cj) are called literals, where bi and cj are propositions. The ordering
among literals is irrelevant: in fact, commas just stand for conjunctions. Operator not represents
default negation: we read not cj as “there is no evidence on cj” or “there is no way to prove cj”.
We will also use non-deterministic rules of the form:

m {a1; . . . ; ak} n← Body

where m,n ≥ 0 meaning that, when Body holds, we can arbitrarily add a subset of atoms from
{a1, . . . , ak} of cardinality c with n ≤ c ≤ m. ASP allows a second kind of negation called
strong or explicit that we will represent ∼p. From a practical point of view, we can assume that
“∼p” is a new kind of atom and that models cannot make p and ∼p true simultaneously.

For a simple representation of rules describing transitions we partly adopt the syntax of [57]
and assume that, for each proposition p, we handle a second atom “•p” that stands for p at the
immediately previous situation. In temporal ASP, actions are represented as regular propositions
in P: the rest of non-action propositions in P are called �uents.

Taking all these considerations, the behaviour of action take_left can be encoded in ASP
as the following three rules:

d ← take_left (1)

⊥ ← take_left,∼•v (2)

⊥ ← take_left, •r (3)

where (1) describes its direct e�ect (grasping the diamond) whereas the other two rules describe
the preconditions: (2) forbids executing take_left when the thief was not in the vault and (3)
forbids its execution when the diamond is in the right pedestal. Analogously, the following
three rules encode the action take_right:

d ← take_right (4)

⊥ ← take_right,∼•v (5)

⊥ ← take_right,∼•r (6)

Similarly, actions flick and move are respectively represented by the rules:

l← flick (7)

⊥ ← flick,∼•v (8)

v ← move,∼•v (9)

∼v ← move, •v (10)

Rule (7) states the postcondition of flick, that is, the light is turned on, while rule (8) states
its precondition, that is, we forbid its execution when being outside vault. Rules (9) and (10)
together state the postconditions of move: its execution just �ips the truth value of v.

To illustrate the use of indirect e�ects, we can just assert that seeing the diamond (s) just
depends on being in the vault (v) with the light on (l), regardless of the actions that have been
performed to reach that situation. This is naturally captured by the single ASP rule:

s← v, l (11)

Default negation allows a natural representation of the inertia law, that is, a �uent normally
remains unchanged, unless there is evidence on the contrary. We divide the set of �uents into
inertial FI = {v, l, r, d} and non-inertial �uents FN = {s}. Inertia is then guaranteed by the
pair of rules:

f ← •f,not ∼f (12)

∼f ← ∼•f,not f (13)

for each inertial �uent f ∈ FI . In our running example, the �uent (s) is considered false by
default, that is, the following rule:

∼s← not s (14)

sating that, unless (s) is proved, we should consider that its explicit negation (∼s) is added to
the set of conclusions.

If we consider now the following simpli�cation of Example 1 where the value of all �uents in
the initial situation are known, we can use ASP to obtain a plan to achieve the thief’s goal.

Example 2 (Example 1 continued). Consider now the case where the thief is outside the vault
(∼v) and already knows the Pink Panther is inside the vault on the right (r) pedestal.

1 #program dynamic.
d :- take_left.
:- take_left, not 'v.
:- take_left, not -'r.
d :- take_rigth.

6 :- take_rigth, not 'v.
:- take_rigth, not 'r.
l :- flick.
:- flick, not 'v.
v :- move, -'v.

11 -v :- move, 'v.
s :- v,l.
v :- 'v, not -v.
-v :- -'v, not v.
d :- 'd, not -d.

16 -d :- -'d, not d.
l :- 'l, not -l.
-l :- -'l, not l.
r :- 'r, not -r.
-r :- -'r, not r.

21 {take_left; take_rigth; flick; move}1.

#program always.
-s :- not s.

26 #program initial.
-v. r. -d. -l.

#program final.
:- not -v.

31 :- not d.

#show take_left/0.
#show take_rigth/0.
#show flick/0.

36 #show move/0.

Listing 1: Program corresponding to Example 2 in the syntax of the solver telingo.

Listing 1 shows the full encoding representing Example 2 in the syntax of the ASP solver
telingo.2 In this syntax, ← is represented as :-, •p as 'p and ∼p as -p. By copying that
encoding into a �le called pink.lp and executing “telingo pink.lp” we can obtain a plan
for this example.

As we said before, an important di�erence between ASP and event models is the treatment
of indirect e�ects. In the example, note how s was captured by the ASP rule (11), which only
depends on other �uents (v and l) but does not refer to the original actions that caused their

2https://github.com/potassco/telingo.

https://github.com/potassco/telingo

values. There is no �exible way to express this feature when using event models: the value of s
must be expressed as a direct e�ect of actions flick and move, that respectively determine the
values of l and v. If new actions could alter the values of those �uents, directly or indirectly,
then their e�ect on s should also be included in their post-conditions. This is, in fact, an instance
of the well-known rami�cation problem [58].

The rami�cation problem may also occur for epistemic e�ects, if we are not careful enough
for their treatment. For instance, the encoding of Example 1 in [21] did not use our �uent
s (where the rami�cation is evident), but transferred the problem to the epistemic e�ect of
knowing the position of the diamond (r). Again, this epistemic e�ect must be speci�ed as a
direct consequence of some action, something that does not always seem reasonable.

In the rest of the paper, we develop an extension of DEL and ASP, that we denote DEL[ASP]
where the ontic and epistemic e�ects of actions can be described both in a direct or indirect
way, as needed. In particular, in DEL[ASP], the observation of the diamond position when the
thief is in the illuminated vault can be expressed by the following rule analogous to (11):

O r ← v, l (15)

Here, O r is a new construct whose intuitive meaning is that “the actual value of the �uent r is
observed (by the agent).” Note that we just replace the �uent s in (11), whose intuitive meaning
is that the agent sees the position of the diamond, by this new construct O r, which makes this
observation a�ect the agent’s beliefs.

Epistemic Logic Programs

As explained before, we will use FAEEL for the interpretation of epistemic speci�cations, the
epistemic extension of ASP. FAEEL inherits both the ASP capabilities for knowledge representa-
tion and the AEL capabilities for introspective reasoning. For the sake of coherence, we adapt
the de�nitions of [51] to the use of Kripke structures. We also add strong negation [52, 59] to
FAEEL, which for simplicity, is restricted to be used only in front of atoms, something that
su�ces for the goals of this paper and is usual in the ASP literature [43, 60].

Autoepistemic formulas are de�ned according to the following grammar:

ϕ ::= ⊥ | p | ∼p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Lϕ

where p ∈ P is a proposition.
We assume that ASP notation is transformed into its logical counterpart: not F is represented

as ¬F , commas in the body are replaced by conjunctions and rules G← F are written from
left to right F → G.

Intuitively, the new construct, Lϕ, is read as “it is reasonable (for the planning agent) to
believe ϕ.” Weak or intuitionistic negation is de�ned as usual: ¬ϕ def= ϕ→ ⊥. The knowledge
modality is de�ned as true belief: Kϕ def= ϕ∧Lϕ. We also introduce the following abbreviations:

U p def= ¬p ∧ ¬∼p
O p def= (p→ L¬¬p) ∧ (∼p→ L¬¬∼p) ∧ (U p→ L¬¬U p)

whose respective intuitive meanings are that the value of proposition p ∈ P is unde�ned and
that the actual value of proposition p ∈ P is observed. Note that when an atom p is observed,
the agent’s beliefs have to agree with the actual value of the atom p. The use of double negation
here implies that only the agent’s beliefs will be modi�ed, without providing any justi�cation
for believing p. Besides, we assume all previous abbreviations too, that is, (ϕ← ψ) def= (ψ → ϕ),
ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ), and > def= ⊥ → ⊥. An autoepistemic theory Γ is a set of
autoepistemic formulas as de�ned above. When a theory is a singleton, we will usually write
just ϕ instead of {ϕ}.

A literal L is either a proposition p ∈ P or a proposition preceded by strong negation ∼p
and by Lit def= P ∪ {∼p | p ∈ P} we denote the set of all literals over the signature P.

We de�ne next an (autoepistemic) HT-model, as a combination of modal epistemic logic with
the logic of here-and-there (HT) [61], an intermediate logic with two intuitionistic worlds, h
(standing for “here”) and t (read as “there”) satisfying h ≤ t.

De�nition 6 (HT-Model). Given a set of propositional symbols P, an HT-model is a quadruple
M = 〈W,K, V h, V t〉 where

– W is a set of worlds,

– K ⊆W ×W is an accessibility relation on W , and

– V x : W −→ 2Lit is a valuation with x ∈ {h, t} such that V h(w) ⊆ V t(w) for all w ∈W .

D(M) = W denotes the domain ofM. A belief HT-model is an HT-model where K = K × K′
with K′ = K \ {w0} for some distinguish world w0 ∈ K.

A HT-model M = 〈W,K, V h, V t〉 is called total i� V h = V t. Furthermore, by Mt def=
〈W,K, V t, V t〉 we denote the total model corresponding toM. Satisfaction of autoepistemic
formulas is then given by the following recursive de�nition:

– M, w 6|= ⊥,

– M, w |= L i� L ∈ V h(w) for any L ∈ Lit ,

– M, w |= ϕ1 ∧ ϕ2 i�M, w |= ϕ1 andM, w |= ϕ2,

– M, w |= ϕ1 ∨ ϕ2 i�M, w |= ϕ1 orM, w |= ϕ2,

– M, w |= ϕ1 → ϕ2 i� bothM, w 6|= ϕ1 orM, w |= ϕ2 and
Mt, w 6|= ϕ1 orMt, w |= ϕ2,

– M, w |= Lϕ i�M, w′ |= ϕ for all w′ with (w,w′) ∈ K

As usual, we say thatM is an HT-model of some theory Γ, in symbolsM |= Γ, i�M, w |= ϕ
for every world w ∈ D(M) and every formula ϕ ∈ Γ. As mentioned before, when Γ = {ϕ}
is a singleton we will omit the brackets, so thatM |= ϕ stands forM |= {ϕ} and holds i�
M, w |= ϕ for every world w ∈ D(M).

De�nition 7 (Bisimulation between HT-models). LetM1 = 〈W1,K1, V
h

1 , V
t

1 〉 andM2 = 〈W2,K2, V
h

2 , V
t

2 〉
be two HT-models. Given some binary relation Z ⊆W1 ×W2, we writeM1 �Z M2 i�

– every (w1, w2) ∈ Z satis�es V t(w1) = V t(w2) and V h(w1) ⊆ V h(w2),

– for every (w1, w
′
1) ∈ K1, there is (w2, w

′
2) ∈ K2 such that (w′1, w

′
2) ∈ Z ,

– for every (w2, w
′
2) ∈ K2, there is (w1, w

′
1) ∈ K1 such that (w′1, w

′
2) ∈ Z .

We writeM1 � M2 i� there is a total relation Z s.t.M1 �Z M2. We also say thatM1 and
M2 are bisimilar, in symbols M1 ≈ M2, i� there is a total relation Z s.t M1 �Z M2 and
M2 �Z M1. As usual, we writeM1 ≺M2 i�M1 �M2 andM1 6≈ M2.

De�nition 8 (Equilibrium model). A total belief HT-modelM of some theory Γ is said to be an
equilibrium model of Γ i� there is no other belief HT-modelM′ of Γ such thatM′ ≺M.

Given some information cellM = 〈W,K, V 〉 and some set of literals I ⊆ Lit , byM+ I we
denote the total belief HT-modelM′ = 〈W ′,K′, V ′, V ′〉whereW ′ = {w0} ∪W withw0 /∈W ,
K′ = W ′ ×W and V ′ : W ′ −→ 2Lit satis�es V ′(w) = V (w) for all w ∈W and V ′(w0) = I .

De�nition 9 (World view). Given a set of propositions P, an information cellM = 〈W,K, V 〉
over Lit is called a world view of some theory Γ i� the following two conditions hold:

– M+ V (w) is an equilibrium model of Γ, for every world w ∈W ,

– M+I is not an equilibrium model of Γ for every set of literals I ⊆ Lit satisfying I 6= V (w)
for all w ∈W , and

– either p /∈ V (w) or ∼p /∈ V (w) for all p ∈ P and w ∈W .

We say that a theory Γ is consistent i� it has some world view and by WV[Γ] we denote the set of
all world views of Γ.

Example 3 (Example 1 continued). For instance, the formula

ϕ0 = ∼v ∧ ∼l ∧ (r ∨ ∼r) ∧ ∼s ∧ ∼d (16)

has a unique world view that is depicted in Figure 5. Note that every propositional theory has a
unique world view [51] that corresponds to the set of all answer sets of the theory. Furthermore,
since ϕ0 contains no negation, its answer sets coincide with its minimal classical models when we
treat each strong negated literal ∼p as a new atom.

Dynamic Epistemic Logic with ASP Updates: DEL[ASP]

In this section, we present the major contribution of this paper, DEL[ASP], an instance of the
abstract DEL framework where updating objects correspond to logic programs. Our motivation is
twofold: on the one hand, to allow unrestricted use of indirect e�ects (both ontic and epistemic);
on the other hand, to preserve the ASP representation of non-epistemic planning problems
without need of any adjustment or modi�cation. We illustrate these two objectives through our
running example.

w1 : {∼v,∼l, r,∼s,∼d}

Mwv
0

w2 : {∼v,∼l,∼r,∼s,∼d}

Figure 5: Unique world view of the formula ϕ0 = ∼v ∧ ∼l ∧ (r ∨ ∼r) ∧ ∼s ∧ ∼d.

Characterising information cells in FAEEL

Let us start by showing how any information cell can be represented by some autoepistemic
formula in FAEEL. Note that world views are an information cell over Lit , so they represent a
kind of three valued epistemic models where each proposition p can be true p ∈ V (w), false
∼p ∈ V (w) or unde�ned p,∼p /∈ V (w). We will show here how (two-valued) information
cells over P can be simply represented as propositional formulas in FAEEL, allowing to map
these three valued epistemic models into standard two valued ones.

Example 4 (Example 3 continued). Continuing with our running example, we can see now that
this model satis�es either p ∈ V (w) or ∼p ∈ V (w) for every proposition p ∈ {v, l, r, s, d} and
world w ∈ {w1, w2}. Hence, we can map this model into a (two-valued) information cell by con-
sidering as true every proposition p ∈ V (w) and as false every proposition satisfying∼p ∈ V (w).
It is easy to see that the obtained information cell is precisely the modelM0 depicted in Figure 1a,
that is, the epistemic model corresponding to the initial situation of Example 1. In this sense, we
can use the formula ϕ0 to represent the initial state of this example.

De�nition 10. Given some information cellM = 〈W,K, V 〉, its characteristic (autoepistemic)
formula is ϕM def=

∨
w∈W ϕw

M where ϕw
M is de�ned as follows:

ϕw
M

def=
(∧

p∈V (w)

p
)
∧
(∧

p∈P\V (w)

∼p
)

De�nition 11 (Bisimulation). Given two modelsM1 = 〈W1,K1, V1〉 andM2 = 〈W2,K2, V2〉,
we say that they are bisimilar, in symbols M1 ≈ M2, if and only if 〈W1,K1, V1, V1〉 ≈
〈W2,K2, V2, V2〉.

De�nition 12. Given a set of propositionsP ⊆ P, we say that an HT-modelM = 〈W,K, V h, V t〉
overLit isP -classical i� every worldw ∈W and proposition p ∈ P satisfy that either p ∈ V h(w)
or ∼p ∈ V h(w) holds. A theory Γ is P -classical i� it is consistent and, in addition, every world
view is P -classical.

De�nition 13. Given a set of propositionsP ⊆ P and anyP -classical total HT-modelM = 〈W,K, V t, V t〉
overLit , byM ↓ P = 〈W,K, V 〉we denote the model overP whereV : W −→ 2P is a valuation
satisfying V (w) = V t(w) ∩ P for every world w ∈W .

Proposition 3. LetM be an information cell over P. Then, ϕM has a unique world viewM′
and we have thatM andM′ ↓ P are bisimilar.

w1 : •{∼v,∼l, r,∼s,∼d}
∪ {move, v,∼l, r,∼s,∼d}

Mwv
1

w2 : •{∼v,∼l,∼r,∼s,∼d}
∪ {move, v,∼l,∼r,∼s,∼d}

Figure 6: Unique world view of the program Γ1.

Proof. First note that, since ϕM is a propositional formula, it has a unique world viewM′ [51,
Proposition 3]. LetM = 〈W,K, V 〉 andM′ = 〈W ′,K′, V ′〉. Then, we have that w′ ∈ W ′ i�
V ′(w′) is a stable model of ϕM. Note also that the stable models of ϕM are exactly its classical
models understood as sets of literals. Hence, for every w′ ∈W ′, there is some w ∈W such that
V ′(w′) = V (w)∪∼(P\V (w)) and vice-versa. Consequently,M andM′ ↓ P are bisimilar.

Example 5 (Example 4 continued). Continuing with our running example, we have ϕM0 =
ϕw1
M0
∨ ϕw2
M0

with

ϕw1
M0

= ∼v ∧ ∼l ∧ r ∧ ∼s ∧ ∼d
ϕw2
M0

= ∼v ∧ ∼l ∧ ∼r ∧ ∼s ∧ ∼d

By applying distributivity of conjunctions over disjunctions, it is easy to see that ϕM0 is classically
(and intuitionistically) equivalent to (16). As a result,Mwv

0 is the unique world view of ϕM0 and,
as expected from Proposition 3, it can be checked that it satis�esMwv

0 ↓ P =M0.

Epistemic Model Updates with FAEEL

In this section, we show how autoepistemic equilibrium logic can be used to de�ne epistemic
model updates just by using an extended signature. Given a set of propositions S ⊆ P, we de�ne
•S def= { •p | p ∈ S ∩ P } and Pbi = P ∪ •P where •p intuitively means that p is true in the
previous state. It will also be convenient to use • in front of any propositional formula ϕ such
that •ϕ is as an abbreviation for the formula obtained by writing • in front of every proposition
occurring in ϕ.

Example 6 (Example 3 continued). Let Γpink be a theory containing formulas (1)-(15) and let
Γ1 = Γpink ∪ {move, •ϕM0}. This program has a unique world view shown in Figure 6. Note
that, if we disregard all the information corresponding to the previous situation (that is all literals
preceded by •) and the action move, then we have the same information as the epistemic modelM1

in Figure 1a. In other words, Γ1 encodes the transition that occurs between the epistemic modelsM0

andM1 when executing action move.

As shown in the example above, we can represent the transition between two epistemic
models as an autoepistemic theory. Let us now formalise this intuition. We begin introducing
some auxiliary de�nitions.

Given a set of epistemic models S = {M1,M2, . . . } where eachMi is a model over a set
of atoms P of the formMi = 〈Wi,Ki, Vi〉 and satisfying Wi ∩Wj = ∅ for allMi,Mj ∈ S
with i 6= j, by

⊔
S def= 〈W,K, V 〉, we denote an epistemic model where

– W ′ =
⋃
{Wi | Mi ∈ S },

– K′ =
⋃
{ Ki | Mi ∈ S }, and

– V ′ : W ′ −→ 2P with V ′(w) = Vi(w) for all w ∈Wi and allMi ∈ S .

As usual, if S = {M1,M2}, we just writeM1 tM2 instead of
⊔
{M1,M2}.

De�nition 14. Let P be a set of atoms and Γ be some P -classical autoepistemic theory. Then, by
mwv(Γ, P) def=

⊔
{M ↓ P | M ∈ WV[Γ] } we denote the epistemic model capturing all the world

views of Γ projected into the vocabulary P . If Γ is not P -classical, we assume that mwv(Γ, P) is
not de�ned.

In other words, for every P -classical autoepistemic theory Γ, mwv(Γ, P) is the two-valued
epistemic model that has an information cell for every world view of Γ such that the valuation
of every proposition p ∈ P in every world in mwv(Γ, P) corresponds to the valuation of that
proposition in that same world in the corresponding world view. Recall that, in a P -classical
theory, all its worlds views satisfy either p or ∼p for every proposition p ∈ P . This is necessary
so it is possible to map three-valued world views into two-valued epistemic models. We could
remove this restriction by allowing three-valued epistemic models, but we have decided to stay
as close as possible to the original DEL semantics, which is only two-valued.

Example 7 (Example 6 continued). Note that if P ⊆ P, then the epistemic model mwv(Γ, P)
always corresponds to the current situation, discarding all information about the previous one. In
this sense, if we consider the program Γ1 of Example 6 and the epistemic modelM1 of Figure 1b,
we have that mwv(Γ1, P) =M1 where P = {v, d, r, l, s} is the set of �uent of Example 1.

As a further example, consider now the theory Γ2 = Γpink ∪{flick, •ϕM1}. Then, Γ2 has two
world views which correspond to the two cell informations in the epistemic modelM2 depicted in
Figure 1c. This explains why we need to join together all the world views of the theory in a single
epistemic model. Every world view, which becomes an information cell, represents the knowledge
the agent will have after executing the action flick, while the set of all world views represent the
knowledge the agent had before executing it.

Let us now de�ne the transition between states borrowing the notion of product update from
DEL.

De�nition 15. Given an information cell M over P ⊆ P and a theory Γ over Pbi such that
Γ ∪ {•ϕM} is Pbi-classical, we de�ne:

– the product update ofMwith respect to Γ as the epistemic modelM⊗ Γ def= mwv(Γ ∪ {•ϕM}, P).

– the binary relationRM,Γ ⊆ D(M)×D(M⊗Γ) s.t. (w,w′) ∈ RM,Γ i�M′, w′ |= •ϕw
M

withM′ = mwv(Γ ∪ {•ϕM}, •P).

Example 8 (Example 7 continued). It is now easy to see that

M0 ⊗ Γ3 = mwv(Γ3 ∪ {•ϕM0}, P) = mwv(Γ1, P) =Mwv
1 ↓ P =M1

M1 ⊗ Γ4 = mwv(Γ4 ∪ {•ϕM0}, P) = mwv(Γ2, P) =M2

w1 : vlrsd

M′
0

(a)

w1 : vlrsd

M′
0 ⊗ Γ3

(b)

w1 : vlrsd

M′
0 ⊗ Γ3 ⊗ Γ5

(c)

w1 : vlrsd

M′
0 ⊗ Γ3 ⊗ Γ5 ⊗ Γ3

(d)

Figure 7: Epistemic models corresponding execution of the sequence of actions
〈move, take_right, move〉 in initial state of Example 2, represented here by the model M′

0 in
(a).

with Γ3 = Γpink∪{move} and Γ4 = Γpink∪{flick} respectively being the theories representing
the execution of the action move and flick according to program Γpink ,Mwv

1 the epistemic model
depicted in Figure 6 andM1 andM2 the epistemic models depicted in Figure 1b and Figure 1c. In
other words,M1 is the result of executing action move in epistemic modelM0 according to the de-
scription provided by Γpink . Furthermore, for each worldw ∈ {w1, w2}, we haveMwv

1 , w |= •ϕw
M.

In its turn, this impliesMwv
1 ↓ •P, w |= •ϕw

M and, thus, that RM0,Γ3 = {(w1, w1), (w2, w2)}
is the identity3, that is, it maps each world inM0 to a world inM1 with the same name. Simi-
larly,M2 is the result of executing the action flick in the epistemic modelM1 according to the
description provided by Γpink and we can check thatRM1,Γ4 is also the identity.

We de�ne now the updating evaluation for ASP epistemic speci�cations for epistemic models.
In a nutshell, this evaluation is the result of combining the evaluation for each individual
information cell in the model.

De�nition 16 (ASP updating evaluation). Given any epistemic modelM and theory Γ, the ASP
updating evaluation is a pair 〈⊗,R〉 satisfying

M⊗ Γ def=
⊔
{M′ ⊗ Γ | M′ ∈ cell(M) }

RM,Γ
def=

⋃
{M′ ⊗ Γ | M′ ∈ cell(M) }

We can now directly apply De�nition 3 to obtain the satisfaction of DEL[ASP] formulas, that
is, DEL formulas in which the updating objects are autoepistemic theories.

Example 9 (Example 2 continued). Let us now resume the simpli�ed version of our running ex-
ample introduced in Example 2. In this case, the initial situation can be represented by an epistemic
modelM′0 depicted in Figure 7a. Then, it can be checked that

M′0 |= K[Γ3][Γ5][Γ3](∼v ∧ d)

holds with Γ5 = Γpink ∪ {take_right}. In other words, the thief knows that after executing
the sequence of actions 〈move, take_right, move〉 she will be out of the vault with the diamond.

3Note that, for the sake of clarity, the names of worlds have been chosen so that RM0,Γ3 is the identity, but
this is not necessarily the case. In fact, worlds from M0 and M1 could be disjoint or even be switched so that w1

could be called w2 and vice-versa.

w1 : vlrsd

M1 ⊗ Γ6

w2 : vlrsd

(a)

w1 : vlrsd

M1 ⊗ Γ6 ⊗ Γ7

w2 : vlrsd

(b)

Figure 8: Epistemic models corresponding to (a) the execution of try_take_left in the modelM1 =
M0 ⊗ Γ6 and (b) the execution of try_take_right in the resulting state.

That is, this sequence of actions is a valid plan that achieves the goal of getting out of the vault
with the diamond regardless of the actual initial situation. This means that this is a conformant
plan.

For the sake of completeness, Figures 7b, c and d respectively depict the epistemic modelsM′0⊗
Γ3,M′0 ⊗ Γ3 ⊗ Γ5 andM′0 ⊗ Γ3 ⊗ Γ5 ⊗ Γ3.

Example 10 (Example 1 continued). As a further example, consider another variation of Exam-
ple 1 where we have actions try_take_left and try_take_right that are similar to take_left
and try_take_left, but that can be executed even when the diamond is not in the right location,
having no e�ect in such case. This can be represented by a theory Γ′pink obtained from Γpink by
replacing rules (1-6) by the following rules:

d ← try_take_left ∧ •∼r (17)
⊥ ← try_take_left ∧ ∼•v (18)
d ← try_take_right ∧ •r (19)
⊥ ← try_take_right ∧ ∼•v (20)

Now, we can check that

M0 |= K[Γ3][Γ6][Γ7][Γ3](∼v ∧ d) (21)

holds with Γ6 = Γ′pink ∪ {try_take_left} and Γ7 = Γ′pink ∪ {try_take_right}. Recall that
M0⊗Γ3 =M1 is the epistemic model depicted in Figure 1a. We also can check thatM0⊗Γ3⊗
Γ6⊗Γ7⊗Γ3 =M4 is the epistemic model depicted in Figure 4b. Figure 8 depicts the epistemic mod-
els corresponding to intermediate states. With these models, we can see that (21) holds. That is, the
thief knows that after executing the sequence of actions actions 〈move, try_take_left, try_take_right, move〉
she will be outside the vault with the diamond. Therefore, this sequence of actions constitutes a
conformant plan for this problem. Note that the thief achieves her goal without ever getting to
know where the diamond actually was.

Conditional Planning in DEL[ASP]

In this section, we show how to use DEL[ASP] to represent conditional plans. Let start by
de�ning what a plan is by introducing the following plan language from [21].

De�nition 17 (Plan Language). Given disjunct sets of actions A and �uents F , a plan is an
expression π built with the following grammar:

π ::= a | skip | if Kϕ thenπ elseπ | π;π

where a ∈ A and ϕ is a formula over F . We write (if Kϕ thenπ) as a shorthand for the plan
(if Kϕ thenπ else skip).

As mentioned in the introduction, conditional plans contain “if-then-else” structures that
allow the agent to apply di�erent strategics depending on the knowledge she has obtained
along the execution of the plan. For instance,

move ; flick ; if K r then take_right else take_left ; move (22)

is a conditional plan for the problem laid out in Example 1. It is a plan since, as we will prove next,
the thief eventually takes the diamond out in all possible outcomes, and it is conditional because
the third step contains an alternative decision. If the thief acts according to her knowledge
about the diamond position at that point, the plan is guaranteed to succeed. We will show that
in fact, after executing the actions move and flick, the thief knows that she will know where
the diamond is.

Let us now formalise these intuitive ideas by providing a translation from plans into DEL[ASP]
as follows:

De�nition 18 (Translation). Let A ⊆ P and F ⊆ P be a pair of disjoint sets of propositions,
respectively corresponding to actions and �uents. The translation of a plan π over A applied to
a formula ψ over F , with respect to a theory Γ over Pbi is denoted as Jπ KΓψ and is recursively
de�ned as:

J a KΓ ψ def= 〈Γ ∪ {a}〉> ∧ [Γ ∪ {a}]ψ
J skip KΓ ψ def= ψ

Jπ;π′ KΓ ψ def= Jπ KΓ (Jπ′ KΓ ψ)

J if Kϕ thenπ elseπ′ KΓ ψ def= (Kϕ→ Jπ KΓψ) ∧ (∼Kϕ→ Jπ′ KΓψ)

where ϕ is any formula over F .

As a �rst remark, note that the translation J a KΓ of an action a is always made by adding a
constant theory Γ that de�nes the behaviour of the action domain (�xing the transition relation).
As a result, each elementary action in the plan becomes a complete autoepistemic theory Γ∪{a}
in the translation. When Γ is clear from the context, we will simply write Jπ K instead of Jπ KΓ.
Conjunct [Γ ∪ {a}] ψ requires that ψ becomes true in any resulting state whereas 〈Γ ∪ {a}〉>
ensures that action a is executable indeed.

We check next that the evaluation of plan (22) corresponds to what we have already seen in
Example 8. For the sake of clarity, we gather together all rules of the theory Γpink in Figure 9.

Example 11 (Example 8 continued). Going on with our running example, let us consider
plans Jπ KΓpink simply denoted as Jπ K. We have seen that M0 ⊗ Γ3 = M1 where Γ3 =

d ← take_left (1)

⊥ ← take_left,∼•v (2)

⊥ ← take_left, •r (3)

d ← take_right (4)

⊥ ← take_right,∼•v (5)

⊥ ← take_right,∼•r (6)

l ← flick (7)

⊥ ← flick,∼•v (8)

v ← move,∼•v (9)

∼v ← move, •v (10)

s ← v, l (11)

O r ← v, l (15)

∼s ← not s (14)

v ← •v,not ∼v
∼v ← ∼•v,not v
l ← •l,not ∼l
∼l ← ∼•l,not l
r ← •r,not ∼r
∼r ← ∼•r,not r
d ← •d,not ∼d
∼d ← ∼•d,not d

Figure 9: Theory Γpink : the le� column contains the direct e�ects and preconditions of actions while
the right one contains the indirect e�ects and the inertia axioms.

Γpink ∪ {move} was the theory representing the execution of action move according to Γpink .
We have also seen thatRM0,Γ3 = {(w1, w1), (w2, w2)} is the identity. Similarly, given theory
Γ8 = Γpink ∪ {flick} representing the execution of action flick, we have M1 ⊗ Γ8 =
M2 and RM1,Γ8 = {(w1, w1), (w2, w2)}. Figure 10 shows these three models together with
the corresponding relations RM0,Γ3 and RM1,Γ8 . Looking at this �gure, we observe that
M2, w1 |= v ∧K r and, thus, alsoM2, w1 |= v ∧ (K r ∨K∼r). From this we can conclude
thatM1, w1 |= [Γ8](v ∧ (K r ∨K∼r)). Note thatM1 |= 〈Γ8〉> holds and, thus, it follows

M1, w1 |= J flick K(v ∧ (K r ∨K∼r))

Now we can check thatM0, w1 |= [Γ3]J flick K(v ∧ (K r ∨K∼r)) andM0 |= 〈Γ3〉> hold
and, thus, we can conclude

M0, w1 |= J move K
(
J flick K(v ∧ (K r ∨K∼r))

)
An analogous reasoning, allow us to see that the same holds forM0, w2 and, thus, we obtain

M0 |= KJ move K
(
J flick K(v ∧ (K r ∨K∼r))

)
By de�nition, these two facts imply

M0 |= KJ move; flick K(v ∧ (K r ∨K∼r)) (23)

In other words, the thief knows that, after executing actions move and flick, she will be inside
the vault and that she will know where the diamond is. So she will be ready for the next step:
using her knowledge to decide what is the suitable action to continue the plan.

Let us now continue with the thief’s reasoning process after the execution of the �rst two
actions.

w1 : vlrsd

w2 : vlrsd

M0

w1 : vlrsd

w2 : vlrsd

M1

w1 : vlrsd

w2 : vlrsd

M2

w1 : vlrsd

M31

w1 : vlrsd

M41

move flick take_right move
Figure 10: Execution of the sequence of actions 〈move, flick, take_right, move〉 starting atM0, w1

of Example 1. We haveMi+1 =Mi⊗ (Γpink ∪{ai}) with ai the corresponding action in the sequence.
The dotted arrows depict theR relation associated with the update ofMi with respect to Γpink ∪{ai}.
Note that action take_right is not executable inM2, w2 and, as a result, w2 has no associated world
inM3.

Example 12 (Example 11 continued). We will show now that

M2, w1 |= J if K r then take_right else take_left; move K(v ∧ d) (24)

is satis�ed. First note that

M31 ⊗ Γ3 = M41

RM2,Γ3 = {(w1, w1)}

and thatM41, w1 |= ∼v ∧ d and, thus, we getM41, w1 |= J move K(∼v ∧ d). Let now Γ9
def=

Γpink ∪ {take_right}. Then, we have

M2 ⊗ Γ9 = M31

RM2,Γ9 = {(w1, w1)}

from where we get M2, w1 |= [Γ9]J move K(∼v ∧ d). Furthermore, this implies M2, w1 |=
J take_right KJ move K(∼v ∧ d), which in its turn implies

M2, w1 |= K r → J take_right KJ move K(∼v ∧ d)

Note thatM2, w1 |= K r and, thus,

M2, w1 |= ∼K r → J take_right KJ move K(∼v ∧ d)

also follows. As a result, we can see that (24) holds. Now we follow the reasoning from Example 11
to show thatM0, w1 |= J (22) K(∼v∧d). That is, (22) is a plan that achieves the goal of Example 1
in the case that the diamond is in the right pedestal. Analogously, Figure 11 shows the models
needed to proveM0, w2 |= J (22) K(∼v∧d), that is, when the diamond was on the left. As a result,
we obtainM0 |= KJ (22) K(∼v ∧ d). In other words, the thief knows that after executing (22),
she will succeed in her goal: being outside of the vault with the diamond.

w1 : vlrsd

w2 : vlrsd

M0

w1 : vlrsd

w2 : vlrsd

M1

w1 : vlrsd

w2 : vlrsd

M2

w2 : vlrsd

M32

w2 : vlrsd

M42

move flick take_left move
Figure 11: Execution of the sequence of actions 〈move, flick, take_left, move〉 starting atM0, w2

of Example 1. This figure is analogous to Figure 10 but replacing action take_right by take_left and
modelsM31 andM41 byM32 andM42, respectively.

To conclude this section, we formalise the concepts of planing task and planning solution.

De�nition 19 (Planning task). Given the disjoint sets of actions A ⊆ P and �uents F ⊆ P, a
planning task is a triple Π = 〈Γ0,Γ, ϕg〉 where Γ0 is a theory over P\A de�ning the initial state,
Γ is a theory over Pbi de�ning the interpretation of actions and ϕg is the goal formula overF .

De�nition 20 (Planning solution). A plan π is a conditional solution for the planning task
Π = 〈Γ0,Γ, ϕg〉 i� mwv(Γ0,F) |= Jπ KΓϕg . A conditional solution without occurrences of the
“if-then-else” construct is called a conformant solution.

In particular, Example 1 can be now formalised as the planning task Π = 〈Γ0,Γpink , ϕg〉
where Γ0 is a singleton containing (16), describing the initial situation, and ϕg = ∼v ∧ d. Then,
we can see that (22) is a conditional solution for the planning task Π. We can also formalise
Example 2 as the planning task Π = 〈Γ′0,Γpink , ϕg〉 where Γ′0 contains the single formula:

ϕ′0 = ∼v ∧ ∼l ∧ r ∧ ∼s ∧ ∼d (25)

that describes the corresponding initial situation. It can be checked that (22) is also a conditional
solution for Π′, though this example also has the simpler (conformant) solution:

move ; take_right ; move (26)

Finally, Example 10 becomes the task Π = 〈Γ0,Γ
′
pink , ϕg〉 for which

move ; try_take_right ; try_take_left ; move (27)

is a conformant solution.

Conclusions and Future Work

As discussed in [62], the traditional DEL[E] approach with event model updates is a semantic
approach, where states and actions are represented as semantic objects, epistemic and event
models respectively. On the other hand, DEL[ASP] is a syntactic approach, where states and
actions are represented as knowledge-bases, that is, sets of formulas known to be true. Semantic
and syntactic approaches are mutually dual, with the semantic approach modelling ignorance
(the more ignorance, the bigger the state) and the syntactic approach modelling knowledge
(the more knowledge, the bigger the knowledge-base). The generalisation of DEL for abstract
updating objects can easily accommodate both approaches: it su�ces with allowing both
event models and epistemic programs to occur in the dynamic operator, and selecting the
corresponding updating evaluation.

Another interesting observation is that both DEL[E] and ASP can be considered as generali-
sations of the STRIPS planning language in orthogonal directions. On the one hand, DEL[E]
allows planning in domains where the world is not fully observable, the e�ects of actions are
not necessarily deterministic and where sensing actions may allow to gain knowledge about
the actual state of the world. On the other hand, ASP introduces high level KR features like
the treatment of indirect e�ects, action quali�cations, state constraints or recursive �uents (for
motivation about the need of such features we refer to [63]). The approach presented here,
DEL[ASP], combines the strengths of both generalisations so that it is possible to use high level
KR features in non-fully observable or non-deterministic domains where observing the world
may be needed to achieve a valid plan.

Similar to our approach, the action language mAL [64] also combined the treatment of
indirect e�ects and action quali�cations with the possibility of de�ning sensing actions. The
main handicap of mAL with respect to DEL[ASP] is that the former only allows rami�cations
on the ontic e�ects, but not on the epistemic ones, as we did for instance with rule (15). InmAL,
as in DEL[E], this indirect observation needs to be encoded as a direct e�ect of all actions that
may a�ect those �uents. On the other hand, an advantage of both DEL[E] and mAL is that
they can be applied on domains that involve several agents and in which those agents may even
hold false beliefs [22], while, so far, DEL[ASP] is only able to deal with domains involving a
single agent. Extending DEL[ASP] to cover these domains is a matter of future work. It will
be also interesting to study the relation between DEL[ASP] and Temporal ASP [57] and the
possibility of extending the latter with an epistemic modality to deal with non-fully observable
or non-deterministic domains.

Regarding the computation of planning solutions in DEL[ASP], it is worth to mention that
the algorithm based on planning trees described in [21] for DEL[E] is general enough and
does not really depend of the kind of updating object used. In this sense, we can apply that
same algorithm with the only variation of using the ASP updating evaluation when we expand
the tree. Then, solutions can be retrieved from the planning tree in exactly the same way as
described there.

Acknowledgements This work has been partially funded by the Centre International de
Mathématiques et d’Informatique de Toulouse through contract ANR-11-LABEX-0040-CIMI
within the program ANR-11-IDEX-0002-02, grant 2016-2019 ED431G/01 CITIC Center (Xunta

de Galicia, Spain), grant TIN 2017-84453-P (MINECO, Spain).

Acknowledgments

References

[1] M. Ghallab, D. S. Nau, P. Traverso, Automated planning - theory and practice, Elsevier,
2004.

[2] P. H. Tu, T. C. Son, C. Baral, Reasoning and planning with sensing actions, incomplete
information, and static causal laws using answer set programming, Theory and Practice
of Logic Programming 7 (2007) 377–450.

[3] M. A. Peot, D. E. Smith, Conditional nonlinear planning, in: Arti�cial Intelligence Planning
Systems, Elsevier, 1992, pp. 189–197.

[4] K. Golden, D. S. Weld, Representing sensing actions: The middle ground revisited, in: KR,
Morgan Kaufmann, 1996, pp. 174–185.

[5] L. Pryor, G. Collins, Planning for contingencies: A decision-based approach, J. Artif. Intell.
Res. 4 (1996) 287–339.

[6] J. Lobo, G. Mendez, S. R. Taylor, Adding knowledge to the action description language A,
in: B. Kuipers, B. L. Webber (Eds.), Proceedings of the Fourteenth National Conference
on Arti�cial Intelligence and Ninth Innovative Applications of Arti�cial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA., AAAI
Press / The MIT Press, 1997, pp. 454–459.

[7] A. L. Blum, M. L. Furst, Fast planning through planning graph analysis, Arti�cial intelli-
gence 90 (1997) 281–300.

[8] D. E. Smith, D. S. Weld, Conformant graphplan, in: AAAI/IAAI, 1998, pp. 889–896.
[9] K. Golden, Leap before you look: Information gathering in the PUCCINI planner, in: AIPS,

AAAI, 1998, pp. 70–77.
[10] D. S. Weld, C. R. Anderson, D. E. Smith, Extending graphplan to handle uncertainty &

sensing actions, in: Aaai/iaai, 1998, pp. 897–904.
[11] J. Rintanen, Constructing conditional plans by a theorem-prover, Journal of Arti�cial

Intelligence Research 10 (1999) 323–352.
[12] B. Bonet, H. Ge�ner, Planning with incomplete information as heuristic search in belief

space, in: Proceedings of the Fifth International Conference on Arti�cial Intelligence
Planning Systems, AAAI Press, 2000, pp. 52–61.

[13] C. Castellini, E. Giunchiglia, A. Tacchella, Sat-based planning in complex domains: Con-
currency, constraints and nondeterminism, Arti�cial Intelligence 147 (2003) 85–117.

[14] T. Eiter, W. Faber, N. Leone, G. Pfeifer, A. Polleres, A logic programming approach to
knowledge-state planning, ii: The dlvk system, Arti�cial Intelligence 144 (2003) 157–211.

[15] A. Cimatti, M. Roveri, P. Bertoli, Conformant planning via symbolic model checking and
heuristic search, Arti�cial Intelligence 159 (2004) 127–206.

[16] D. Bryce, S. Kambhampati, D. E. Smith, Planning graph heuristics for belief space search,
Journal of Arti�cial Intelligence Research 26 (2006) 35–99.

[17] J. Ho�mann, R. I. Brafman, Conformant planning via heuristic forward search: A new
approach, Arti�cial Intelligence 170 (2006) 507–541.

[18] B. Löwe, E. Pacuit, A. Witzel, Planning based on dynamic epistemic logic, Technical Report,
Citeseer, 2010.

[19] T. Bolander, M. B. Andersen, Epistemic planning for single and multi-agent systems,
Journal of Applied Non-Classical Logics 21 (2011) 9–34.

[20] E. Pontelli, T. C. Son, C. Baral, G. Gelfond, Answer set programming and planning with
knowledge and world-altering actions in multiple agent domains, in: Correct Reasoning,
Springer, 2012, pp. 509–526.

[21] M. B. Andersen, T. Bolander, M. H. Jensen, Conditional epistemic planning, in: JELIA,
volume 7519 of Lecture Notes in Computer Science, Springer, 2012, pp. 94–106.

[22] T. Bolander, Seeing is believing: Formalising false-belief tasks in dynamic epistemic logic,
in: ECSI, volume 1283 of CEUR Workshop Proceedings, CEUR-WS.org, 2014, pp. 87–107.

[23] F. Kominis, H. Ge�ner, Beliefs in multiagent planning: From one agent to many, in: R. I.
Brafman, C. Domshlak, P. Haslum, S. Zilberstein (Eds.), Proceedings of the Twenty-Fifth
International Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem,
Israel, June 7-11, 2015., AAAI Press, 2015, pp. 147–155.

[24] F. Kominis, H. Ge�ner, Multiagent online planning with nested beliefs and dialogue, in:
L. Barbulescu, J. Frank, Mausam, S. F. Smith (Eds.), Proceedings of the Twenty-Seventh
International Conference on Automated Planning and Scheduling, ICAPS 2017, Pittsburgh,
Pennsylvania, USA, June 18-23, 2017., AAAI Press, 2017, pp. 186–194.

[25] M. C. Cooper, A. Herzig, F. Ma�re, F. Maris, P. Régnier, Simple epistemic planning:
Generalised gossiping, in: G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum,
F. Dignum, F. van Harmelen (Eds.), ECAI 2016 - 22nd European Conference on Arti�cial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands, volume 285 of
Frontiers in Arti�cial Intelligence and Applications, IOS Press, 2016, pp. 1563–1564.

[26] M. C. Cooper, A. Herzig, F. Ma�re, F. Maris, P. Régnier, A simple account of multi-agent
epistemic planning, in: G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum,
F. Dignum, F. van Harmelen (Eds.), ECAI 2016 - 22nd European Conference on Arti�cial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands, volume 285 of
Frontiers in Arti�cial Intelligence and Applications, IOS Press, 2016, pp. 193–201.

[27] T. Bolander, T. Engesser, R. Mattmüller, B. Nebel, Better eager than lazy? how agent types
impact the successfulness of implicit coordination, in: M. Thielscher, F. Toni, F. Wolter
(Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth
International Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018., AAAI
Press, 2018, pp. 445–453.

[28] R. C. Moore, A formal theory of knowledge and action, Technical Report, SRI International,
Menlo Park, CA, Arti�cial Intelligence Center, 1984.

[29] M. Thielscher, Representing the knowledge of a robot, in: KR, 2000, pp. 109–120.
[30] T. C. Son, C. Baral, Formalizing sensing actions—a transition function based approach,

Arti�cial Intelligence 125 (2001) 19–91.
[31] R. B. Scherl, H. J. Levesque, Knowledge, action, and the frame problem, Arti�cial Intelli-

gence 144 (2003) 1–39.
[32] H. Van Ditmarsch, W. van Der Hoek, B. Kooi, Dynamic epistemic logic, volume 337,

Springer Science & Business Media, 2007.
[33] H. van Ditmarsch, B. Kooi, Semantic results for ontic and epistemic change, Logic and the

foundations of game and decision theory (LOFT 7) 3 (2008) 87–117.
[34] V. Pratt, Semantical consideration on �oyd-hoare logic, in: Proceedings of the Seventeenth

Annual Symposium on Foundations of Computer Science (SFCS’76), IEEE Computer Society
Press, 1976, pp. 109–121.

[35] H. P. van Ditmarsch, W. van der Hoek, B. P. Kooi, Dynamic epistemic logic with assignment,
in: Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, ACM, 2005, pp. 141–148.

[36] A. Baltag, L. S. Moss, S. Solecki, The logic of public announcements and common knowledge
and private suspicions, in: TARK, Morgan Kaufmann, 1998, pp. 43–56.

[37] A. Baltag, L. S. Moss, Logics for epistemic programs, Synthese 139 (2004) 165–224.
[38] R. E. Fikes, N. J. Nilsson, STRIPS: A new approach to the application of theorem proving

to problem solving, Arti�cial Intelligence 2 (1971) 189 – 208.
[39] V. W. Marek, M. Truszczyńki, Stable models and an alternative logic programming

paradigm, in: K. R. Apt, V. W. Marek, M. Truszczyński, D. Warren (Eds.), The Logic
Programming Paradigm, Arti�cial Intelligence, Springer Berlin Heidelberg, 1999, pp. 375–
398.

[40] I. Niemelä, Logic programs with stable model semantics as a constraint programming
paradigm, Annals of Mathematics and Arti�cial Intelligence 25 (1999) 241–273.

[41] C. Baral, Knowledge Representation, Reasoning and Declarative Problem Solving, Cam-
bridge University Press, 2010.

[42] M. Gelfond, V. Lifschitz, The stable model semantics for logic programming, in: Proc. of
the 5th Intl. Conference on Logic Programming (ICLP’88), 1988, pp. 1070–1080.

[43] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases,
New Generation Comput. 9 (1991) 365–386.

[44] V. Lifschitz, Answer set planning, in: D. de Schreye (Ed.), Proceedings of the International
Conference on Logic Programming (ICLP’99), MIT Press, 1999, pp. 23–37.

[45] V. Lifschitz, Answer set programming and plan generation, Arti�cial Intelligence 138
(2002) 39 – 54. Knowledge Representation and Logic Programming.

[46] J. Lee, V. Lifschitz, F. Yang, Action language BC preliminary report, in: F. Rossi (Ed.), IJCAI
2013, Proceedings of the 23rd International Joint Conference on Arti�cial Intelligence,
Beijing, China, August 3-9, 2013, IJCAI/AAAI, 2013, pp. 983–989.

[47] P. Cabalar, R. Kaminski, T. Schaub, A. Schuhmann, Temporal answer set programming on
�nite traces, Theory and Practice of Logic Programming 18 (2018) 406–420.

[48] E. Erdem, M. Gelfond, N. Leone, Applications of ASP, AI Magazine 37 (2016) 53–68.
[49] M. Gelfond, Strong introspection, in: T. L. Dean, K. McKeown (Eds.), Proceedings of the

AAAI Conference, volume 1, AAAI Press/The MIT Press, 1991, pp. 386–391.
[50] A. P. Leclerc, P. T. Kahl, A survey of advances in epistemic logic program solvers, CoRR

abs/1809.07141 (2018). URL: http://arxiv.org/abs/1809.07141. arXiv:1809.07141.
[51] P. Cabalar, J. Fandinno, L. Fariñas del Cerro, Founded world views with autoepistemic

equilibrium logic, Under consideration for 15th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR 2019), Corr abs/1902.07741 (2019). URL:
https://arxiv.org/abs/1902.07741.

http://arxiv.org/abs/1809.07141
http://arxiv.org/abs/1809.07141
https://arxiv.org/abs/1902.07741

[52] D. Pearce, A new logical characterisation of stable models and answer sets, in: J. Dix,
L. M. Pereira, T. C. Przymusinski (Eds.), Non-Monotonic Extensions of Logic Programming,
NMELP 1996, Bad Honnef, Germany, September 5-6, 1996, Selected Papers, volume 1216
of Lecture Notes in Computer Science, Springer, 1996, pp. 57–70.

[53] R. C. Moore, Semantical considerations on nonmonotonic logic, Arti�cial Intelligence 25
(1985) 75–94.

[54] G. Aucher, An internal version of epistemic logic, Studia Logica 94 (2010) 1–22.
[55] R. Fagin, Reasoning about knowledge, MIT Press, 1995.
[56] J. Y. Halpern, Reasoning about knowledge: an overview, in: Theoretical aspects of reasoning

about knowledge, Elsevier, 1986, pp. 1–17.
[57] P. Cabalar, R. Kaminski, T. Schaub, A. Schuhmann, Temporal answer set programming on

�nite traces, Theory and Practice of Logic Programming 18 (2018) 406–420.
[58] H. Kautz, The logic of persistence, in: Proceedings of the 5th National Conference of

Arti�cial Intelligence, 1986, pp. 401–405.
[59] D. Nelson, Constructible falsity, J. Symbolic Logic 14 (1949) 16–26.
[60] V. Lifschitz, L. R. Tang, H. Turner, Nested expressions in logic programs, Ann. Math. Artif.

Intell. 25 (1999) 369–389.
[61] A. Heyting, Die formalen Regeln der intuitionistischen Logik, in: Sitzungsberichte der

Preussischen Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu
Berlin, 1930, p. 42–56. Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der
Modernen Logik, Akademie-Verlag, 1986.

[62] T. Bolander, A gentle introduction to epistemic planning: The DEL approach, in:
M4M@ICLA, volume 243 of EPTCS, 2017, pp. 1–22.

[63] V. Lifschitz, Answer set programming and plan generation, Arti�cial Intelligence 138
(2002) 39–54.

[64] C. Baral, G. Gelfond, E. Pontelli, T. C. Son, Reasoning about the beliefs of agents in
multi-agent domains in the presence of state constraints: The action language mal, in:
J. Leite, T. C. Son, P. Torroni, L. van der Torre, S. Woltran (Eds.), Computational Logic in
Multi-Agent Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 290–306.

	Introduction
	Preliminaries
	Dynamic Epistemic Logic with Abstract Updating Objects
	Dynamic Epistemic Logic with Event Model Updates: DEL[E]
	Planning in Answer Set Programming
	Epistemic Logic Programs

	Dynamic Epistemic Logic with ASP Updates: DEL[ASP]
	Characterising information cells in FAEEL
	Epistemic Model Updates with FAEEL

	Conditional Planning in DEL[ASP]
	Conclusions and Future Work

