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Abstract. In this paper, we describe various data caching scenarios test imple-

mentation and lessons learned. In particular, we show how local data caches 

may be configured, deployed, and tested. In our studies, we are using xCache, 

which is a special type of Xrootd server setup to cache input data for a physics 

analysis. A relatively large Tier2 storage is used as a primary data source and 

several geographically distributed smaller WLCG sites configured specifically 

for this test. All sites are connected to the LHCONE network. The testbed con-

figuration is evaluated using both synthetic tests and real ATLAS computation-

al jobs submitted via the HammerCloud toolkit. The impact and realistic ap-

plicability of different local cache configurations is explained, including both 

the network infrastructure and the configuration of computing nodes. 
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1 Introduction 

HENP experiments are preparing for the HL-LHC era, which will bring an unprece-

dented volume of scientific data. This data will need to be stored and processed by 

collaborations, but the expected resources growth is nowhere near extrapolated re-

quirements of existing models both in storage volume and compute power. It is well 

understood that computing models need to evolve. Such evolution includes multiple 

aspects: 

• Optimized data processing, squeezing the maximum from the available 

CPU/GPGPU/FPGA resources. 



 

• Optimized data storage, reduction of the number of copies, different data access 

methods, full utilization of network resources. 

• Cost optimizations, no high-end expensive RAID setups, no underutilized CPUs 

on storage servers, no HDDs with 90% free space on the worker nodes. 

• Deployment optimizations, scalability and containerization with on-demand ex-

pansion into the cloud (both community and commercial). 

• Operational cost optimization, more standardized solutions, lower requirements 

on unique Grid expertise. 

2 Ongoing R&D Projects 

WLCG and experiments have launched multiple R&D projects to address HL-LHC 

challenges: 

• Data Lake. The aim is to consolidate geographically distributed data storage sys-

tems connected by fast network with low latency. The Data Lake model as an 

evolution of the current infrastructure bringing reduction of the storage and oper-

ational costs. 

• Intelligent Data Delivery Service (iDDS). The intelligent data delivery system 

will deliver events as opposed to delivering bytes. This allows an edge service to 

prepare data for production consumption, the on-disk data format to evolve inde-

pendently of applications, and decrease the latency between the application and 

the storage. The first implementation in April-May 2020 for Data carousel and 

active ML workflows. 

• Hot/Cold storage. Data placement and data migration between “Hot” and “Cold” 

storages using data popularity information. 

• Data format and I/O. Evaluating new formats (e.g. parquet) and I/O performance 

for HENP data. 

• Third Party Copy. Improve bulk data transfers between sites and find a viable 

replacement to the GridFTP protocol. 

• Operations Intelligence. Reduce the HEP experiments computing operations ef-

fort by exploiting anomaly detection, time series and classification techniques to 

help the operators in their daily routines, and to improve the overall system effi-

ciency and resource utilization. 

• Data Carousel. Use tape more effectively and actively in distributed computing 

context. 

3 Objectives of this work 

This research is conducted in collaboration with the European Data Lake Project, 

which is part of the WLCG DOMA initiative [1]. We will show a few possible ways 

of optimizing remote data access from the worker nodes in somewhat small T2/T3 

setups or dynamically scaled containerized deployments for physics analysis pay-

loads. This kind of deployment implies the necessity of heavy site-remote read-biased 



 

data I/O, and time slot (t) allocated for analysis job is normally split into three phases 

(disregard some overhead): input read (t1), compute (t2) and output write (t3). Some-

times analysis payloads can read and write data while performing computation which 

makes it hard to separate t1 from t2 and t2 from t3, but in any case, at least some data 

needs to be preloaded before computation can start. Here, we will focus on optimizing 

t1 and thus improving the CPU utilization of a compute resource. 

In order to optimize the read time (t1) in cases where hardware and network per-

formance cannot be easily improved, various caching systems are standardly used. 

However, any kind of caching is only effective with a sufficient cache hit ratio. The 

very first thing we need to check is the real repeatability of read requests during 

standard physics workflow. Let us try to evaluate the typical number of read requests 

to a single file (K) of the ATLAS experiment data suitable for user analysis. Figure 1 

shows the ATLAS derivation data sample popularity (number of usage) by users’ 

analysis tasks [2]. 

 

Fig. 1. Derivation datasets usage in ATLAS physics analysis. 

 

There is at least one dataset that was accessed 1170 times. On average, ATLAS 

DAOD datasets consist of 50 files, which means that each file in this dataset was 

accessed at least 20 times if the data popularity is evenly split between them. We take 

K = 20 as the basis of our tests. In the end, we have to build a distributed data pro-

cessing system where the computing element (CE) is distinct and distant from the 

primary storage system; computing tasks are submitted by users, and these tasks can 



 

eventually request access to the same input file up to 20 times. The input file is locat-

ed on a primary storage and its size varies from 1 to 5 GB (the overview of ATLAS 

data files is given in the HEPiX talk [3]). In this case, the infrastructure and building 

blocks of CEs can vary significantly between the sites. 

4 The test bed 

For the scheme we have explained above, it is necessary to describe some specific 

details such as the data access protocol and a caching system. In our tests, we will use 

an xrootd protocol which is widely employed by LHC experiments and has an im-

portant property of supporting redirects. The latter feature is important when building 

distributed storage systems, including distributed caching systems. As a caching soft-

ware we will use an xCache which is, basically, a standard xrootd server configured 

in a special way. 

We have decided to exploit three data caching schemes shown in Fig. 2. There is 

no universal solution due to the hardware (especially network) differences on differ-

ent sites. With these schemes, we tested three quite obvious scenarios: 

1. A single dedicated cache server for sites having a modest external connectivity 

(~1 Gbps) and a relatively good internal network for worker nodes (>=10 Gbps). 

2. A local isolated cache on each worker node for sites having a good external con-

nectivity (>=10 Gbps), but modest internal network for worker nodes (~1 Gbps). 

3. A shared cache between worker nodes for sites having external and internal net-

works of the same relatively high quality (>=10 Gbps) – this approach requires 

some sort of service discovery. 

 

Fig. 2. Three data caching schemes. 

 

At the first stage of the testing, scenarios 1 and 2 were implemented using re-

sources of JINR, PNPI and MEPhI (Fig. 3). JINR was used as a primary storage with 

10 Gbps uplink while still having a local CE with 1 Gbps internal network. This CE 

was used as a reference and no caching system was deployed there. Tests with JINR 

CE were only carried out at the very beginning; later, such tests lost their value. The 

PNPI CE located 520 km (~ 11 ms latency) from JINR has 10 Gbps internal network 

and 10 Gbps uplink to primary storage. The MEPhI CE located 120 km (~1 ms laten-

cy) from JINR has 1 Gbps internal network and 10 Gbps uplink to primary storage. 



 

Fig. 3. Testbed on the map. 

5 Tests and results 

In order to receive some useful performance metrics, we needed tthe appropriate tests. 

In this case, the authors already had some experience in testing distributed storage 

systems with both synthetic tests [4] and the HammerCloud toolkit used by the 

ATLAS experiment [5], both of which were used for testing the EOS-based distribut-

ed storage [6]. 

• As synthetic tests, a simple file copy by the xrdcp tool was used. 

• As a HammerCloud payload a real-life Athena analysis task was submitted to the 

CEs. 

 

The first tests, which were reported at HEPiX Workshop [3], were conducted at 

PNPI and JINR sites, using only the dedicated xCache. Figures 4, 5, 6 show the re-

sults of HammerCloud tests with and without xCache (JINR is a primary storage, so 

xCache was not used there). The results, as can be seen from the graphs: 

• Wallclock at PNPI (t): 

o Direct mean time = 2698 ± 577 s 

o xCache mean time = 1934 ± 139 s 

o Difference ~ 770s, ~30% 

• Download input files time at PNPI (t1): 

o Direct mean time = 811 ± 574 s 

o xCache mean time = 53 ± 137 s 

o Difference ~ 770s, ~95% 

• Download input files time at JINR (t1): 

o Direct mean time = 117 ± 17 s 

 

These results give an idea of the fundamental benefits of using xCache. 



 

 

Fig. 4. Wallclock time at PNPI using HammerCloud test N20146370 from Template 1099 

(copy2scratch). Direct read on the left, dedicated xCache on the right. 
 

Fig. 5. Download input files time at PNPI using HammerCloud test N20146370 from Template 

1099 (copy2scratch). Direct read on the left, dedicated xCache on the right. 
 

We have made several improvements in our testbed configuration and software in 

the last 5 months: 

• New site was added – MEPhI (Moscow). 

• New Torque with task affinity patches was installed. 

• New ARC CE was deployed at MEPhI. 

• New monitoring (ELK) was designed and implemented. 

• New node-local tests were added. 

• Network backbone was improved at MEPhI. 



 

Fig. 6. Download input files time at JINR using HammerCloud test N20146370 from Template 

1099 (copy2scratch). Direct read only. 
 

The following synthetic tests were carried out taking into account the average 

number of requests to a single file (20) and the fact that the task can land on a random 

worker node, which is important in the case of a local cache (case 2 in Fig. 2). Tests 

were carried out in batches, since the load and available bandwidth of the external 

network is variable and it was necessary to compare different caching schemes in the 

same external network conditions. 

Figures 7, 8, and 9 show the results of these tests. PNPI was tested with both dedi-

cated and local caches, while MEPhI only with dedicated cache because of the short-

age of local disk resources on the worker nodes. The results clearly show the benefit 

of using a dedicated cache for both sites, which is a bit unexpected for MEPhI, since 

the local network there is worse than the external one, and no improvement from us-

ing the cache was expected. At the same time, we can see minimum benefits from 

using the local cache which are within the margin of error. 

HammerCloud tests were carried out in two scenarios only: direct read and dedi-

cated cache, as there were technical problems registering a site with a local cache in 

the ATLAS information system (AGIS). The tests themselves have also changed 

since 2019, in particular, the template for test jobs was changed from HITS (digitiza-

tion and reconstruction) to Derivation (AOD and DAOD) which is more I/O-intensive 

and have a larger input file size per event than with HITS. Figures 10 and 11 show the 

results of comparative tests using HammerCloud copy2scratch template (the input file 

is entirely downloaded to the working node before execution) for PNPI and MEPhI, 

respectively. 

It can be seen that in all cases the gain from using the cache is obvious, which is 

expected, since in these tests there was no limit on the number of reads of a single 

file. Also, the gain in download input files time accurately matches the overall gain in 

the total time of the task execution. 

 

 



 

Fig. 7. Synthetic tests at PNPI. Direct access on the left, local cache on the right. 
 

Fig. 8. Synthetic tests at PNPI. Direct access on the left, dedicated cache on the right. 

 

Fig. 9. Synthetic tests at MEPhI. Direct access on the left, dedicated cache on the right. 

 

 

 

 



 

Fig. 10. HammerCloud tests (copy2scratch) at PNPI. Top row - download input files time (t1) 

with direct read (left) and dedicated cache (right). Bottom row - total time (t) with direct read 

(left) and dedicated cache (right). 
 

 

Fig. 11. HammerCloud tests (copy2scratch) at MEPhI. Top row - download input files time (t1) 

with direct read (left) and dedicated cache (right). Bottom row - total time (t) with direct read 

(left) and dedicated cache (right). 

6 Conclusions and future work 

We have successfully passed “a pilot project phase” (PoC). During PoC, we have 

configured and tested two types of xCache setup: dedicated cache and local cache. 

We have shown performance benefits of using xCache on smaller sites using synthet-



 

ic and real-life ATLAS analysis workloads. Together with the WLCG community, we 

need to address the Data Lake challenge in a global context. The DOMA ACCESS 

initiative is the first step in this direction. We will work closely with DOMA and 

ATLAS to define the next steps, in particular we will be interested to test our setup 

for other HL-LHC R&Ds, such as Data Carousel, QOS and hot/cold storage, etc. 

As a result of this work, we have observed an apparent benefit of a dedicated cache 

even for a limited number of requests to a single file, while for the local cache the 

benefit is severely doubtful. A dedicated cache, on the other hand, implies some addi-

tional operational and hardware costs that might not be justified by the expected per-

formance benefits. The idea of a distributed cache on local nodes (case 3 on Fig. 2), 

which the authors see as very productive, still needs to be understood. Our near-term 

plans will include implementation and further evaluation of this idea. 
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