
AstroDS - A Distributed Storage for
Astrophysics of Cosmic Rays. Current Status⋆

Alexander Kryukov1[0000−0002−1624−6131], Igor Bychkov2, Elena Korosteleva1,
Andrey Mikhailov2[0000−0003−4057−4511], and Minh-Duc

Nguyen1[0000−0002−5003−3623]

1 M.V.Lomonosov Moscow State University, D.V.Skobeltsyn Institute of Nuclear
Physics, Russia

kryukov@theory.sinp.msu.ru
2 Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of

Russian Academy of Sciences, Russia

Abstract. Currently, the processing of scientific data in astroparticle
physics is based on various distributed technologies, the most common
of which are Grid and cloud computing. The most frequently discussed
approaches are focused on large and even very large scientific exper-
iments, such as Cherenkov Telescope Array. We, by contrast, offer a
solution designed for small to medium experiments such as TAIGA. In
such experiments, as a rule, historically developed specific data process-
ing methods and specialized software are used. We have specifically de-
signed a distributed (cloud) data storage for astroparticle physics data
collaboration in medium-sized experiments. In this article, we discuss
the current state of our work using the example of the TAIGA and CAS-
CADE experiments. A feature of our approach is that we provide our
users with scientific data in the form to which they are accustomed to in
everyday work on local resources.

Keywords: Astroparticle physics · Distributed data storage ·Metadata.

1 Introduction

The modern physics of astroparticles is one of the most rapidly developing
areas of modern science. It includes several scientific fields, in each of which a
number of large experimental installations have been put into operation. So, in
the field of gamma astronomy, the HESS [1] and MAGIC [2] experiments are
working, and in 2023 the CTA installation [3] is to be commissioned. In the
field of neutrino astrophysics, we note IceCube [5], as well as the ongoing Global
Neutrino Network (GNN) [6], The Baikal deep underwater neutrino telescope
(or Baikal-GVD - Gigaton Volume Detector) [8], which will include IceCube,

⋆ Supported by the Russian Science Foundation, grant No.18-41-06003.
Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

KM3NeT [7] and Baikal-GVD [8]. In the field of physics of high energies of cosmic
rays, we note The Pierre Auger Observatory [9]. The LIGO-Virgo consortium [10,
11] sets a new direction in the study of gravitational waves.

However, in addition to the experimental megascience installations men-
tioned above, there are also medium and small installations. An example of
such installations is the TAIGA [12, 13], TUNKA [14] installations deployed in
the Tunkinskaya valley in Buryatia (Russia), the KASCADE [15] installation
and many others.

These installations also collect a large amount of data during their opera-
tion. An important feature of these experiments is that analysis of their data is
based on long-established practices using specific data processing methods and
customized software. On the other hand, there is an insistent need to properly
preprocess the collected data and make them accessible through a web service
with a convenient and user-friendly interface. Putting it all together, it is im-
portant to provide web access to the data while maintaining the ability to work
with the data using existing software and techniques.

This study was carried out within the framework of the Russian-German
initiative [19] aimed at supporting the processing of data from astrophysical
experiments throughout the entire data life cycle: from collection and store to
the preparation of data analysis results for publication and data archiving.

Of course, several approaches to the design of distributed data storages have
already been proposed earlier. One of the most striking examples is the global
system GRID [20], which was originally created to store and process LHC data,
and later came to be used for many other experiments.

The International Virtual Observatory Alliance (IVOA) [21] sets similar
tasks. Another example is the CosmoHub [22] system, which is based on the
Hadoop distributed storage [23].

All of these experiments use large project-oriented approaches that, for var-
ious reasons, may not be suitable for medium and small experiments.

Another important trend in astronomy is the combined analysis of data from
various sources (multi-messenger astrophysics) [24], which is used to obtain a
more detailed physical picture of the observed high energy astrophysical phe-
nomena. In particular, a comparison of how the same phenomenon was observed
by different small experiments could yield interesting new results. Making such
a comparison requires the development of shared cloud storage for small exper-
iments.

Thus, the development of cloud storage for small experts is an urgent task.

This article describes an approach to creating such a cloud storage and pro-
viding convenient access to data in it. The created cloud storage is called As-
troDS. The storage is focused on medium to small sized experiments such as
TAIGA. The work is a logical continuation of the work of A.Kryukov with co-
authors [25].

The structure of the article is as follows. In Section 2, we provide a brief
description of the principles that were used as the basis for the development
of a data storage. The third section is devoted to some peculiarities of working

with remote storages based on data storage using relational databases using
the example of KCDC [16]. The fourth section describes the AstroDS cloud
storage prototype and its main characteristics. In conclusion, we discuss the
results obtained and the plan for the further development of the cloud storage.

2 Design and architecture of the AstroDS

As we said, AstroDS cloud storage is focused on small and medium experimental
collaborations. This left a certain imprint on the decisions that were made during
the system design process.

The main principle underlying the development of AstroDS cloud storage was
the principle of maximizing preservation of the historically established methods
of user interaction with local storages. Thus, the main requirements were:

– preservation of the structure of data directories;
– an opportunity to mount directories on local computers;
– data transfer over the network should occurs at the time of real flicking to

data.

This approach makes it possible to practically eliminate the modification of
application software when working with cloud storage. At the same time, the
load on the network is minimized.

Another very important goal was to make it as easy as possible to integrate
existing local storages as a cloud storage node. At the same time, the load on the
local storage equipment should not significantly increase to ensure collaboration
in the cloud storage. To achieve this goal, an approach was chosen when all user
requests are processed off-line on a special server that stores all the metadata
necessary for data retrieval. The collection of metadata is performed at the time
of data loading to local storage.

Note that the storage implements a two-level data selection architecture:

– search at the file level, for example, by session number;
– search at the level of individual events in files, for example, by the energy of

the event.

This solution is flexible enough to fulfill almost any user request.
A special case is the integration of those local storage that store data on

a per-life basis in a relational database. An example of such a storage is the
KCDC [16] Data storage of the KASCADE [15] Experiment. This case will be
considered in more detail below.

In AstroDS all user requests are processed asynchronously, which can be
important in some cases when you need to prepare a large sample.

Both the web interface and the command line interface are available to users.
The latter mode is more convenient when using a set of scripts to automate the
data processing.

Taking into account all the above requirements, we have developed an archi-
tectural solution shown in Fig. 1.

Fig. 1. Simplified architecture of AstroDS.

Below we will focus on a number of individual features of the implementa-
tion of the developed architecture. A more detailed presentation of the general
principles of building the AstroDS system can be found in the articles [19, 25].

3 Metadata catalog

The Metadata Catalog (MDC) is a single place where the physical location of
the requested data is determined. The MDC is a service which supports two
main functions:

– register collected metadata;
– process the user requests for data.

3.1 Metadata catalog API

The MDC architecture is based on the integration of several standard solutions
(see Fig. 2). To store metadata we chose Timescale DB [26] – a special database
for storing time-series data. Flask [27] is used as a web server for user requests
processing. To enable the aggregation service to interact with the MDC, an API

was implemented using GraphQL [28] query language. We used the Graphene-
Python library [29] to easily create GraphQL APIs in Python. SQL Alchemy as
object relation mapper for TimeScale DB.

GraphQL

TimeScale DB

External
storages

MDC
Aggregation

service

Graphene
SQLAlchemy
ORM

External
storage
format

Fig. 2. The architecture design of the MDC

MDC provides an API for data insertion and for searching using the filter
list shown in Table 1. We do not provide an API for updating data in storage
and deleting data from storage because the main idea of APPDS is that meta-
data is extracted only once by a special program called an extractor. All insert
operations are implemented by a special GraphQL type - mutation.

Parameter name Description

fid Unique file identifier

startTime Event start time

endTime Event end time

first Count of data for pagination

offset Start position for pagination

weatherId Weather at the time of observation

trackingSourcId Observed object

facilityId The facility that captured the event
Table 1. Avaliable MDC parameters

The query structure shown in Listing 1 consists of two main parts - data
fields and query parameters. The data fields correspond to the DB schema and
include such information as the run date, cluster, weather, facility, etc. All these
data fields are primarily intended for the aggregation service, the end-user is
interested in the url to download the file. The list of available query parameters
allows you to filter data by event start and end time, facility, weather, tracking
source, and unique file identifier.

Listing 1. The query structure

query{
f i l e s ([query parameters]) {

[data f i e l d s]
}

}

A GraphQL integrated development environment was deployed to test the
API through the web GUI. An example of the GraphQL response is shown in
Fig. 3.

Fig. 3. Example of GraphQL response

3.2 Filters for data selection

The MDC can store data from different facilities. Each facility has its own pa-
rameters for filtering data. In order for the aggregation service to form a list of
filters for the client, the formal specifications for each facility are stored in the
metadata catalog. Specifications include a list of options available for a given fa-
cility. Parameters can have one of five data types: ”date”, ”int”, ”float”, ”string”,
”list”. The first four parameters are the base data types. Type ”list” could be
a query string or an array of base types. The query string is required when the
filtering value is contained in the database table. In this case, the aggregation
service makes a request by this query string to the metadata catalog to get a
list of parameters.

Specifications are stored in JSON format for each facility. In Listing 2 an
example of the specification is shown. The start time and end time have ”date”

tipe and comparison sign as equal. The third parameter ”weather” has type
”list” and contains querying string.

Listing 2. Filters specification

{
” f i l t e r s ” : ” [

{∖”name∖” : ∖” startTime ∖” , ∖” type ∖” : ∖” datet ime ∖” ,
∖” c o n d i t i o n s ∖” : [∖”=∖”]} ,

{∖”name∖” : ∖”endTime∖” , ∖” type ∖” : ∖” datet ime ∖” ,
∖” c o n d i t i o n s ∖” : [∖”=∖”]} ,

{∖”name∖” : ∖” weather ∖” , ∖” type ∖” : ∖” l i s t ∖” ,
∖” opt ions ∖” : { ∖” ta b l e ∖” : ∖” weather ∖” ,

∖” reques t ∖” : ∖” query{weather{ id wScale }}∖” ,
∖” f i e l d s ∖” : {∖” id ∖” : {∖” type ∖” : ∖” i n t e g e r ∖”} ,

∖” wScale ∖” : {∖” type ∖” : ∖” s t r i n g ∖”}} ,
∖” c o n d i t i o n s ∖” : [∖”=∖”]

}
}

] ”
}

4 Integration with KCDC

Sometimes access to raw data is not available. In this case, there is no way to
extract the metadata and save it to the metadata catalog. For such cases, MDC
is used as a proxy for user requests. In this case the third-party storages get
request directly and process it themselves.

If third-party storages does not have a compatible query format with MDC
API the MDC converts it in proper format and wise versa. So the aggregation
service works with a uniform query format independently of storage API. For
this purpose the only new converter should be added to MDC. This module
describes how to translate formats to each other.

MDC knows all available external storages and their API formats. When
MDC gets a request from aggregation service it translates GraphQL request
to external request format and sends it and waits for the response. After, it
translates the response back to GraphQL and sends it to aggregation service.

One example of how it works is shown in the Listing 3 and Listing 4. For this
request, where facility id means request KASCAD data, fields start time and end
time are converted from date-time format to timestamp. The request is formed
in JSON with additional fields. And after receiving the response, MDC prepares
a unified response for the aggregation service with the URL to download the file.
The availability of the file for download is checked on the side of the aggregation
service.

Listing 3. GraphQL request

query{

f i l e s (
f a c i l i t y I d : 5 ,
startTime : ”2017−12−20T00 : 0 0 : 0 0 ”
endTime : ”2017−12−21T00 : 0 0 : 0 0 ”

){
u r l
f a c i l i t y I d

typename
}

}

Listing 4. JSON–RPC 2.0 request

{
” id ” : ” cf919bb3 −7028−4238−9438−2601 cbfde3a6 ” ,
” j sonrpc ” : ”2 .0” ,
”method ” : ” new task ” ,
” parameters ” : {

” type ” : [’ kascade ’] ,
” datetime min ” : 1256481198 ,
”datetime max ” : 1256481201

}
}

5 The Aggregation service

The aggregation service (see Fig. 1) is the central service of the AstroDS system
and a single point of user entry into the system. Its main tasks are as follows:

– building of user requests and their transfer to MDC;
– requesting data from the local storages based on the MDC advice and pro-

viding the data requested by the user in the form of files and / or mount
point of the virtual file system;

– selection of events that meet the criteria of user requests from the received
files and the formation of new subsets based on them.

The main requirement when developing an aggregation service is to mini-
mize network traffic and load on remote data stores. For this, files stored on
remote storages are mounted on the aggregation service as a virtual file system
CVMFS [18]. This file system initiates real data transfer only at the moment of
actual data access.

Generating subsets of events that meet the criteria from a user request is a
tedious task. Using the aggregation service for this purpose minimized interfer-
ence with the work of local storages and relieve them of the unpredictable load
on their resources.

The aggregation service is described in more detail in the work of Nguyen et
al. [17].

6 AstroDS testbed

The AstroDS system is currently operating in a test mode at the test site, which
includes three storage facilities. Two of them are real data storages of the TAIGA
and KASCADE experiments, and one is the testers storage. Thus, the general
structure of the polygon is as shown in Figure 4.

Fig. 4. AstroDS test bed

The user can send requests through the aggregation service (Aggregator).
The type of requests is still limited to file-level requests, but with the release
of the update to version 2, the system will work both with file-level requests
and requests that require a selection of individual events according to user cri-
teria. The main problem associated with event-level queries is the presence of
specific meta-information, which, as a rule, arises after primary data processing
or further analysis.

Note that among the three local storages integrated into the system, only the
KCDC storage puts data event-by-event in a relational database. This is reflected
in the way we handle user requests. Namely, since it is not known in advance
whether there are events that meet the requirements in the user’s request, then

all requests, regardless of their content, are sent to KCDC and processed there.
As a response, KCDC always provides a link to a file (zip) that contains the
selected events. This file will be provided to the user either for download or for
mounting on his work computer in the form of a virtual file system. If there are
no required events, KCDC will send a link to an empty file.

7 Conclusion

The article presents the results of the development of a distributed cloud data
storage, called AstroDS, for medium and small astrophysical experiments. It was
shown that the principles underlying the construction of such a storage make it
possible to practically exclude modification of application software and preserve
the usual methods of working with data.

The deployed prototype of the AstroDS system currently includes data from
the TAIGA, TUNKA and KASCADE experiments.

Integration of data from several experiments allows them to be used for joint
analysis (multi-messenger), which will increase the accuracy of such analysis and
the possibility of studying new phenomena.

In the future, it is planned to expand the functionality of the AstroDS cloud
storage both in the direction of increasing the flexibility of data selection and in
the number of experiments integrated into the system.

Acknolegement

The authors are grateful to all RFN grant participants, as well as fellow partic-
ipants of the Helmholtz Society Grant HRSF-0027. We would like to thank A.
Haungs, V. Tokareva and J. Dubenskaya for fruitful discussions and assistance
in preparing the manuscript.

References

1. HESS, https://www.mpi-hd.mpg.de/hfm/HESS/. Last accessed Aug. 30, 2020
2. Rico, J. for the MAGIC Collaboration: Overview of MAGIC results. Nuclear and

Particle Physics Proceedings 273–275, 328–333 (2016)
3. Cherenkov Telescope Array. Exploring the Universe at the Highest Energies.

https://www.cta-observatory.org/. Last accessed Aug. 30, 2020
4. The IceCube Neutrino Observatory. https://icecube.wisc.edu/. Last accessed Aug.

30, 2020
5. The IceCube Neutrino Observatory. https://icecube.wisc.edu/. Last accessed Aug.

30, 2020
6. The Global Neutrino Network (GNN). https://www.globalneutrinonetwork.org/.

Last accessed Aug. 30, 2020
7. KM3NeT the next generation neutrino telescopes. https://www.km3net.org/. Last

accessed Aug. 30, 2020
8. The Baikal deep underwater neutrino telescope (or Baikal-GVD – Gigaton Volume

Detector). https://baikalgvd.jinr.ru/. Last accessed Aug. 30, 2020

9. The Pierre Auger Observatory. https://www.auger.org/. Last accessed Aug. 30,
2020

10. . https://www.ligo.org/. Last accessed Aug. 30, 2020
11. . https://www.virgo-gw.eu/. Last accessed Aug. 30, 2020
12. TAIGA. https://taiga-experiment.info/. Last accessed Aug. 30, 2020.
13. Budnev, N. and etc. The TAIGA experiment: From cosmic-ray to gamma-ray as-

tronomy in the Tunka valley. Nuclear Instruments and Methods in Physics Research.
Section A, 845(2017), pp.330–333, https://doi.org/10.1016/j.nima.2016.06.041

14. Hiller R., Budnev N.M. et al. Status and First Results of Tunka-rex, an Experiment
for the Radio Detection of Air Showers. Phys.Procedia, 61, 708-713 (2015)

15. W.D.Apel and etc. The KASCADE-Grande experiment. Nuclear Instru-
ments and Methods in Physics Research, Section A, 620(2010), pp.202–216,
https://doi.org/10.1016/j.nima.2010.03.147

16. KASCADE Cosmic Ray Data Centre (KCDC). https://kcdc.ikp.kit.edu/. Last ac-
cessed Aug. 30, 2020.

17. Nguyen M.-D., Kryukov A., Mikhailov A. The current design and implementation
of the AstroDS Data Aggregation Service. In: The IV International Workshop ”Data
Life Cycle in Physics” (DLC-2020). This proceedings.

18. Welcome to CernVM-FS’s documentation! https://cvmfs.readthedocs.io/en/stable/.
Last accessed in Aug. 20, 2020

19. Bychkov, I., et al.: Russian–German Astroparticle Data Life Cycle Initiative. Data,
4(4), 56 (2018). DOI: 10.3390/data3040056.

20. Worldwide LCH Computing GRID. http://wlcg.web.cern.ch/. Last accessed Aug.
30, 2020.

21. The International Virtual Observatory Alliance (IVOA). http://www.ivoa.net/.
Last accessed Aug. 30, 2020.

22. Tallada, P., et al. CosmoHub: Interactive exploration and distribution of astro-
nomical data on Hadoop. Astronomy and Computing. 32, 100391 (2020).

23. Shvachko, K., Kuang, H., Radia, S., Chansler, R., The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST). 1–10 (2010). doi:10.1109/MSST.2010.5496972.

24. Mészáros, P., Fox, D.B., Hanna, C. et al. Multi-messenger astrophysics. Nat Rev
Phys 1, 585–599 (2019). https://doi.org/10.1038/s42254-019-0101-z

25. A.Kryukov et al., Distributed Data Storage for Modern Astroparticle Physics
Experiments. In: The III Int. conf. DLC-2019, CEUR-WS, 2406, 78–83 (2019).
http://ceur-ws.org/Vol-2406/paper9.pdf, ArXiv:1907.06863

26. Timescale: Time–series data simplified. https://www.timescale.com/. Last ac-
cessed Jul. 16, 2020

27. Flask. https://palletsprojects.com/p/flask/. Last accessed Jul. 16, 2020
28. GraphQL – A query language for your API. https://graphql.org/. Last accessed

at Jul. 16, 2020
29. Graphene – Python. https://graphene-python.org/. Last accessed at Jul. 16, 2020

