

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons Li-

cense Attribution 4.0 International (CC BY 4.0).

Comparison of Container Virtualization Tools for

Utilization of Idle Supercomputer Resources*

Julia Dubenskaya1[0000-0002-2437-4600], Stanislav Polyakov1[0000-0002-8429-8478],

Minh-Duc Nguyen1[0000-0002-5003-3623], and Elena Fedotova1[0000-0001-6256-5873]

1 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow,

Russia

jdubenskaya@gmail.com

Abstract. In this paper, we present the results of comparing container virtu-

alization tools to solve the problem of using idle resources of a supercomputer.

On average, as much as 10% of computational resources of a supercomputer

may be underloaded due to various reasons. Our basic idea is to maintain an

additional queue of low-priority non-parallel jobs that will run on idle resources

until a regular job from the main queue of the supercomputer arrives. Upon ar-

rival of the regular job, the low-priority jobs temporarily interrupt their execu-

tion and wait for the appearance of new idle nodes to be resumed there. This

approach can be implemented by running low-priority jobs in containers and

using the container migration mechanism to freeze these jobs and then run them

from the point they were frozen at. Thus, the selection of a specific container

virtualization tool that is best suited to our goal is an important task. Prelimi-

nary analysis allowed us to choose Docker and LXC software products. In this

work, we make a detailed comparison of these tools and show why Docker is

preferable for solving the above problem.

Keywords: Container virtualization, Supercomputer scheduling, Jobs execu-

tion, Docker, LXC.

1 Introduction

Supercomputer time is expensive and, ideally, it should perform calculations using all

its resources on a non-stop basis. In fact, some of the resources of a supercomputer

are often idle. The reasons are different, sometimes related to the fact that the main

job queue is empty, and sometimes not: there may be restrictions on the policy of

using the supercomputer (when there is a limit on the number of jobs from one user),

or there may not be enough jobs, or some computational jobs are too demanding on

resources and it is not possible to run them all in parallel, or the users give inaccurate

estimates of execution time used for planning the schedule in advance, etc. As a re-

sult, for many supercomputers, the average load is approximately 90% and can be as

* The work was supported by the Russian Foundation for Basic Research grant 18-37-00502

low as 70% [1, 2]. So, our intention is to increase the load on a supercomputer forcing

the use of its idle resources.

Our main idea is to create an additional queue of low-priority computational jobs

that are not resource-intensive and not urgent. With such a queue we'll be able to load

idle resources of a supercomputer with these jobs until regular jobs from the main

queue appear. Upon arrival of a regular job, the low-priority jobs will interrupt their

execution and wait for the appearance of new idle nodes to be resumed there.

There are two key requirements for low-priority jobs - they must be small and not

urgent. Being small, they will perfectly fill the idle resources. Being not urgent, they

can be interrupted at any time. A good example of this kind of jobs is the Monte Carlo

simulation, which is required in many scientific experiments. These jobs are available

in effectively infinite numbers and can be executed sequentially and independently,

thus they can utilize any available idle resources. An example of this approach is the

use of idle resources of the Titan-2 supercomputer by the ATLAS project [3].

The suggested approach can be implemented by running low-priority jobs in con-

tainers and using the container checkpoint/restore mechanism to freeze these jobs and

then run them from the point they were frozen at. It should be emphasized that after

restoring the process does not start from the beginning, but from the moment it was

interrupted. Thus, it is possible to complete any low-priority job in several stages.

In this work, we compare different computer virtualization tools with support for

checkpoints that can be used to run low-priority jobs on a supercomputer.

2 Technologies

The key product used in our work is Checkpoint/Restore In Userspace (CRIU) [4] - a

software tool for the Linux operating system intended to safely and quickly interrupt

and later resume a running process. CRIU provides the means to create a so called

stateful checkpoint that is a collection of files containing all the information for re-

storing the process execution sometimes in the future. The process can be restored

later, and restoring is possible on the same computational node or on another one. In

our work, we intend to apply CRIU to a container with a running computational job.

The main goal of this work is to compare different container virtualization tools

with CRIU support and to select one that is most suitable for our task. Currently,

CRIU support is built into OpenVZ [5], Docker [6], and LXC [7] container virtualiza-

tion systems. All of these systems use the same special tools of the Linux operating

system to manage resource isolation - control groups and namespaces. Control groups

(cgroups) is a Linux kernel mechanism that limits and isolates computing resources

(processor, network, memory, I/O) of a collection of processes. Namespaces are a

feature of the Linux kernel that partitions kernel resources (process IDs, hostnames,

user IDs, file names) such that one set of processes sees one set of resources while

another set of processes sees a different set of resources.

3 Candidate virtualization tools

Initially, we considered three container virtualization tools - OpenVZ, Docker, and

LXC. However, a detailed analysis showed that the functionality implemented in

OpenVZ is not quite the one that is required to solve the problems considered in our

project. Namely, in OpenVZ, only the so-called "live migration" is implemented by

standard means, which is the transfer of a working container from one computer to

another over the network (that is, a checkpoint is created and immediately restored in

another place). For the purposes of our project, it is important that you can create a

checkpoint for a working container and store it for some time in the storage. We did

not find how to implement this functionality with standard OpenVZ tools, so we opt-

ed for Docker and LXC projects, whose standard tools explicitly allow you to take a

break between creating a checkpoint for a working container and restoring it.

When comparing the capabilities of Docker and LXC, it was noted that Docker

containers start and stop somewhat faster than LXC containers, the launch of which is

more like starting a classic virtual machine. At the same time, the LXC project has the

best support for the ZFS file system, which significantly speeds up the process of

writing checkpoints to disk, as well as restoring containers from checkpoints. The

ZFS file system is primarily known for its ability to provide high speed access to data,

this high speed is achieved due to the features of its implementation. LXC is specially

optimized to work with ZFS, and without ZFS, LHC cannot compete with Docker,

which is much more lightweight. Therefore, it was decided to test the capabilities of

these virtualization tools in conjunction with the file system. Thus, we tested LXC

together with ZFS, and Docker together with a regular file system (Ext4 in our case).

Hereinafter, for brevity, only the name of the container virtualization tool will be

used, but the joint operation with the file system is implied.

4 The testbed

We compared virtualization tools on a testbed. We did not use a supercomputer, but

the most ordinary computer; nevertheless it allowed us to draw certain conclusions

about the capabilities and performance of the tools.

Computer specifications are as follows.

A processor with two cores, the characteristics of each are:

 product: Intel(R) Xeon(R) CPU E5620 @ 2.40 GHz

 capacity: 2401 MHz

 width: 64 bits

Memory:

 size: 15 GB

Also we prepared a special test computational job. This job was launched, check-

pointed and restored using containers of each type (respectively, Docker and LXC) 20

times to collect statistics. The job was specially implemented as non-optimally as

possible, which made it almost endless. Thus, sudden container stops due to the com-

pletion of the job do not affect the test results. According to the top command, the job

consumed 1.3 to 1.6 GB of memory, while the processor was 100% loaded.

5 Test results

When comparing the capabilities of Docker and LXC, we started from the comparison

of the container launch. The comparison results are presented in Ошибка! Невер-

ная ссылка закладки..

Table 1. Comparison of container create/start times in Docker and LXC.

Docker LXC

create/start a container create a container start a container

Time, sec 1.5 ± 0.2 14 ± 2 1.5 ± 0.2

A feature of Docker is that you can immediately start a container without creating it

separately. The launch of LXC container is more complicated: you should create a

container and then it can be started (at this particular moment or later). So, the launch

takes longer and includes an additional step. However, an acceptable workaround is to

create a number of LXC containers in advance.

The next step was to compare the times to checkpoint/restore. These results are

presented in Ошибка! Неверная ссылка закладки..

Table 2. Comparison of container checkpoint/restore times in Docker and LXC.

Docker LXC

checkpoint restore checkpoint restore

Time, sec 70 ± 3 62 ± 3 13 ± 2 5.5 ± 0.5

As we can see, creating an LXC checkpoint is almost 5 times faster, and restoring

from the checkpoint is more than 10 times faster (comparing to Docker).

Surprisingly, a more thorough study of LXC revealed a recurring problem: the

same container was correctly restored from a checkpoint only once. Attempts to

checkpoint a container that was previously restored from a checkpoint resulted in an

error with the loss of the container state. Most likely, this behavior is the result of the

features of the ZFS file system, and not the disadvantage of the LXC tool itself. How-

ever, since our project assumes a multiple checkpoint and restore of the same contain-

er as the main scenario, the above feature prevents us from using LXC with ZFS for

the needs of our project.

Thus, we opted for the Docker project, which stably and correctly check-

points/restores any container multiple times, while maintaining the current state of the

processes running there.

6 Conclusion

We implemented a prototype system to increase the effective load of supercomput-

er resources using Docker containers [8]. Our simulation experiments demonstrate

that under some assumptions the system increases the effective utilization of compu-

tational resources. So, testing of the prototype proved the viability of the proposed

approach, as well as the reliability and stability of the checkpoint/restore mechanism

in Docker containers.

Also, we believe that the results obtained can be of practical use to other research-

ers when choosing a container virtualization tool for their needs.

References

1. Antonov, A.S. et al.: Examination of supercomputer system jobs flow dynamic characteris-

tics. Computational methods and programming, 14(4), 104-108 (2013) (in Russian).

2. Leonenkov, S., Zhumatiy, S.: Supercomputer Efficiency: Complex Approach Inspired by

Lomonosov-2 History Evaluation. In: Russian Supercomputing Days: Proceedings of the

International Conference (September 24-25, 2018, Moscow, Russia), pp. 518-528. Mos-

cow State University (2018).

3. Barreiro Megino, F. et al. [ATLAS Collaboration]: Integration of Titan supercomputer at

OLCF with ATLAS Production System. Journal of Physics: Conference Series, 898(9) p.

092002 (2017).

4. The CRIU project, https://www.criu.org/, last accessed 2020/06/30.

5. The OpenVZ project, https://openvz.org/, last accessed 2020/06/30.

6. The Docker project, https://www.docker.com/, last accessed 2020/06/30.

7. The LXC project, https://linuxcontainers.org/, last accessed 2020/06/30

8. Polyakov, S.P., Dubenskaya, Yu.Yu.: Improving the load of supercomputers based on job

migration using container virtualization. In: Selected Papers of the 8th International Con-

ference "Distributed Computing and Grid-technologies in Science and Education", CEUR

Workshop Proceedings, vol. 2267, pp. 243-247. M. Jeusfeld c/o Redaktion Sun SITE, In-

formatik V, RWTH Aachen (2018).

