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Abstract

A research organization responds to a
variety of customer requests. Each high
level request is broken down into a set of
low level requests. For each low level
request, the research organization follows a
multi-step process: access, acquire, analyze
and report. The customer is given an
estimate of  whether its  request will be met,
and if not, why not. The explanation may be
provided at multiple levels of granularity
including request level (e.g. low level
request X cannot be fulfilled) and step level
(e.g. the problem lies with acquisition).
Available databases contain an incomplete
history of past requests as well as
information about current staffing and
resources. The challenge is to provide an
estimate of current capabilities for satisfying
requests in general and to estimate the
probability for meeting a specific incoming
request.

This paper proposes an abstract process
model and an aggregation strategy for
combining evidence across multiple levels of
granularity into estimates that meet these
challenges. It specifies an approach for
constructing query-specific Bayesian
networks in response to queries from the
customers and research organization
management.

1 INTRODUCTION
A research organization invited Innovative
Decisions to develop a method that predicts
its ability to produce a research report
requested by a customer in a timely manner.
Currently, within a few weeks of receiving a
request, the organization provides an
estimate of its likelihood of producing a
report. These estimates are generated by
analysts drawing on both collected data and
the experiential knowledge from their
networks of experts.

The challenge is to produce an estimate
immediately, relying only on the available
on-line data. Several different approaches
were considered, including drawing
statistics from existing databases. However,
pertinent statistics are generally not
available at the level of a requested report.
This led to the proposal to provide relative
estimates by modeling the reporting process
with a Bayesian network that uses indirect,
but relevant, data as evidence. However,
because the relevant data is at various levels
of granularity, it was decided to construct
process models for the lowest levels of
request as well as for those levels consistent
with relevant data. The proposal
recommends using an aggregation strategy
to connect relevant data to a process model
representing the customer’s request and
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automated network construction to limit the
constructed network to relevant information.

This proposed solution meets the research
organization’s requirements. It has not yet
been implemented. For reasons of
confidentiality, the example given is a
surrogate for the actual application.

The following section introduces a
motivating example. The next section
reviews related research. There are three
aspects to the application: Process models;
aggregation; query-specific network
construction. In Section 4, the process and
aggregation models are introduced while
Section 5 discusses the construction of
query-specific networks.

2 EXAMPLE
A research organization specializes in
generating reports about artwork. A
customer requests a tailored report. It may
be restricted to a set of artists, a period in
time, and/or a specified collection. At its
most specific level, a report is for a specific
artist, decade of completion, and the
collection in which the artwork is located. A
customer’s request can be viewed as a set of
very specific reports.

Furthermore, each customer requests
specialized information that may or may not
have been reported in the past. For example,
one customer may be interested in the
theme/subject of the artwork while another
may be interested in the materials and
methods used in producing the artwork.
Therefore, past reports, while indicative of
the organization’s capacity to respond to a
customer’s request, are not predictive.

The process of responding to a request
includes the following steps:

1. Gain access to the collections in which
relevant works of art may be kept;

2. Identify relevant works of art within the
collection and acquire relevant data such as

measurements, photos, curatorial history, X-
rays, and samples for spectrography

3. Analyze the relevant art works using the
collected data;

4. Generate a report responding to the user’s
specific questions.

When a customer submits a request, she
wishes to know whether or not the request is
likely to be fulfilled in a timely fashion. The
organization’s response is necessarily
couched in uncertain terms. By way of
explanation, the organization needs to
produce an estimate of the capability to
perform each step of the process. To support
drill-down the organization also wants to
produce capability estimates for each
process, for each artwork included in the
request.

The organization’s capability to accomplish
each step has some uncertainty associated
with it. First, a particular collection,
especially if it is in private hands, may not
be accessible. And even if access is granted
to a collection believed to hold relevant art
works, those art works may not be found
because of destruction, loss or simply
incorrect records. Even when some art work
is found, a researcher with the appropriate
expertise to analyze the art work may not be
available.

In general, past performance is indicative of
future capability. However, the performance
data available for each process step is
uncertain and incomplete. This is partly due
to past poor record-keeping. But also,
reports are usually prepared at the request
level and may or may not include
information on every artwork notionally
included in the request.

At the same time, management of the
organization wants reports documenting
how well general capabilities of the
organization are meeting current requests.
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3 RESEARCH

3.1 Relevant applications

Researchers have used Bayesian networks to
model various processes. Some examples
include: Deventer et al (1999) modeled
injection molding as a set of sub-processes;
Weidl et al (2003) described an industrial
process operation and asset management
tool based on an object-oriented Bayesian
network;. Wolbrecht, et al (2000) modeled a
multistage manufacturing process.

3.2 Aggregation Approach

The underlying assumption that the
capabilities of low level processes can be
combined independently is modeled by
independence of causal influence (ICI)
functions. The first ICI function, a binary
Noisy-OR (Pearl, 1988; Henrion, 1987),
was generalized by Srinivas (1993) and Diez
(1993) to non-binary variables. In general,
an ICI function simply requires that the
influence of parents on a dependent variable
be independent of one another. (Heckerman
and Breese, 1996; Zhang and Yan, 1997)

Probabilistic ICI  (pICI) functions have a
combination function that is probabilistic
rather than deterministic (Zagorecki, et al,
2006). An example is an average function.
In this case, the value assigned to a state is
the number of states with that value divided
by the total number of states.

3.3 Automated Construction

Object Oriented Bayesian Networks (Pfeffer
and Koller, 1997) and Multi-Entity Bayesian
Networks ( Laskey, 2006) propose
approaches for automatically constructing
Bayesian networks from a knowledge base
of network fragments.

4 ABSTRACT MODELS
The first subsection presents the specific
requirements for the problem. The second
describes the abstract process network for

modeling the steps at each level of
granularity while the last section presents an
aggregation strategy.

4.1 Specific Requirements

Request specific: First a model needs to be
responsive to a customer’s specific request.
These requests, while often similar to past
requests, are usually unique.

Capability-based: The organization needs to
indicate whether current capabilities are
adequate to respond to a request. These
capabilities estimates indicate where in the
process weaknesses lie. Besides giving an
explanation of why the organization
can/cannot answer a specific request, they
also provide management with insight on
what needs to be changed in order to
improve the organization’s ability to
respond to future requests.

Drill-down: Furthermore, these capability
estimates need to be provided at different
levels of granularity to support detailed
explanations for why or why not a request
may be satisfied.

Ordinal: Without more specific historical
data, the model is not expected to provide
realistic probability estimates. Rather, the
probabilities will serve as ordinal numbers
for comparing existing capabilities and the
relative probability of producing a given
report.

4.2 Abstract Core Model

The network in Figure 1 shows the abstract
model for the capability and process model.
It includes two types of variables:
(1) Variables that represent the capabilities
for each step of the research process, and
(2) variables that represent the steps of the
process.

To make an instance of the abstract model,
one simply specifies a context. Following
our example, context is a combination of the
set of artists, set of years, set of collections.
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At its most granular the context is a single
artist, single decade and single collection.

The semantics for the abstract model are as
follows:

• A capability node represents the
probability that the organization will be
able to perform the specific capability for
the context. Each capability node has a
uniform distribution representing a lack of
prior knowledge. See the third row of
nodes in Figure 1

• A process step node represents the
probability that the organization will
perform the specific step given a request
to do so. These are deterministic nodes in
the second row of Figure 1. A step occurs
when both its associated capability is
present and the previous step has been
accomplished. Otherwise, the step does
not occur.

Note that the relationships between steps
combined with the priors of 0.5 for the
capabilities forces the probability of each
step to be half that of the prior step.

All evidence is specific to a level of
granularity. For example, a report about a
specific artist’s work in a certain decade
would be applied to an instance of the
abstract core model with that context.

Figure 1 shows notional evidence nodes
attached to both process and capability
nodes. These serve as placeholders or stubs
for more complex sets of evidence nodes. In
this abstract model, the evidence nodes
apply to exactly one process or capability
node. This is a preferred structure, but not
required.

The Bayesian network of the figure shows
two different categories of evidence. The
first is evidence of past performance, the top
row of nodes in Figure 1, while the second is
evidence of current capabilities, the bottom
row of nodes in Figure 1.

Evidence of past performance is associated
with process nodes. This evidence generally
affects all of the other nodes in the network.
For example, evidence of a report means
that the prior processes have been
accomplished sometime in the past for that
context. Therefore, the associated
capabilities must have been present
sometime in the past and are therefore more
likely to be present today.

Evidence of current capability could be that
the organization has blanket permission to
access artworks possessed by a given
museum or the organization has analysts
with specific talents under contract.

Figure 1 Core Model with Notional Evidence Nodes
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4.3 Basic Aggregation Model

A customer request can be viewed as a
combination of low level requests. In order
to answer how well and whether the
organization can respond to a specific
request, one may aggregate a set of low
level process networks into a process
network representing the customer request.

Capabilities associated with the low level
processes are aggregated into higher level
capabilities because it is ultimately the
capabilities of the organization that
determine whether or not it can respond to a
specific request. The structure of the
aggregation is shown in Figure 2.

This structure aggregates over binary
variables. Binary variables allow one to
readily order variables according to the
posterior probabilities of the capability
states. However, the approach is not limited
to binary variables.

Several different aggregation strategies
permits the user to choose the aggregation
strategy that best fits the nature of the
capability and the purpose of the
aggregation. For example, if one needs
access to all collections in which certain
works of art reside, then the All aggregation
strategy would be appropriate for the Access
capability. On the other hand, if the
organization may assess its chances of
gaining access to a particular museum by
simply taking an average of its experience in
accessing works of art in that museum.  In

another case, even though a particular
research request specifies four different low-
level processes, the customer may be
satisfied if only three of four of those low-
level processes are successful.

Figure 2 shows five different possible
aggregation strategies.
• All: All capabilities are required to satisfy

the requirement.
• Any: Having any one of the capabilities

will satisfy the requirement.
• Average: Calculate the average capability.
• At Least Half: Of these four, two or more

will satisfy the requirement.
• Exactly Three: Exactly three capabilities

are required.

5 QUERY-SPECIFIC NETWORKS
The probability that a customer’s research
request may be fulfilled can be answered by
constructing a query-specific Bayesian
network from instances of the abstract core
model combined with instances of the basic
aggregation model.

5.1 Query-specific network examples

In its simplest form, a query-specific
network is composed of abstract core model
instances for each element of the customer’s
request and an abstract core model instance
for the request itself. These are connected
via a set of aggregation structures for each
of the capabilities. Evidence nodes for these
core model instances is also attached to the
query-specific network. Once the network is

Figure 2 Basic Aggregation Model
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constructed, evidence is applied and the
inference algorithm is applied.

For example, suppose that the customer’s
request concerns artist A2’s work during
Decade D1. Assume that just four different

collections hold examples of such work. The
circled network of Figure 3 shows the
simplest version of a query-specific network
constructed in response to the customer’s
request. Each node in this network
represents an instance of the abstract core
model with evidence attached.

Suppose some previous report has been
prepared comparing artist’s A1’s work with
that of artist A2. Finding such a report in the
evidential database, causes us to add its core
model instance along with its associated low
level core models to the initial query-
specific network. Figure 3 shows the
resulting query-specific network.

Essentially, the network construction rule in
this case is “If there is evidence for a
different request whose low level core
model instances overlap those of the
simplest query-specific network for the
current request, then instantiate abstract core
model fragments for that request and its low

level core model instances.”  There are two
key elements to the rule. The overlap
requirement simply means that only relevant
requests are considered. The there is
evidence requirement is there because if

there is no evidence for what could be a
relevant request, then modeling that request
will make no difference in the inferred
posteriors. Because all of the nodes in the
process model representing a high level
request are descendents of nodes in low
level process models, they make no
difference in the computation if there is no
evidence.

Now, consider a more complex example. A
customer wants to know about artist A1’s
activities during decades 1 and 2. There are
several ‘obviously’ relevant reports. They
include the reports about the artist during
each of those two decades. Even a report
comparing artist 1 with artist 2 during one of
the decades appears to be relevant. If there is
evidence for a report comparing artists A1
and A2 for that decade, then the report about
artist A2 is relevant within the context of the
Bayesian network. The question is how
important is that relevance for determining

Figure 3 Aggregating to meet Customer Request
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whether the organization can respond to the
specific request about artist A1. In this case,
the organization  may decide that the report
is not relevant enough. See Figure 4.

This suggests that the query-specific
construction function requires stopping
criteria so that the network built in response
to a request remains tractable.

5.2 Automated Construction

The steps for constructing the simplest
model tailored to a customer request are:

1. Instantiate a core model whose context is
the level of granularity of the request.

2. Instantiate a set of lowest level core
models that combined satisfy the
request.

3. Aggregate these lowest level networks to
request the level network using one or
more versions of the basic aggregation
model. Specific aggregation strategies
may be specified by the customer and/or
the organization.

4. Apply available evidence for both the
lowest level and request level networks.

The additional steps for constructing a
highly relevant query-specific network
tailored to a customer request are shown
below. If evidence exists for a high level
request whose low level process models
substantially overlap the low level models of
this request, then:

5. Instantiate that high level request

6. Instantiate the low level models
associated with that high level request.

7. Aggregate low level process models to
the high level request model.

8. Apply available evidence

Of course, the issue here is to decide a
policy for what substantially overlap means.
This may depend upon the customer as well
as the organization.

Figure 4. A More Complex Example
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5.3 Inference Considerations

The presented abstract core model is singly
connected. If the evidence is only attached
to one capability or process node, the
network remains singly connected. So,
individually, the process models are
computationally tractable. (Pearl, 1988)

The aggregation of capability nodes into
higher levels has the pattern shown in
Figures 3 and 4. The network is now no
longer singly connected. However, as long
as evidence is only collected at the lowest
level of the process model, the network is
tractable and higher level capability
posteriors can be readily computed. In this
case, the lack of evidence for higher level
processes d-separates the network, so that
when one is calculating high level capability
posteriors, the network is computationally
equivalent to the structure of the simplest
network for the request.

Constructed query-specific networks will
not usually be in their simplest form. To
meet customer requests, rapidly computing
the posteriors of a query-specific network is
desirable. So, it falls upon the automated
network construction software to limit the
constructed model to one that is
computationally tractable. Trade-offs
between precision and inference efficiency
need to be made.

6 SUMMARY
This paper shows how abstract core and
basic aggregation models may be
instantiated and combined with automated
construction algorithms to form
interconnected Bayesian networks of high
and low level core model instances. Any
subset of the low level instances may be
combined into a high level model.

This flexibility supports customers by being
responsive to any request and permits a
request to be broken down across different
dimensions. For example, the customer who

is interested in two different artists may
obtain an estimate for the artists
individually.

At the same time, it gives the organization a
large number of ways in which to combine
its available data to answer high level
questions about capabilities.

Some issues that need to be resolved
include:

• To what extent should the customer be
able to specify aggregation strategies. The
default seems to be that customers want
everything, but may be satisfied with part.
This also goes to how the organization
measures its performance regarding
customer satisfaction.

• A second issue is how to measure
relevance. To what extent should the
customer control the relevancy and how
does one present that to the customer?
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