
Compiling Dyanamic Fault Trees into Dynamic Bayesian Nets for
Reliability Analysis: the Radyban Tool∗

Luigi Portinale, Andrea Bobbio, Daniele Codetta Raiteri, Stefania Montani

Dipartimento di Informatica, Università del Piemonte Orientale
Via Bellini 25g, 15100 Alessandria (ITALY)

email:{portinal,bobbio,raiteri,stefania}@di.unipmn.it

Abstract

In this paper, we present Radyban (Relia-
bility Analysis with DYnamic BAyesian Net-
works), a software tool which allows to ana-
lyze systems modeled by means of Dynamic
Fault Trees (DFT), by relying on automatic
conversion into Dynamic Bayesian Networks
(DBN). The tools aims at providing a famil-
iar interface to reliability engineers, by al-
lowing them to model the system to be ana-
lyzed with quite a standard formalism (i.e.
DFT) based on specific extensions to the
well-known methodology of Fault Trees; how-
ever, the tool also implements a modular al-
gorithm for automatically translating a DFT
into the corresponding DBN, without any ex-
plicit intervention from the end user. In fact,
when the computation of specific reliability
measures is requested, the tool exploits clas-
sical algorithms for the inference on Dynamic
Bayesian Networks, in order to compute the
requested parameters. This is performed in
a totally transparent way to the user, who
could in principle be completely unaware of
the underlying Bayesian Network. However,
the use of DBNs allows the tool to be able
to compute measures that are not directly
computable from DFTs, but that are nat-
urally obtainable from DBN inference. Af-
ter having described the basic features of the
tool, we show how it operates on a real world
example and we compare the unreliability
results it generates with those returned by
other methodologies, in order to verify the
correctness and the consistency of the results
obtained.

∗This work has been partially supported by the EU-
Project Crutial IST-2004-27513.

1 Introduction

The modeling possibilities offered by Fault Trees (FT),
one of the most popular techniques for dependabil-
ity analysis of large, safety critical systems, can
be extended by relying on Bayesian Networks (BN)
[1, 3, 12, 21, 22]. This formalism allows to relax some
constraints which are typical of FTs. In addition, BNs
allow to represent local dependencies and to perform
both predictive and diagnostic reasoning.

In [14], we have shown how BNs can provide a unified
framework in which also Dynamic Fault Trees (DFT)
[6], a rather recent extension to FTs able to treat sev-
eral types of dependencies, can be represented. How-
ever, while reliability engineers are quite familiar with
FT-based formalisms, they are not usually comfortable
with the use of formalisms like BN and their exten-
sions. This is also due to the fact that, for reliability
purposes, simple and modular techniques are often suf-
ficient for the definition of the required analysis frame-
work. Of course, a clear trade-off exists between the
simplicity of the formalism and its modeling, as well
as analysis capabilities. FTs are maybe the most sim-
ple combinatorial formalism in reliability analysis, but
they fail in capturing important aspects like several
kind of dependencies among the system components
[20, 1, 12]. DFTs overcome some of the limitations
of standard FTs, by allowing some kind of dynamic
dependencies among components, while still offering
a quite simple and structured framework very useful
for modeling purposes, but still quite limited from the
analysis point of view.

The starting point of our work is to make available to
reliability engineers a tool where they can take advan-
tage of the simplicity and modularity of either plain
FTs or DFTs, by making them available at the same
time a more powerful analysis engine based on Dy-

namic Bayesian Networks (DBN). In fact, the quan-
titative analysis of DFTs typically requires to expand
the model in its whole state space, and to solve the cor-

responding Continuous Time Markov Chain (CTMC)
[6]. Our approach is based on a translation of the DFT
into an equivalent DBN. With respect to CTMC, the
use of a DBN allows one to take advantage of the fac-
torization in the temporal probability model, via the
conditional independence assumptions represented in
the DBN.

The tool we have implemented is called Radyban (Re-
liability Analysis with DYnamic BAyesian Networks)
and allows the design of the reliability model through
a graphical interface where the analyst can access and
exploit all the familiar modeling constructs of DFTs;
the resulting model is then compiled into an equivalent
DBN and the analysis is performed in a transparent
way to user, who has just to specify the desired type
of analysis algorithm.

2 Dynamic Fault Trees

Fault Trees allow one to represent the combination of
elementary causes that lead to the occurrence of an un-
desired catastrophic event named the Top Event (TE)
[1, 12]. By specifying failure probabilities on the ba-
sic components of the modeled system (the elementary
causes of the TE, also called basic events), the whole
system unreliability (probability of the TE) at a given
mission time can be computed.

In recent years, an effort has been documented in the
literature, aimed at increasing the modeling power of
FT by including new primitive gates, able to accom-
modate complex kinds dependencies. This augmented
FT language is referred to by the authors as Dynamic

FT [6, 13]. DFT introduce four basic (dynamic) gates:
the warm spare (WSP), the sequence enforcing (SEQ),
the probabilistic dependency (PDEP) and the priority
AND (PAND).

A WSP dynamic gate models one primary compo-
nent that can be substituted by one or more backups
(spares), with the same functionality (see Fig. 2(a),
where spares are identified by “circle-headed” arcs).
The WSP gate fails if its primary fails and all of its
spares have failed or are unavailable (a spare is unavail-
able if it is shared and being used by another spare
gate). Spares can fail even while they are dormant,
but the failure rate of an unpowered (i. e. dormant)
spare is lower than the failure rate of the correspond-
ing powered one. More precisely, being λ the failure
rate of a powered spare, the failure rate of the unpow-
ered spare is αλ, with 0 ≤ α ≤ 1 called the dormancy
factor. Spares are more properly called “hot” if α = 1
and “cold” if α = 0.

A SEQ gate forces its inputs to fail in a particular
order: when a SEQ is found in a DFT, it never happens

FDEPWSP

A B

PAND

G

.....P S1 Sn

G

T A B

G

(a) (b) (c)

Figure 1: Dynamic gates in a DFT.

that the failure sequence takes place in different orders.
SEQ gates can be modeled as a special case of a cold
spare [13], so they will not be considered any more in
the following1.

In the FDEP gate (Fig. 2(b)), one trigger event T (con-
nected with a dashed arc in the figure) causes other
dependent components to become unusable or inac-
cessible. In particular, when the trigger event occurs,
the dependent components fail with pd = 1; the sep-
arate failure of a dependent component, on the other
hand, has no effect on the trigger event. FDEP has
also a non-dependent output, that simply reflects the
status of the trigger event and is called dummy output
(i. e. not used in the analysis).

We have generalized the FDEP by defining a new
gate, called probabilistic dependency (PDEP). In the
PDEP, the probability of failure of dependent compo-
nents, given that the trigger has failed, is pd ≤ 1.

Finally, the PAND gate reaches a failure state if and
only if all of its input components have failed in a
preassigned order (from left to right in graphical nota-
tion). While the SEQ gate allows the events to occur
only in a preassigned order and states that a different
failure sequence can never take place, the PAND does
not force such a strong assumption: it simply detects
the failure order and fails just in one case (in Fig. 2(c)
a failure occurs iff A fails before B, but B may fail
before A without producing a failure in G).

3 Dynamic Bayesian Networks

DBNs [5, 18, 16] extend the BN formalism by pro-
viding an explicit discrete temporal dimension. The
standard DBN representation model adopts a discrete
time approach, where several time slices are explicited,
togheter with information about transitions from a
time slice to the next ones. When the Markov assump-

1The conceptual difference between the two kind of
gates is that the inputs to a SEQ do not need to be a
component and its set of spares, but can be components
covering any kind of function in the FT.

tion holds (and in particular when we are dealing with
a first order Markov process) the future slice at time
t + ∆ (∆ being the so called discretization step usu-
ally assumed to be 1) is conditionally independent of
the past ones given the present slice at time t [11]. In
this case, it is sufficient to represent two consecutive
time slices called the anterior and the ulterior layer.
The above model of a DBN is usually called 2TBN
(two time-slice Temporal Bayesian Network)[16, 4]. A
DBN (2TBN) is in canonical form if the anterior layer
contains only variables having influence on the same
variable or on another variable at the ulterior level.
Given a DBN in canonical form, inter-slice edges con-
necting a variable in the anterior layer to the same
variable in the ulterior layer are called temporal arcs;
in other words, a temporal arcs connect variable X t

i

to variable Xt+∆
i (being Xt

i the copy of variable Xi at
time t). Radyban explicitly uses the notion of tem-
poral arc in its representation.

Concerning the analysis of a DBN, different kinds of
inference algorithms are available. In particular, let
Xt be a set of variables at time t and ya:b any stream
of observation from time point a to time point b (i.e. a
set of instantiated variables Y j

i with a ≤ j ≤ b). The
following tasks can be performed over a DBN:

• Prediction: computing P (X t+h|y1:t) for some
horizon h > 0, i.e. predicting a future state tak-
ing into consideration the observation up to now;
this task is called filtering or monitoring if h = 0.

• Smoothing: computing P (X t−l|y1:t) for some
l < t, i.e. estimating what happened l steps in
the past given all the evidence (observations) up
to now.

Different algorithms, either exact or approximate
can be exploited in order to implement the above
tasks. In the Radyban tool, the user can select
either the filtering/prediction or the smoothing task,
and for each given task she/he may choose between
using a Junction Tree (JT) inference [10, 16] or
the Boyen-Koller (BK) algorithm [4], a parame-
terized inference algorithm that, depending on the
parameters provided (disjoint sets of variables called
clusters), may return exact as well as approximate
results. Such algorithms have been implemented
by resorting to Intel PNL (Probabilistic Networks
Library), a set of open-source C++ libraries,
(http://www.intel.com/research/mrl/pnl), to
which we have provided some minor adjustments.

DFT2DBN

DBN solver

Results Results

DBN.xml

DBN.xml

DFT.xml

DFT editor DBN editor

Figure 2: The Radyban tool architecture.

4 The Radyban tool

4.1 Tool functionalities

The main features of Radyban allow the user to: (1)
edit a dynamic fault tree and (2) automatically com-
pile a DFT into the corresponding DBN, on which both
predictive and diagnostic inference can then be drawn.
This is the modality designed for reliability engineers
who are not familiar with BN-based formalism and
who want to take advantage of a DFT-based model
interface augmented with the whole analysis power of
DBNs. However, the tool also allows the possibility of
directly editing a (D)BN and then draw inferences on
it; of course this modality has to be followed only by
users having the necessary background on (D)BNs2.
The tool architecture is depicted in Fig. 2.

4.2 Graphical interface description

Modeling the failure mode of a system as a DBN might
be complicated for the user, while drawing the DFT
model and generating automatically the corresponding
DBN, is sometimes more practical. In this way, the
DFT becomes a high level formalism allowing the user
to express in a straightforward way the relations be-
tween the components of the system, whose modeling
in terms of DBN primitives would be less comfortable.

2At the current stage, the graphical interface does not
allow the user to access the DBN produced by the compila-
tion of a DFT (that can however be edited in XML form);
we are currently working in order to allow this possibility
as well.

The DFT editor allows the modeler to resort to stan-
dard DFT constructs (i.e. boolean and dynamic
gates), as well as to specify additional properties (al-
lowed by our tool) for the analysis. In fact, the user
may indicate which events will be queried and which
events have been observed (true or false) at a given
time point. Another extension on which we are work-
ing on is to allow the possibility of the so called Repair

Box, i.e. a gate modeling the repair (through a suit-
able repair rate) of components: at the current stage
only the repair of basic events (i.e. elementary system
components) is allowed.

The user can also specify the analysis time step k, as
well as the mission time T and the inference algorithm
to be adopted on the corresponding DBN for the re-
quired analysis (i.e. the analysis must be performed
from time 0 to time T every k instants). This infor-
mation is directly inherited by the corresponding DBN
when translation is required. In this way, the DFT
is exploited as an easy and well known formalism, to
which the user is typically already familiar, through
which all the needed data for DBN inference can be
given in input.

Particularly important from the quantitative analysis
point of view is another parameter that the user can
set on the DFT: the discretization step ∆. Since DBN
is a discrete time formalism, a suitable discretization
step must be defined in case failure specification on the
system components are given in a continuous way. Let
us suppose that a basic component C is characterized
by an exponential failure rate λC : given a discretiza-
tion step ∆, we can characterize the failure probability
of C as

P [C failed at t|C working at (t − ∆)] = 1 − e−λC∆

In terms of the corresponding DBN, ∆ represents the
amount of time separating the anterior layer from the
ulterior layer. This differs from the model usually
adopted in the reliability analysis of a DFT which is
usually a CTMC. The results provided by a CTMC are
in fact slightly different. As a matter of fact, the two
models are not exactly equivalent, since in a CTMC

transitions occur in a continuous fashion.

There is a trade-off between the approximation pro-
vided by discretization and the computational effort
needed for the analysis: smaller is the discretiza-
tion step, more accurate are the results obtained
(and closer to the continuous case computation), but
greater is the time horizon required for the analysis
(and thus the computation time). In fact, if failure
rates are given as fault/hour and we set a mission
time of T hours, a discretization step ∆ = 1h will re-
quire analysis up to step t = T , while a discretization

step ∆ = 10h will only require analysis up to step
t = T/10 (since each step will count as 10 time units);
this fact, in DBN inference, will result in a speed up
of the result computation, because a smaller number
of time slices have to be considered (i.e. a time slice
in the latter case approximate 10 slices in the former).

Fig. 3 shows a screenshot of the graphical interface of
our tool. It is mainly composed by three windows;
the Main window allows the user to draw the DFT
model, while in the window named Property Page, it
is possible to set the attributes of the node currently
selected in the main window. From the Execute menu
of the Main window, the user can run the conversion
and the analysis of the DFT model. At the end of
such process, the obtained results are displayed in the
window called Solver Execution.

4.3 Compiling DFT into DBN

The gates of a DFT can be individually compiled into
corresponding DBN fragments (see [1, 14] for the tech-
nical details); however, each single fragment has then
to be combined with each others, in order to produce
the compiled DBN corresponding to the input DFT.

From the structural point of view, combining different
fragments is trivial; just overlaps nodes corresponding
to the same variable in different fragments. Fig. 4(a)
shows an example of structural combination of the sub-
nets of a WSP gate with one primary component P ,
one spare B and a PDEP with a component T trigger-
ing B. The WSP DBN fragment is shown in the lower
part of Fig. 4(a), while the PDEP DBN fragment is
shown in the upper part of Fig. 4(a).

While the structural combination is relatively sim-
ple (the common part is the one concerning tempo-
ral copies of variable B), the quantitative combination
of the conditional probabilities (i.e. the generation of
the CPTs relative to the combined structure) may be
rather problematic. The problem stands in the fact
that the structural combination will introduce new de-
pendencies when overlapping nodes; the question is
whether there exists a method of quantifying such de-
pendencies in a modular way, by combining the CPTs
of the original fragments, under a set of reasonable as-
sumptions. This is a well studied issue in BN theory
under the name of “causal” or “conditional indepen-
dence” [9, 17]. The main point refers to the possibility
of avoiding a complete CPT specification for a given
node, when the number of the parents is too large for a
reasonable assessment. Common for these approaches
is the realization that all parameters are required if we

do not make additional assumptions. However, if the
domain experts are able to identify, e.g., functional re-
lations, then this should be taken into consideration.

Figure 3: A screenshot of the Radyban tool.

This can be explained by considering a structural
transformation called divorcing [10]; it essentially con-
sists in factorizing the assessment of the CPT of a
given node with a large number of parents, by adding
new parent nodes representing a set of the original
parents and by considering their combination as a
“noisy” (probabilistic) functional relation. An exam-
ple is shown in Fig. 4(b), where parent nodes of node
B(t + ∆) in Fig. 4(a) are “divorced” by creating new
parents B′(t + ∆) and B”(t + ∆). Conceptually, node
B′(t + ∆) represents the combination of nodes B(t)
and T (t + ∆), while node B”(t + ∆) is the combina-
tion of B(t) and P (t). A way of implementing this
consists in setting 4 values for nodes B′(t + ∆) and
B”(t + ∆) such that for example B′(t + ∆) = “00”
iff B(t) = 0 ∧ T (t + ∆) = 0, B′(t + ∆) = “01” iff
B(t) = 0 ∧ T (t + ∆) = 1 and so on. Node Bf (t + ∆)
implements the noisy relation used for integrating the
original CPTs and determined by the underlying as-
sumptions we want to make.

A typical example of such assumptions is the classi-
cal “noisy-OR”. Noisy-OR implies the independence
of the causes that inhibit the presence of a given con-
sequence and has a cumulative effect over the con-
sequence (the probability of having the consequence
when more than one cause is present is higher than
the consequence’s probability when each cause is sin-
gularly present) [10, 19].

For instance, let us suppose that in the example of
Fig. 4(a), we quantify P [B = 1|T = 1] = pd = 0.8,
α = 0.5, λ = 0.1, e−αλ∆ ≈ 1−αλ and e−λ∆ ≈ 1−λ,
in the hypothesis that the failure rate is sufficiently

T T

B

t t+∆

B

PP

WSP

PDEP dbn

WSP dbn

T T

B’

t t+∆

B

P
P

WSP

PDEP dbn

WSP dbn

B"

Bf

structural
divorcing on
B(t+∆)

(a) (b)

Figure 4: The DBN for a PDEP triggering the spare
of a WSP.

small [22] and ∆ = 1 (as usual 0 = working and
1 = failed). With a noisy-OR interaction we could
compute for example

P [B(t + ∆) = 1|B(t) = 0, T (t + ∆) = 1, P (t) = 1] =

P [Bf (t + ∆) = 1|B′(t + ∆) = ”01”, B”(t + ∆) = ”01”)] =

1− ((1 − pd)(1 − λ)) = 1 − 0.2 0.9 = 0.82 (1)

It is worth remarking that, in order to compute the
CPT produced by combining different fragments on
common variables, there is no need to make explicit
the divorcing structure of Fig. 4(b); once the modeler
has decided the suitable noisy functional relation for
components shared across different gates, this can be
directly applied to the structure of Fig. 4(a). In the

A1 A2 B1 B2

A B

S

P3

P2

P1

Figure 5: The block scheme of the
AHRS’sarchitecture.

current example, our tool will in fact directly produce
the structure of Fig. 4(a)3.

5 An example

The example we report is inspired from [3] and repre-
sents an Active Heat Rejection System (AHRS). The
block scheme of the AHRS’s architecture is depicted
in Fig. 5; such system is composed by two redundant
thermal rejection units A and B, each one possessing
a primary component (A1 and B1 respectively) and
a cold spare (A2 and B2 respectively). A1 and B2
are powered by a common source P1, which acts as
a trigger in a FDEP gate, in which A1 and B2 are
the dependent components. Similarly, B1 and A2 are
powered by P2. An extra stand-by cold spare unit (S)
is shared between the two thermal rejection units A
and B, and is powered (and potentially triggered) by
the source P3. The time to fail of any component in
the system is a random variable ruled by the negative
exponential distribution; Tab. 1 shows the exponential
failure rate of every component.

Fig. 6 shows the DFT for the AHRS system. The
DBN, in canonical form, corresponding to the DFT in
Fig. 6, is shown in Fig. 7 and is automatically gener-
ated given the DFT model, by using our tool.

After the conversion of the DFT in a DBN, we can per-
form the analysis of the latter by means of our tool.
Tab. 2 shows the unreliability of the system versus
the mission time varying between 0 and 100 hours,
with different discretization steps (∆ = 1h, 0.5h, 0.05h
respectively, in columns 2, 3 and 4). To perform
such a computation, we just used a filtering task by
querying node TE without providing any observation
stream; in other words we performed standard pre-
diction. The obtained results have been successfully

3At the current stage the tool implements, in addition
to noisy-OR, another kind of interaction called MSP (Most
Severe Prevailing) corresponding to the situation where,
given a set of potential causes of an effect, the most severe
cause prevails over the others (see [15] for more details).

TE

A1 A2 S B1 B2

P2P1P3

AFailure BFailure

Figure 6: The DFT model of AHRS.

verified by comparison with the results returned by
other tools on the same DFT model. Such tools are
DRPFTproc [2] (based on modularization [8] and con-
version to Stochastic Petri Nets of dynamic gates) and
Galileo [7] (based on modularization, Binary Decision
Diagrams (BDD) and CTMCs). Last two columns
of tab. 2 reports also the results obtained using such
tools. It is easy to verify that, as the discretization
step is reduced, Radyban results become closer and
closer to the results obtained by means of the other
tools, thus confirming the claim that, in this example,
the only source of approximation in using DBNs is due
to discretization. Moreover, as already mentioned, a
trade-off between computation time and result preci-
sion exists: if approximated results are sufficient, a
quicker DBN inference can be obtained by choosing a
relatively large discretization step.

Component failure rate (λ)
A1 0.001 h−1

A2 0.005 h−1

B1 0.002 h−1

B2 0.0035 h−1

S 0.005 h−1

P1, P2, P3 0.003 h−1

Table 1: The failure rates in the AHRS example.

DBN also offer additional analysis capabilities with
respect to Markov models and Petri Nets: smooth-
ing inference allows to rebuild the past history of the
system, given a stream of observations. As an ex-
ample, we have considered a situation in which the
overall system was observed as operational at time
t = 10h and t = 20h, while it was observed to be
failed (TE = true) at t = 60h. By applying a
smoothing algorithm, Radyban was able to provide
the probabilities of failure of the system in the time

time ∆ = 1h ∆ = 0.5h ∆ = 0.05h DRPFTproc Galileo

10h 0.000038 0.000040 0.000041 0.000041 0.000041
20h 0.000312 0.000317 0.000321 0.000322 0.000321
30h 0.001038 0.001048 0.001057 0.001058 0.001058
40h 0.002405 0.002423 0.002438 0.002440 0.002440
50h 0.004575 0.004601 0.004625 0.004628 0.004628
60h 0.007679 0.007716 0.007749 0.007753 0.007753
70h 0.011820 0.011868 0.011911 0.011917 0.011917
80h 0.017072 0.017133 0.017188 0.017195 0.017195
90h 0.023487 0.023561 0.023627 0.023635 0.023635

100h 0.031090 0.031177 0.031251 0.031265 0.031265

Table 2: The unreliability results obtained by Radyban at different discretization steps and by other tools.

A1

A2

S

B1

B2

P1

P2

P3

A1

A2

S

B1

B2

P1

P2

P3

CSP1

CSP2

TE

t t+∆

temporal arc

Figure 7: The DBN corresponding to the DFT in
Fig. 6.

span 20h ≤ t ≤ 60h (see table 3). For example, we
can state that, by knowing that the system was cer-
tainly operational at t = 20h and was certainly failed
at t = 60h, the probability that it was already failed
at t = 50h is about 0.4%. This suggest that a very un-
likely event has occurred, because just 10 hours before
the observation of the failure, the system was almost
definitely operational.

time Radyban unreliability
10h 0.000000
20h 0.000000
30h 0.000736
40h 0.002118
50h 0.004305
60h 1.000000

Table 3: Smoothing results.

In the examples reported in this section exact algo-
rithms (based on the calculation of the junction tree)
were adopted, both for monitoring and for smoothing
procedures.

6 Conclusions

In this paper, we have described Radyban, a tool that
allows reliability engineers to work ar different model-
ing level, while still having available all the inference
power of the DBN formalism. The tool is aimed at
helping reliability engineers in modeling the system to
be analyzed via a standard formalism like DFT, by
making them available at the same time all the infer-
ence power of DBNs.

We feel that the approch implemented in the tool can
be a step forward in making available formalisms based
on Bayesian nets to the reliability community, without
asking reliability practitioners to renounce to their fa-
miliar constructs like those used in FT or DFT. In

the future, we plan to extend the tool capabilities, by
adding ad hoc structures to the DFT, which can then
be naturally characterized in the corresponding DBN:
for example, we will allow the insertion of multi-valued
nodes, the modeling of complex repair policies and the
specification of conditional dependencies among basic
events.

References

[1] A. Bobbio, L. Portinale, M. Minichino, and
E. Ciancamerla. Improving the analysis of de-
pendable systems by mapping fault trees into
bayesian networks. Reliability Engineering and

System Safety, 71:249–260, 2001.

[2] A. Bobbio and D. Codetta Raiteri. Paramet-
ric fault-trees with dynamic gates and repair
boxes. In Proceedings Reliability and Maintain-

ability Symposium RAMS2004, pages 101–106,
Los Angeles, USA, 2004.

[3] H. Boudali and J. Bechta-Dugan. A new bayesian
network approach to solve dynamic fault trees. In
Proceedings Reliability and Maintainability Sym-

posium RAMS2005, pages 451–456, 2005.

[4] X. Boyen and D. Koller. Tractable inference for
complex stochastic processes. In Proceedings UAI

1988, pages 33–42, 1998.

[5] T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational

Intelligence, 5(3):142–150, 1989.

[6] J. Bechta Dugan, S.J. Bavuso, and M.A. Boyd.
Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability,
41:363–377, 1992.

[7] J. Bechta Dugan, K.J. Sullivan, and D. Coppit.
Developing a low-cost high-quality software tool
for dynamic fault-tree analysis. IEEE Transac-

tions on Reliability, 49(1):49–59, 2000.

[8] R. Gulati and J. Bechta-Dugan. A modular ap-
proach for analyzing static and dynamic fault
trees. In Proceedings Reliability and Maintain-

ability Symposium RAMS1997, pages 1–7, 1997.

[9] D. Heckerman and J.S. Breese. Causal indepen-
dence for probability assessment and inference us-
ing bayesian networks. IEEE Transactions on

Systems, Man and Cybernetics, 26(6):826–831,
1996.

[10] F.V. Jensen. Bayesian Networks and Decision

Graphs. Springer, 2001.

[11] U. Kjaerulff. dhugin: a computational system for
dynamic time-sliced bayesian networks. Interna-

tional Journal of Forecasting, 11:89–101, 1995.

[12] H. Langseth and L. Portinale. Bayesian networks
in reliability. Reliability Engineering and System

Safety, 92(1):92–108, 2007.

[13] R. Manian, D.W. Coppit, K.J. Sullivan, and J.B.
Dugan. Bridging the gap between systems and dy-
namic fault tree models. In Proceedings IEEE An-

nual Reliability and Maintainability Symposium,
pages 105–111. IEEE Computer Society Press,
Washington, DC, 1999.

[14] S. Montani, L. Portinale, and A. Bobbio. Dy-
namic bayesian networks for modeling advanced
fault tree features in dependability analysis. In
Proc. ESREL 2005, Tri City, pages 1414–1422,
2005.

[15] S. Montani, L. Portinale, A. Bobbio, and
D. Codetta-Raiteri. RADYBAN: a tool for re-
liability analysis of dynamic fault trees through
conversion into dynamic bayesian networks. Re-

liability Engineering and System Safety, in press,
2007.

[16] K. Murphy. Dynamic Bayesian Networks: Rep-

resentation, Inference and Learning. PhD Thesis,
UC Berkley, 2002.

[17] D. Poole N.L. Zhang. Exploiting causal indepen-
dence in Bayesian network inference. Journal of

Artifical Intelligence Research, 5:301–328, 1996.

[18] P.Dagum, A. Galper, and E. Horwitz. Dynamic
network models for forecasting. In Proc. UAI’92,
pages 41–48, 1992.

[19] J. Pearl. Probabilistic Reasoning in Intelligent

Systems. Morgan Kaufmann, 1989.

[20] L. Portinale and A. Bobbio. Bayesian networks
for dependability analysis: an application to dig-
ital control reliability. In 15-th Conference Un-

certainty in Artificial Intelligence, UAI-99, pages
551–558, 1999.

[21] J.G. Torres-Toledano and L.E. Sucar. Bayesian
networks for reliability analysis of complex sys-
tems. In Lecture Notes in Artificial Intelligence,
volume 1484, pages 195–206. Springer Verlag,
Berlin, 1998.

[22] P. Weber and L. Jouffe. Reliability modelling with
dynamic bayesian networks. In SafeProcess 2003,

5th IFAC Symposium on Fault Detection, Super-

vision and Safety of Technical Processes, Wash-
ington DC, 2003.

