
GLIF: A Declarative Framework for Symbolic
Natural Language Understanding

Jan Frederik Schaefer and Michael Kohlhase[0000−0002−9859−6337]

Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany

Abstract. With the Grammatical Logical Inference Framework (GLIF),
a user can implement the core of symbolic language understanding sys-
tems by describing three components, each of which is based on a declara-
tive framework: parsing (with the Grammatical Framework GF), seman-
tics construction (with MMT), and inference (with ELPI). The logical
frameworks underlying these tools are all based on LF, which makes
the connection very natural. Example applications are the prototyping
of controlled natural languages or experiments with new approaches to
natural-language semantics. We use Jupyter notebooks for a unified in-
terface that allows quick development of small ideas as well as testing on
example sentences.

1 Introduction

Precision

high

low

Coveragelargenarrow

(Controlled)
Technical
Language

General
Language

Fig. 1. Tractable NLP problems.

In recent years, the field of natural-
language processing has seen a lot
of progress through the use of deep
learning tools, resulting in many useful
applications such as automated text
translation. Yet, we want to focus on
symbolic approaches. While they can-
not compete with deep learning in
wide-coverage tasks, they offer high
precision processing in restricted domains. A prime example of this is techni-
cal language – scientific articles, legal documents, software specification, etc.
Using machine learning for such documents poses a number of challenges: lit-
tle training data exists and high precision (or even verifiability) is mandatory.
In some cases, the need for reliable processing means that natural language is
abandoned altogether and replaced by a formal language. This, of course, entails
a steep learning curve for potential contributors. A compromise are controlled
natural languages (CNL): formal languages with well-defined semantics that
imitate or form a fragment of natural language. Probably the most well-known
controlled natural language is the general-purpose language Attempto Controlled
English (ACE) [FSS98].

An alternative is Montague’s “method of fragments” [Mon70], which aims
to exhaust natural languages by a series of ever-increasing “natural language

Proceedings of the 6th Workshop on Formal and Cognitive Reasoning

Copyright c© 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

4

fragments”. The main difference to CNLs – fragments are formal languages as
well – is that the meaning construction needs to be unambiguous and can be
accompanied by context-sensitive semantic/pragmatic analysis phase.

To support the design of such languages, we introduce GLIF, the Gram-
matical Logical Inference Framework. GLIF is intended as a general framework
for the prototyping and implementation of natural-language understanding sys-
tems. It allows users to describe a pipeline consisting of three steps: i) parsing,
ii) semantics construction: mapping abstract syntax trees to (possibly un-
derspecified) expressions, and iii) semantic/pragmatic analysis: computing
fully specified logical expressions and reconciling them with the utterance con-
text – usually an inference-based process. Each step in the pipeline is based on a
different framework: Parsing and grammar development are based on the Gram-
matical Framework (GF) [Ran11], semantics construction and logic development
are based on MMT [MMT], and inference is based on ELPI [SCT15], an exten-
sion of λProlog. GLIF is an extension of the Grammatical Logical Framework
(GLF) [KS19], which doesn’t have an inference component.

The third (inference) step is essentially the “understanding part” in the
pipeline. Depending on the application, it can have a variety of functions. It
may simply modify the results of the semantics construction, which by design
is bound to be compositional, with more complex operations, such as simplifi-
cation or semantic pruning. The inference step can also be used for ambiguity
resolution (e.g. by discarding contradictory readings by theorem proving) or the
maintenance of a symbolic discourse or dialogue model.

Historically, symbolic natural-language understanding systems have been im-
plemented in declarative programming languages like Prolog or Haskell. We be-
lieve that a dedicated framework like GLIF can simplify and speed up the im-
plementation and make the result more maintainable. We are not aware of any
other frameworks like GLIF – the closest might be the Grammatical Framework
GF, which is one of the components of GLIF.

As a small running example for this paper, we will implement a fragment of
English for specifying physical properties of different objects with the example
sentence

“the ball has a mass of 5 kg and a kinetic energy of 12 mN ”,
where we use the inference step to disambiguate whether “12 mN ” stands for
“12 meter Newton” or “12 milli Newton”.

2 The GLIF System
LF LF + X

PL0 FOL

unitsdomain

HOL

Reals

Fig. 2. Meta-Theories in MMT

Before diving into the details of the GLIF pipeline,
we need to briefly introduce MMT, the center-
piece of GLIF. MMT is a modular, foundation-
independent knowledge representation frame-
work [MMT]. Knowledge is represented in the
form of theories, which contain a sequence of
declarations for symbols, axioms, definitions, and theorems. Theories can be

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

5

linked via theory morphisms: truth-preserving mappings which assign expres-
sions in the target theory to symbols in the source theory. Meta-theories – the
ones imported via the dotted arrows in Figure 2 – furnish the languages for spec-
ifying properties and relations. Theories are used at various levels: the domain
theories modularly formalize properties of the domain; units and quantities in
our running example. Their meta-theories are logics (here propositional, first-
order, and higher-order logics), which are specified in e.g. the Edinburgh Logical
Framework LF [HHP93] or extensions (LF + X). Meaning trickles down the meta
relation from urtheories like LF via the meta-theory morphisms all the way to
the domain theories.

GLIF exploits the similarity of LF with the logical frameworks underlying GF
and ELPI, which results in very intuitive transitions between the three systems
involved. Figure 3 illustrates the GLIF pipeline. In the following sections we will
take a closer look at each of the three processing steps.

· · · Parser
(GF)

concrete
syntax

abstract
syntax

Sem. Constr.
(MMT)

lang.
theory

logic
+DT

Inference
(ELPI)

logic
syntax rules

· · ·string parse
tree

logical
expr.

result

view

gen. gen.

Fig. 3. The GLIF Pipeline. Dashed arrows () indicate what specifications () are
needed for each processing step. Some specifications () can be generated automatically
from another specification (gen.). indicates imports and illustrates the semantics
construction view.

2.1 Parsing

For the first step (parsing), we use the Grammatical Framework (GF) [Ran11],
which provides powerful mechanisms for the development of natural language
grammars and comes with a library that implements the basic morphology and
syntax of ≥ 38 languages. GF grammars come in two parts: abstract syntax
and concrete syntax. The abstract syntax specifies the abstract syntax trees
(ASTs) supported by the grammar in a type-theoretical fashion, while the con-
crete syntax describes how these ASTs correspond to strings in a language. For
our example sentences, we have e.g. the following rules in the abstract syntax:

measure : Measurable −> Int −> Unit −> Measurement;
combine : Measurement −> Measurement −> Measurement;
hasProp : Object −> Measurement −> S; −− S = sentence

The measure rule combines something measurable (like “kinetic energy”), with
an integer and a unit into a Measurement (e.g. “a kinetic energy of 12 mN ”).
combine simply combines the measurements of two different properties (“a mass

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

6

of 5 kg and a kinetic energy of 12 mN ”). In the GF concrete syntax we can
describe how these rules correspond to strings:

measure m int unit = ”a” ++ m ++ ”of” ++ int.s ++ unit;
combine a b = a ++ ”and” ++ b;

In this very simple example, we only combine token (sequences) with the ++

operator. While the rules intuitively describe the linearization (mapping ASTs
to strings), GF can also generate a parser from such a specification. For more
complex language phenomena, GF offers powerful mechanisms like records and
parameter types. Let’s say that we want to support plurals (e.g. “the ball and the
train have a mass of 5 kg”). Then we have to pick the right verb form of “have”
depending on the number of the noun. For this we turn objects into records with
a field s for the string representation and n for the number:

hasProp obj m = obj.s ++ have ! obj.n ++ m;

In general, developers can avoid dealing with such low-level problems by using
GF’s Resource Grammar Library, which covers the basic syntax and morphology
of many languages.

With the abstract and concrete syntax in place, we can start parsing sen-
tences. If a sentence is ambiguous according to the grammar, GF generates mul-
tiple ASTs. For the example sentence “the ball has a mass of 5 kg and a kinetic
energy of 12 mN ”, the two trees are shown in Figure 4.

hasProp

combine

measure

unitCombine

newtonmeter

12eKin

measure

kilo

gram

5mass

theball

hasProp

combine

measure

milli

newton

12eKin

measure

kilo

gram

5mass

theball

Fig. 4. The ambiguity of mN results in two different ASTs.

2.2 Semantics Construction

The semantics construction is implemented in MMT. We connect GF to MMT
by reinterpreting the abstract syntax as an MMT theory (the language the-
ory). This lets us interpret the ASTs as terms in that theory. The target of the
semantics construction is an MMT theory that describes the logic syntax and
a domain theory. For our example, we need a type for propositions, which we
will denote by o, and logical conjunction, which we will denote with the infix
operator ∧. We will also need some information about units.

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

7

theory PL0 =
proposition : type # o
and : o → o → o # 1 ∧ 2
. . .

theory units =
unit : type # u
mult : u → u → u # 1 · 2
gram : u # gram

At the heart of the semantics construction is now a view – a particular type
of theory morphism – that maps every symbol in the language theory to an object
in the target logic/domain theory. The translation of ASTs to logical expressions
thus boils down to applying a view to an MMT term. The compositionality of this
process typically means that some subtrees have to be translated to λ-functions
(a well-established approach in natural language semantics). In our case, for
example, “a mass of 5 kg” gets translated to λx.mass x (quant 5 kilo gram).
The combine node, which combines measurements M and N , becomes λx.Mx ∧
Nx. In MMT syntax we write this as

combine = [M,N] [x] (M x) ∧ (N x)

where [·] is MMT’s notation for λ-abstraction. We also map the syntactic cate-
gories to types in the logic:

Measurement = ι → o // unary predicates

This enables MMT to rigorously type-check the semantics construction. After
the semantics construction is applied to an AST, the λ-functions are eliminated
through β-reduction and we get the following two logical expressions:

(mass theball (quant 5 kilo gram))∧(ekin theball (quant 12 milli Newton))
(mass theball (quant 5 kilo gram))∧(ekin theball (quant 12 meter·Newton))

Fig. 5. ELPI code in Jupyter.

2.3 Inference

For the inference step, we use ELPI [SCT15], an extension of λProlog. The advan-
tage of choosing λProlog over classical Prolog variants is that variable binding

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

8

can be naturally represented through λ-expressions (higher-order abstract syn-
tax), which is needed for many logics, including first-order logic. MMT supports
the transition to ELPI by generating the signature of the logic and domain the-
ory, and by exporting the generated logical expressions in ELPI syntax. Here are
the first lines of the signature generated for our example:

kind proposition type.
type and proposition −> proposition −> proposition.

MMT can also generate ELPI provers from calculi specified in MMT [Koh+20].
For our example, we use hand-written rules to perform a dimensional analysis,
which checks whether the units match the expected quantity. The GLIF interface
(next section) provides different commands for using ELPI predicates in a pipeline
to e.g. transform or filter logical expressions. In our example, of course, we want
to filter the results of the semantics construction.

2.4 User Interface

GLIF can be used through Jupyter notebooks via a custom kernel. ELPI, GF and
MMT content can be implemented directly in the notebooks. Figure 5 shows how
the ELPI signature can be generated (elpigen) and afterwards used with λProlog’s
accumulate. For larger projects, however, it is generally preferable to develop the
content outside of notebooks. Notebooks can then still be used for testing and
demonstrating the developed pipelines. Figure 6 demonstrates the entire pipeline
for our example sentence: parse parses the input, construct applies the semantics
construction, and elpi filter filters out any results rejected by the dimensional
analysis. In the example, the reading milli Newton for mN is discarded. Other
features of the notebook interface include the (visual) display of parse trees and
stub generation e.g. for the semantics construction. The Jupyter interface of GLF
– the predecessor of GLIF – is described in more detail at [SAK20].

Fig. 6. Parsing, semantics construction and filtering in Jupyter. The | operator pipes
the output of the previous command into the next command.

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

9

3 Conclusion

We have presented GLIF, a declarative framework in which natural-language
understanding systems can be implemented by specifying i) a grammar, ii) a
target logic and domain theory, iii) the semantics construction, iv) and inference
rules.

We have used GLIF in a one-semester course on logic-based natural-language
semantics at FAU Erlangen-Nürnberg [LBS20], implementing a sequence of Mon-
tague-style fragments of English and tableau-based semantic/pragmatic analysis
processes.

As a larger case study, [SAK20] presents a description of our attempt to
re-implement an existing controlled natural language for mathematics using a
predecessor of GLIF. The resulting pipeline can parse sentences like “a subset of
S is a set T such that every element of T belongs to S”, and translates them
into first-order logic:

∀T.(subsetof T S)⇔ (set T) ∧ ∀x.(elementof x T) ∧ > ⇒ (belongto x S) ∧ >

GLIF can be used through Jupyter notebooks, which increases the accessibil-
ity significantly. More details on a previous version of the Jupyter kernel (that
doesn’t support inference), can be found at [SAK20]. The Jupyter kernel itself,
along with a link to an online demo, is at [GLIF].

References

[FSS98] Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. “Attempto
Controlled English - Not Just Another Logic Specification Language”.
In: Proceedings of the 8th International Workshop on Logic Program-
ming Synthesis and Transformation. LOPSTR ’98. Springer-Verlag,
1998, 1–20.

[GLIF] GLIF Kernel. url: https://github.com/KWARC/GLIF (visited on
03/22/2020).

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework
for defining logics”. In: Journal of the Association for Computing
Machinery 40.1 (1993), pp. 143–184.

[Koh+20] Michael Kohlhase, Florian Rabe, Claudio Sacerdoti Coen, and Jan
Frederik Schaefer. “Logic-Independent Proof Search in Logical Frame-
works (short paper)”. In: 10th International Joint Conference on
Automated Reasoning (IJCAR 2020). Ed. by Nicolas Peltier and
Viorica Sofronie-Stokkermans. Springer Verlag, 2020.

[KS19] Michael Kohlhase and Jan Frederik Schaefer. “GF + MMT = GLF
– From Language to Semantics through LF”. In: Proceedings of the
Fourteenth Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice, LFMTP 2019. Ed. by Dale Miller and Ivan
Scagnetto. Vol. 307. Electronic Proceedings in Theoretical Computer
Science (EPTCS), 2019, pp. 24–39. doi: 10.4204/EPTCS.307.4.

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

10

[LBS20] Michael Kohlhase. Logic-Based Natural Language Processing. 2020.
url: https : / / kwarc . info / teaching / LBS / notes . pdf (visited on
05/30/2020).

[MMT] MMT – Language and System for the Uniform Representation of
Knowledge. url: https://uniformal.github.io/.

[Mon70] R. Montague. “English as a Formal Language”. In: Reprinted in [Tho74],
188–221. Edizioni di Communita, Milan, 1970, pp. 189–224.

[Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilin-
gual Grammars. CSLI Publications, 2011.

[SAK20] Jan Frederik Schaefer, Kai Amann, and Michael Kohlhase. “Proto-
typing Controlled Mathematical Languages in Jupyter Notebooks”.
In: Mathematical Software – ICMS 2020. 7th international confer-
ence. Ed. by Anna Maria Bigatti, Jacques Carette, James H. Dav-
enport, Michael Joswig, and Timo de Wolff. Vol. 12097. LNCS.
Springer, 2020, pp. 406–415. url: https ://kwarc . info/kohlhase/
papers/icms20-glf-jupyter.pdf.

[SCT15] Claudio Sacerdoti Coen and Enrico Tassi. The ELPI system. 2015.
url: https://github.com/LPCIC/elpi.

[Tho74] R. Thomason, ed. Formal Philosophy: selected Papers of Richard
Montague. Yale University Press, New Haven, CT, 1974.

GLIF: A Declarative Framework for Symbolic Natural Language
Understanding

11

	Proceedings of the 6th Workshop on Formal and Cognitive Reasoning
	GLIF: A Declarative Framework for Symbolic Natural Language Understanding(Jan Frederik Schaefer, Michael Kohlhase)

