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Abstract. In recent years, automatic image segmentation using deep
learning has shown great potential. U-Net is commonly applied to the
medical image segmentation task. Further, a new architecture called Seg-
Caps, based on capsules networks has been introduced. Even though
medical image segmentation has made great strides, it is still a complex
task and continued research in this area is important. In this paper, the
method from the Segcaps paper was implemented and trained on the
same dataset and achieved a similar result. In addition, a Multi-SegCaps
model, an EM-routing SegCaps model and a U-Net model able to seg-
ment an arbitrary number of classes were developed. The models were
implemented for the segmentation of single 2D slices using two of its
neighboring slices on each side (five in total). These models were trained
to perform left atrium and hippocampus (anterior & posterior) segmenta-
tion on the MSD datasets. The performance of the Multi-SegCaps model
and the EM-routing SegCaps model were compared to the U-Net model.
The 2.5D U-Net model had an overall better performance on all the
datasets achieving a Dice score of 91.39% for the left atrium segmenta-
tion, and the Dice scores of 85.18% and 83.90% for the anterior and pos-
terior hippocampus segmentation. The multi-class SegCaps model was
also applied to two different datasets, showing the ability to segment sev-
eral classes reasonably well. A Dice score of 68.2% was achieved for the
left atrium and the Dice scores of 72.42% and 70.49% were achieved for
the anterior and posterior hippocampus, respectively. The EM-SegCaps
model was applied to the hippocampus dataset and it achieved a Dice
score of 54.50% for the whole hippocampus and the Dice scores of 18.67%
and 24.52% for the anterior and posterior hippocampus, respectively.
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Network.
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1 Introduction

Medical image segmentation methods attempt to extract and locate the precise
location of organs, tumors and other structures of interest, with the intention
of aiding health professionals in making accurate diagnoses in a shorter amount
of time. In recent years, convolutional neural networks (CNNs) have been com-
monly used for image analysis tasks. A successful application of CNNs to the
task of image segmentation was shown by [9] when they introduced fully convo-
lutional networks where the skip connections were introduced to directly connect
the opposing convolutional layers in the contraction and expansion paths. The
network can work regardless of the original image size, without requiring any
fixed number of units. The performance was improved by the elegant fully con-
volutional U-Net architecture, published by [10]. The architecture is symmetric
and the skip connections between the downsampling path and the upsampling
path apply a concatenation operator instead of a sum. The network combines the
location information from the downsampling path with the contextual informa-
tion in the upsampling path and preserves the spatial resolution of the output.
SegNet, an encoder-decoder network similar to FCN was introduced in [1]. It
uses max unpooling in the upsampling path which eliminates the need for the
network to learn the upsampling and provides a more efficient way to achieve
segmentations than FCN. [6] created a new U-Net type architecture, showing
state of the art performance on the task of multimodal brain tumor segmenta-
tion using the BraTS dataset. The architecture was residual and worked directly
with 3D patches of medical images. Though CNNs are popularly used they have
some limitations due to its properties of rotational invariance and lack of instan-
tiation parameters. So, many images with different views are needed to train
the network. To overcome this issue, [11] presented a brand new capsule neural
network architecture. Unlike CNNs, capsule networks are equivariant which can
detect the objects if they are rotated and how many degrees it is rotated. This
reduces the number of images required to train the network. [11] showed that
capsule networks gave state of the art performance on the task of classifying
highly overlapping digits in the MNIST dataset, proving CapsNet to be an effi-
cient architecture for learning this type of problem. In [3], the capsule network
consisting of two convolutional layers, two capsule layers, one fully connected
layer, and two de-convolutional layers employing dynamic routing mechanism
was proposed to segment Left ventricle (LV). Building on the work of capsule
networks, [8] presented a method for performing binary image segmentation.
The number of parameters needed by the architecture was reduced substantially
by constraining the dynamic routing to capsules only in a defined kernel. The
network showed good results for lung segmentation using the LUNA16 dataset.
[5] claimed that the EM-routing algorithm solves most of the issues with the
routing algorithm from [11]. It reduces the number of parameters needed, as
well as using a metric of agreement that does not saturate with highly confi-
dent predictions. It gave state of the art performance at detecting objects at
novel viewpoints on the smallNORB dataset. In [2], a novel capsule is intro-
duced which combines pose and appearance information encoded as capsules,
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named Matwo-Caps. Additionally, a new routing mechanism, i.e. dual routing,
combining this two information was proposed. The method was evaluated for the
semantic segmentation of the JSRT chest X-ray dataset. In [4], Fourier analysis
and the circular Hough transform methods were applied to indicate the approxi-
mate location of the LV and the capsule network with dynamic routing was used
to precisely segment the LV. Thresholding and morphological processing were
used as postprocessing methods to increase the accuracy of LV segmentation.

In our work, the method and the results from [8] were reproduced and trained
to adapt to other medical datasets and different modalities. The architecture
was, as reported in the paper, capable of segmenting images of lungs. How-
ever, the experiment also revealed that the architecture struggles to adapt to
another medical dataset. A SegCaps architecture is further developed and eval-
uated for multi-label image segmentation. It was experimentally shown to be
able to perform segmentation of datasets with multiple label classes but strug-
gles to segment structures in imbalanced datasets. Additionally, a framework
for image segmentation using capsule networks and the EM-routing algorithm
was developed and evaluated. As far as the authors know, an attempt of this
has never been reported in the literature so far. Although the model did not
give very good results, it showed that it was capable of segmenting some simple
structures from the hippocampus dataset. A 2.5D architecture based on a U-Net
variant was implemented and compared with the performance of the SegCaps,
the Multi-SegCaps and the EM-SegCaps models on the cardiac and the hip-
pocampus datasets from the Medical Segmentation Decathlon (MSD) datasets.

This paper consists of five sections. The first section gives an introduction to
the paper and the motivation behind it. The various methods and the datasets
used in the paper are presented in the second section. In the third section, the
experiments comparing different methods and their corresponding results are
presented. The fourth section summarizes the discussion of the results and the
fifth section presents the conclusion and suggests future work.

2 Methodology

This section presents the different models developed and the datasets used in
the experiments.

2.1 SegCaps

The SegCaps architecture presented in [8] was used to perform binary segmen-
tation of medical images (see Fig. 1). The architecture used is called SegCaps
R3, referring to the use of three iterations of the dynamic routing algorithm in
each capsule.

A regular 2D convolution is performed on an input image to produce 16 fea-
ture maps. The tensor consisting of 16 feature maps is reshaped in order to give
it a new dimension of length one, such that the reshaped tensor now represents
a single 16D capsule. The 16D capsule is forwarded to the primary capsule layer,
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Fig. 1. SegCaps architecture

which is a regular convolutional capsule layer with one routing iteration, which
returns predictions of two 16D capsules. Following the primary capsule layer,
there are sets of two convolutional capsule layers at every layer for the remain-
der of the contracting path. The first of the two operations is a 5x5 convolutional
capsule layer with stride two, which also doubles the number of feature maps
that are output. The second layer consists of 5x5 convolutional capsules without
a stride. Output features from the latter operation being forwarded to the next
level of the contracting path, as well as stored for concatenation with capsules in
the expanding path. After predictions are downsampled in the contracting path,
they are then upsampled in three levels of the expanding path. Every level of
the expanding path contains two capsule layers. The first layer is a 4x4 deconvo-
lutional capsule, which upsamples the image by a factor of two using transposed
convolution. The output vectors from deconvolutional capsules are then concate-
nated with capsule output from the corresponding level in the contracting path
before they are used to predict the second layer of capsules.The second capsule
layer uses the concatenated predictions from both the contracting and expand-
ing path, to predict a layer of 5x5 convolutional capsules. Instead of using 5x5
convolutional capsules in the last layer, they are replaced with 1x1 convolutional
capsules, which produces the final segmentation vectors. The segmentation vec-
tors are converted into actual predictions by calculating the Euclidean length
of them. For each pixel in the image, it is classified as the target class if its
length is longer than a given threshold. To perform reconstruction of the pixels
belonging to the target class,the output from the last layer is reshaped from
capsule form into a convolutional form. This involves flattening the 16D capsule
into 16 feature maps. Using ground truth labels, the pixels that do not belong
to the target class are masked out. This prevents the reconstruction head from
considering irrelevant background pixels. Three layers of 2D convolutions with
a 1x1 kernel is applied to the masked feature maps. The last of the three con-
volutions output a single filter giving a reconstruction of the target class of the
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input image. A mean square error loss between pixels from the input image and
the reconstructed image is used in combination with the segmentation loss, to
train the network. To train the segmentation part of the network, a weighted
cross-entropy loss is calculated using the Euclidean length of the output capsule
as prediction and a ground truth label that is 0 for background and 1 for the
target class.

2.2 Multi-SegCaps

The architecture proposed in [8] was extended to support end-to-end segmenta-
tion of different datasets containing an arbitrary number of output classes from
different input modalities. Due to the support for multiple target classes, the ar-
chitecture was called Multi-SegCaps. The output capsule layer was modified to
output N 16D output capsules, where N is the number of classes in the dataset,
including background, and the predicted class is the one represented by the cap-
sule with the longest euclidean length.The network is trained using the predicted
capsule lengths and one-hot encoded ground truth labels. Instead of only trying
to reconstruct a single target class, Multi-SegCaps attempts to reconstruct the
pixels belonging to all classes, except for the background class. The segmentation
capsule’s output is masked with a ground-truth mask for all these classes. The N
16D masked capsules are then flattened into N x 16 convolutional feature maps
that are forwarded to the reconstruction head. The reconstruction head consists
of three convolutional layers, each with a kernel size of 1. The last of the three
convolutional layers will output as many filters as there are input modalities.
This incentivizes the network to store properties about more than one input
channel, if available. The total reconstruction loss is the mean-squared error of
pairwise output reconstruction and positive masked input modalities.

2.3 EM-SegCaps

The classification method from [5] was extended to perform semantic image seg-
mentation. The network has a U-Net-style encoder-decoder topology, similar to
the original SegCaps architecture. The architecture uses matrix capsules with
EM-routing and is shown in Fig. 2. A regular 2D convolution with kernel size 3x3
is applied to an input image, producing 16 feature maps that are forwarded to the
primary capsule layer. The primary capsule layer is responsible for transforming
the output from the first convolution into an estimated pose and activation of a
single capsule. The primary capsule layer performs two sets of 2D convolutions
with a 1x1 kernel. The first convolution transforms the 16 input feature maps
into 16 predictions for each receptive field. The 16 prediction values represent
the current pose of the entity that is detected and can later be reshaped into a
4x4 matrix. The second convolution in the primary capsule layer is also given
the same 16 feature maps as the previous convolution. The difference between
them is that the second convolution only calculates a single capsule activation
for each receptive field. In other words, for every pose matrix that is calculated,
a single scalar is also detected. The scalar is treated as the activation of the
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Fig. 2. EM-SegCaps architecture

capsule and works similarly to how convolutional kernels calculate activations in
a convolutional neural network. The difference between the activation value of
a capsule in a capsule network and a neuron in convolutional networks, is that
capsule networks do not use the activation directly when calculating the output.
It is rather used as a coefficient that influences the amount of information that is
forwarded from a capsule to different capsules in the next layer. A sigmoid non-
linearity is applied to the activation values in order to scale them between zero
and one. The primary capsule layer concatenates the pose values and activation
into 17D vectors and returns it as its output. Apart from the first primary cap-
sule layer, the capsule network architecture also contains convolutional capsule
layers, strided convolutional capsule layers, and deconvolutional capsule layers.
Convolutional capsule layers accept the poses and activations from capsules in
the previous layer and output new poses and activations for the capsules in the
next. This is accomplished using the Expectation- maximization routing algo-
rithm (EM-routing). Before performing EM-routing, all child capsules cast an
initial vote of the output for every capsule in the next layer, using its own pose
matrices. Casting this vote involves multiplying the pose matrix by a trained
transformation matrix going into the parent capsule, which is shared by all child
capsules. This effectively translates into performing a modified version of 2D
convolution. Instead of performing pointwise multiplication between a convolu-
tion kernel and the input image, each element in the kernel is a transformation
matrix that is multiplied by the pose matrix located at a specific location in the
receptive field. After the predictions are calculated, they are forwarded to the
EM-routing algorithm, along with the activations from the previous layer. The
EM-routing algorithm is run for three iterations before it returns the final pose
and activations for all capsules in the current layer. Strided convolutional cap-
sules are almost identical to regular convolutional capsules. The only difference
is that a stride of 2 is used during matrix convolution to reduce the feature maps
in half along the height and width axes. Deconvolutional capsules are also similar
to regular capsules, as they perform regular capsule convolution after upscaling
by a factor of two, using nearest-neighbor interpolation. They are technically
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not deconvolutional capsules as they don’t perform transposed convolution, due
to the technical challenges of implementing transposed matrix convolutions.

2.4 U-Net

The U-Net model was based on the architecture by [6], which is a 3D model.
In our implementation, the 3D operations were replaced with 2D operations.
To get the volumetric information, we used five neighboring slices as input(the
slice that is supposed to be segmented in addition to two slices on each side).
The replaced operations were convolutions, spatial dropout and nearest neighbor
upsampling. Both the Multi-SegCaps model and the EM-SegCaps model were
trained and their performances were compared with the U-Net model.

2.5 Dataset

The LUNA16 dataset was used in experiment 1 and the images were normalized
similar to how [8] did in their work with SegCaps. In experiment 2 and 3, the car-
diac dataset and hippocampus dataset from the MSD [13] were used. Normaliza-
tion and augmentation were applied to the images before training. The datasets
were normalized using their minimum and maximum values. While normalization
was only done once, augmentation was applied repeatedly, with different parame-
ters for every training iteration. Augmentations techniques like rotation(max de-
grees=45), flipping(axis=0,1), shifting(max horizontal=0.2, max vertical=0.2),
shearing(amount=16), zooming(max zoom range=0.75, 0.75), elastic deforma-
tions(alpha=1000, sigma=80, alpha affine=50) and salt and pepper noise(salt=0.2,
amount=0.04) were applied to the training data randomly. The goal of the car-
diac dataset is to segment the left atrium from MRI images. It contains 30 3D
volumes of which includes 20 training and 10 testing volumes. The hippocampus
dataset has two classes, anterior and posterior hippocampus. The hippocampus
dataset has 394 3D volumes which include 263 training volumes and 131 testing
volumes.

2.6 Training

All experiments were performed using four splits. Each split was made up of 75%
for training and 25% for validation and testing. The slices containing atleast one
pixel from the positive class were added to the batch while slices containing only
background class were discarded to reduce the effect of class imbalance.

The training process of SegCaps was similar to the one used by [8]. It lasted
up to 200 epochs, but was terminated when the validation Dice score had not
improved for 25 epochs. One epoch is 10000 training steps with a batch size of 1.
Weighted cross-entropy loss and MSE reconstruction loss were minimized with
equal weight. The Adam optimizer was used for stochastic gradient descent with
an initial learning rate of 0.0001 and a Beta 1 of 0.99. The learning rate was
decayed by a factor of 0.05 if the validation Dice score did not improve the last
5 epochs.
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For Multi-SegCaps, the training was performed using a batch size of 1, due
to memory limitations. One epoch had 1000 steps, and the model early stopped
if it did not improve for 100 epochs. These parameters were selected to match
the ones used for 2.5D U-Net. After early stopping, the model with the best
validation score was stored, and used for testing. For every validation, 500 steps
were used. The initial learning rate was set to 0.0005 and was reduced to 70%
every time the model did not improve over 5 epochs. The Adam Beta 1 parameter
was set to 0.99, due to the low batch size. Augmentation and reconstruction
weighting was used for regularization with a reconstruction weight of 0.01. Five
consecutive slices were used as input for making a prediction for the middle slice.

For EM-SegCaps, the architecture requires that all the images have the same
dimensions during training, so every slice in all the hippocampus images and
masks were cropped into 32x32 pixels. During inference, the hippocampus images
were zero-padded to fit entire image slices into a batch, but the padded voxels
were removed before calculating performance metrics.

2.7 Environment

The experiments were carried out using two different clusters (cluster1/cluster2)
and a local computer. SegCaps models were trained on cluster1 using P100
GPUs, while some of the 2.5D U-Net models were run on V100 GPUs. Both
GPUs had 16 GB of video memory. To be able to train more models in parallel,
some of the 2.5D U-Net models were trained on cluster2. It has V100 GPUs with
32GB of video memory. EM-SegCaps models were trained on a local computer
having a single GTX1080 GPU with 11GB of memory. This was done because
of an incompatibility between the way EM-SegCaps performs multiplications of
large batches of matrices and the version of CUDA installed on the clusters.

3 Experiments and Results

This section presents the three experiments conducted and their corresponding
results. In experiment 1, we applied the SegCaps model and reproduced the re-
sults using the LUNA 16 dataset. In experiment 2, the SegCaps model, the Multi-
SegCaps model and the 2.5D U-Net model were trained on the cardiac dataset
and the results were compared. In experiment 3, the Multi-SegCaps model, the
EM-SegsCaps model, and 2.5D U-Net were trained on the hippocampus dataset
and compared. In addition, to test the performance of EM-SegCaps on binary
class segmentation, the two classes of the hippocampus were merged to a single
class and the model’s performance was explored as part of the experiment.

3.1 Reproduce the SegCaps results using the LUNA16 dataset

The goal was to reproduce the results presented in [8] where the proposed ar-
chitecture was tested on the LUNA16 dataset [12]. In this experiment, the same
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Table 1. Comparison of Dice score of our results and the results presented in [8] on
LUNA16 dataset

Split-0 Split-1 Split-2 Split-3 Average

Results presented in [8] 98.499 98.523 98.455 98.474 98.479
Our results 98.467 98.189 98.072 98.238 98.242

architecture and parameters were applied to test the validity of the results re-
ported by [8]. Table. 1 shows both our scores and the scores reported by [8] for
the LUNA16 dataset. In [8], which volumes the four splits were made of was not
reported. So the scores for each split are not directly comparable. However, the
average Dice score achieved in this experiment is comparable to the one reported
in the literature.

3.2 Comparison of SegCaps, Multi-SegCaps and 2.5D U-Net on the
cardiac dataset

The segmentation results and the Dice scores achieved on the cardiac dataset
using different architectures are shown in Fig. 3 and Table. 2, respectively. In
the first part of this experiment, the cardiac dataset was used to test if SegCaps
would be able to generalize to new datasets without modifying the network
topology. The cardiac dataset contains fewer images than LUNA16 making it

Table 2. Comparison of SegCaps, Multi-SegCaps and 2.5D U-Net on the cardiac
dataset.

Recall Precision Dice

U-Net 90.690 92.114 91.396
SegCaps 96.348 43.962 60.376
Multi-SegCaps 86.892 54.467 66.960

faster to train, but the cardiac dataset has more background voxels which result
in a higher class imbalance, giving the network a different challenge.

The segmentation performance for the cardiac dataset is significantly lower
than for the LUNA16 dataset. The Dice score is 30% lower for the cardiac dataset
when compared to the one obtained by the U-Net model on the same datasets.
The SegCaps model shows the ability to achieve high recall, but the precision
is poor. This shows that the model captures the left atrium well, but wrongly
segments some of the background as the target class. To test the feasibility
of performing multi-label semantic segmentation, the SegCaps architecture was
modified to handle multiple classes. The cardiac dataset showed the performance
impact of using a multi-class architecture on a problem that could otherwise
be solved using a plain binary segmentation architecture. This would address
whether multi-class SegCaps would be able to perform segmentation with the
same performance as SegCaps. As part of this experiment, we compared the
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Fig. 3. Left Atrium Segmentation(upper row-prediction, lower row-groundtruth)

performance of Multi-SegCaps using dice loss and weighted cross-entropy loss
functions. The motivation behind this comparison was that the Dice loss had
shown good results on the 2.5D U-Net, while the original SegCaps used weighted
binary cross-entropy. By applying Multi-SegCaps to datasets with multiple tar-
get classes, the ability of SegCaps adapting to multi-class segmentation was
addressed further. By using a similar training process as for 2.5D U-Net, the re-
sults for Multi-SegCaps would be comparable to the U-Net based model. Train-
ing Multi-SegCaps on the cardiac dataset gave higher Dice scores than those
achieved by the original SegCaps architecture (Table. 2).

3.3 Comparison of Multi-SegCaps, EM-SegCaps and 2.5D U-Net
on the hippocampus dataset

The performance of Multi-SegCaps, EM-SegCaps and 2.5D U-Net on the hip-
pocampus dataset are shown in Table. 3. When applying Multi-SegCaps the Dice
scores for anterior and posterior hippocampus are fairly good, showing that the
architecture was able to learn a multi-class problem. An example of a segmen-
tation is shown in Fig. 4. The model is able to capture the main structures of
the hippocampus, but struggles to determine the class membership of the pixels
at the borders. It also wrongly predicts some of the background as the anterior
hippocampus.

Concerning the possibilities and limitations of using matrix capsules with
EM-routing for segmentation, a new type of capsule network architecture was
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Table 3. Comparison of Multi-SegCaps, EM-SegCaps and 2.5D U-Net on hippocampus
dataset.

Recall Precision Dice

U-Net(Anterior hippocampus) 84.546 85.818 85.177
U-Net(Posterior hippocampus) 81.433 86.541 83.909
Multi-SegCaps(Anterior hippocampus) 80.764 65.645 72.424
Multi-SegCaps(Posterior hippocampus) 84.455 60.493 70.494
EM-SegCaps(Anterior hippocampus) 17.508 20.006 18.674
EM-SegCaps(Posterior hippocampus) 19.008 34.548 24.523

designed for this project. The encoder-decoder style EM-SegCaps network was
compared with Multi-SegCaps on the segmentation of hippocampus images. The
experiment would show if SegCaps with EM-routing would be able to learn
the tasks using only 30,166 trainable parameters, compared to the 1,436,769
parameters used by Multi-SegCaps. The architecture was trained to perform
binary and multi-class segmentation of the hippocampus. Fig. 4 shows that EM-
SegCaps achieves mixed results when performing multi-class segmentation of
volumes from the hippocampus dataset. The results of EM-SegCaps on the multi-
class hippocampus dataset are significantly worse than the ones obtained using
the multi-class SegCaps and the 2.5D U-Net model (Table. 3).

Fig. 4. Hippocampus Segmentation(upper row-prediction, lower row-groundtruth)

Table. 4 shows that EM-Segcaps achieves a Dice score of about 54.50% when
performing binary segmentation (both the anterior and posterior hippocampus
are merged as a single class) of volumes from the hippocampus dataset. The
model correctly classifies most pixels belonging to the hippocampus class, but
also incorrectly classifies some irrelevant structures as being the hippocampus.
The reason why EM-SegCaps was only tested on hippocampus data, is because
slices of volumes from that dataset are only around 32x32 pixels in size. The
implementation of EM-SegCaps does not use any native Tensorflow operations
for the EM-routing algorithm, nor the matrix convolution operation. Because
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Table 4. Dice score of the whole hippocampus using EM-SegCaps.

Recall Precision Dice

EM-SegCaps(Hippocampus) 71.264 44.122 54.500

these operations are not implemented and optimized in a low- level program-
ming language, they have to be emulated in Python code using other Tensorflow
operations. This made the calculations in this experiment extremely expensive
both in terms of computation and memory.

4 Discussion

In the first experiment on reproducing the results from [8], the average Dice
score achieved when the SegCaps model trained using the LUNA16 dataset was
98.242%, which is comparable to the average Dice score of 98.479% that was pre-
sented in the literature. The exact same SegCaps architecture was also trained
on the cardiac dataset in the second experiment. The cardiac dataset got a
score of 62.091% when averaging the median per-image Dice score of all four
splits. The result is significantly lower than the results achieved by 2.5D U-Net.
The result was surprising, as SegCaps had slightly outperformed a U-Net based
model on the LUNA16 dataset when compared by [8]. Applying SegCaps to the
cardiac datasets gave disappointing results. There could be several reasons why
SegCaps performed much better on the LUNA16 dataset. Our initial hypoth-
esis was that SegCaps could be extremely sensitive to hyperparameters, which
possibly needed to be carefully tuned for the task at hand. However, we did
experiment with some changes to learning rate, learning rate decay and recon-
struction weighting but did not observe that these variations had a significant
impact on the performance. This could indicate that the ability to learn was
highly dependent on some random phenomena such as sampling order or weight
initialization. The application of SegCaps to a new dataset discloses some chal-
lenges with the architecture. In the same experiment by applying Multi-SegCaps
to the cardiac dataset it was possible to compare the architecture to the origi-
nal SegCaps. The second part was to compare Multi-SegCaps to a U-Net based
model. While still keeping most configurations as in the experiment with the
original SegCaps, some parameters in this experiment were changed to match
the ones used in the 2.5D U-Net for having comparable results. Dice loss is
commonly used for training U-Net based architectures. Testing whether a Dice
loss function could be used for training a SegCaps model was therefore of in-
terest. A Multi-SegCaps architecture was developed and trained on the cardiac
dataset using Dice loss. Surprisingly, it was incapable of learning how to seg-
ment anything of the target class, and all predictions were solely background;
giving a Dice score of zero. The reason seems to be that the model starts to
output very confident predictions for the background class and when this was
combined with the non-linearity function of the output capsule, we observed that
the error gradients were vanishing. As no results of interest were accomplished,
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weighted cross-entropy was used for the Multi-SegCaps experiment. When using
Multi-SegCaps with weighted cross-entropy, the cardiac dataset discloses a Dice
score of 67.0%. The score was a bit higher than when using regular SegCaps.
There are some factors that could have influenced the results. When using the
multi-class version of the network, the final layer consists of more capsules. The
added weights in the network could possibly add some assistance in separat-
ing the positive class from the background class. A more likely explanation for
the increased performance is that the training routines are different. While the
routine in the previous SegCaps experiments was identical to [8], the routine in
this experiment was chosen to match the experiment with 2.5D U-Net, which
favors shorter epochs and a smoother learning rate decay. Another factor that
could have influenced the gap is the number of consecutive slices provided to the
model during training. While SegCaps was only given one slice, Multi-SegCaps
was given five slices. Using five slices gives more spatial information compared
to a single slice. This could partly explain the higher performance achieved by
the Multi-SegCaps model.

For addressing whether Multi-SegCaps would be able to segment several
classes, it was also applied to dataset with multiple target classes. Multi-SegCaps
was further tested on the hippocampus dataset in the third experiment. The Dice
scores of about 72% and 70% were achieved for anterior and posterior hippocam-
pus, respectively. The hippocampus images are relatively small, making the task
fast to learn. Inspecting the hippocampus predictions revealed some confusion
between the two classes, a similar issue as experienced with the 2.5D U-Net. A
reason could be that classes lay next to each other and the boundaries are not
clear. On the binary segmentation of the hippocampus using EM-SegCaps, the
architecture was only able to segment the rough structure of the hippocampus.
The network has only 30,166 trainable parameters compared to the 1,436,769
parameters used by Multi-SegCaps, which might be too few to learn segmen-
tation of complex structures. Although the low number of parameters may be
partly to blame for the low performance, another reason could be that the cap-
sule network itself is not able to accurately reason about the precise location
of detected entities at different capsule layers. Due to resource demands, EM-
SegCaps has relatively few layers in the network and small receptive fields of 3x3
in its convolutional capsule kernels. Hence, the model might be too simple to
reason about patterns observed at one location in the image using information
from other regions. The predictions contain multiple separate structures, as well
as individual pixels, labelled as the hippocampus. The explanation could be that
the network is either not able to take global feature information into account
fully, or that the EM-routing algorithm fails at routing information in the way we
would expect, when used for segmentation. The modified Jaccard Dice function
was used in this experiment. The original Jaccard Dice loss function [7] calcu-
lates a total Dice score for all classes. The modified version calculates separate
Dice loss scores for all classes, which are then averaged into a single total Dice
score. The loss function appears to be even less sensitive to class imbalance than



14 S. Survarachakan et al.

Jaccard Dice. Thus, the choice of loss function was more or less arbitrary and is
subject to improvements in the future.

On multi-class EM-SegCaps, the model got a Dice score of 18.674% for an-
terior and 24.523% for the posterior hippocampus classes. The model did not
seem to be capable of separating the two hippocampus classes from each other.
For some images, we observed that the model had correct predictions for only
the posterior hippocampus class and in some images, predicted only the anterior
class. A reason might be that there are too few capsules in the later layers, which
are used for the final segmentation. This could cause an information bottleneck
that prevents useful information from being used in the final evaluation.

Since the models were trained on machines with different configurations, the
time taken to train each model are not directly comparable.

5 Conclusion

Medical imaging is a common way of detecting diseases by examining the struc-
tures inside the body. Developing an automatic method for analyzing arbitrary
medical images are therefore of great value to the medical community. In this
project, we tested and further developed segmentation architectures based on
capsule networks. Capsule networks show potential, despite requiring optimiza-
tions and continued research before being able to challenge U-Net.

In the future, researchers should look into decreasing the memory consump-
tion of SegCaps. We do not believe that the architecture will be able to outper-
form U-Net as it is, keeping in mind that the training process is a lot slower and
requires way more memory. Furthermore, loss functions should be researched
to speed up the learning process and increase the stability of learning. Other
network topologies should be explored further, which are more carefully tuned
to work with capsules. Additionally, it could be of interest to investigate 3D
capsule networks.

To improve EM-routing, we suggest looking at decreasing memory usage. The
resource requirements did not allow us to use larger receptive fields than 3x3 in
the convolutional capsule kernels. With lower memory requirements, the com-
plexity of the network could have been increased and the effect on segmentation
accuracy could have been studied.
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