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Abstract. Spectral reconstruction algorithms seek to recover spectra
from RGB images. This estimation problem is often formulated as least-
squares regression, and a Tikhonov regularization is generally incorpo-
rated, both to support stable estimation in the presence of noise and to
prevent over-fitting. The degree of regularization is controlled by a single
penalty-term parameter, which is often selected using the cross validation
experimental methodology. In this paper, we generalize the simple regu-
larization approach to admit a per-spectral-channel optimization setting,
and a modified cross-validation procedure is developed. Experiments val-
idate our method. Compared to the conventional regularization, our per-
channel approach significantly improves the reconstruction accuracy at
multiple spectral channels, by up to 17% increments for all the considered
models.

Keywords: Spectral reconstruction · Hyperspectral imaging · Multi-
spectral imaging.

1 Introduction

The light spectrum is a continuous intensity distribution across wavelengths.
This spectral information is commonly used to help determine and/or discrimi-
nate the physical properties of object surfaces, for example in remote sensing [25,
8, 14, 23] and medical imaging [28, 29]. Also, in various practical applications, the
devices (sensors or displays), light sources and object surfaces are characterized
by spectral measurements [1, 9, 16, 27].

Despite the advantages of spectral capture, almost all images that we record
contain just 3 measurements - the 3 weighted spectral averages over the Red,
Green and Blue spectral regions. Perforce, much spectral information is therefore
lost in this RGB image formation process. Indeed, it is a classical result in color
science, that there are many spectra - called metamers [12] - which integrate to
the same RGB, and of course, given only one RGB measurement we cannot tell
which physical spectrum induced it. Still, by adopting learning approaches we
can estimate the spectrum that likely corresponds to a given RGB. Estimating
spectra from RGBs is called spectral reconstruction (SR).

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). Colour and Visual Com-
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Fig. 1. RGB image formation (Hyperspectral→ RGB image) and spectral reconstruc-
tion (RGB → Hyperspectral image). For illustration we color-coded the wavelength
scale by the colors we would see when observing each single wavelength of light.

In Fig. 1 we illustrate RGB image formation and the SR process. In the
top-left panel we see a single radiance spectrum measured at one location in
the hyperspectral image (bottom left). This spectrum is sampled by 3 sensors,
resulting in the 3-value RGB response (top-right). Repeating this process for all
image locations, the corresponding RGB image in the bottom right is derived
from the hyperspectral image. Then, the spectral reconstruction algorithms at-
tempt to recover the hyperspectral image back from the RGB image (or an
approximation thereof).

Historically, this SR problem is effectively solved by least-squares regression
[15, 11, 17, 18, 2], where the map from RGBs (or the non-linear RGB features) to
spectra is modelled as a simple linear transform. More recently, deep learning ap-
proaches [4, 22, 6] have been developed that provide even better SR performance.
Effectively, this performance increment is achieved by regressing an RGB in the
context of its neighborhood to its corresponding spectra. Clearly, this patch-based
idea has merit. For example, if the algorithm can identify a patch in the scene
as a ‘skin region’ then spectral recovery is plausibly easier to solve, since skin
spectra have characteristic spectral shapes [7, 19].

Despite clear rationale behind the deep-learning approach, Aeschbacher et
al. [2] show that the regression-based A+ algorithm provides very competitive
performance. Moreover, Lin and Finlayson [17] shows that several regression
methods actually generalize better than the leading deep-learning models when
the scene exposure changes.

The main concern of this paper is in the regularization step of regression-
based SR algorithms. The classical (multivariate) regression problem from statis-
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tics is written as

MA ≈ B , (1)

where A is an m×N matrix as the table of measured data (m is the dimension of
the measured data and N is the number of data samples, with N � m), and B
is the corresponding target data matrix, of dimension k×N (k is the dimension
of the target data). The aim is to find the k ×m linear mapping M that makes
the approximation as good as possible.

Now, let us suppose small fluctuations in the target data, denoted as a matrix
E of very small numbers (all entries are close to 0). The following regression is
almost identical as Equation (1):

M′A ≈ B + E . (2)

And yet, often we find that the best solution for M and M′ are very different
from one another. The reason for this is that some dimensions of the measured
data (the rows of the data matrix A) could be highly correlated, such that there
can be very different M’s that fit B equally well.

Regularization theory [24] is a way of dealing with this kind of non-robustness.
Given the example of Equation (1) and (2), we may ask that among all plausible
(near optimized) solutions, which one is more likely to generalize to the ‘unseen
data’ better. Typically, the principle of regularization follows the idea that the
best fitting function (i.e. M) should be the simplest possible solution that can
still fits the data well.

In Fig. 2 we show a 1-D example. In the least-squares sense, the wiggly red
curve is found to best fit the training data (black data points). Yet intuitively,
this is not the correct fit, as the data points appear to follow a much simpler
distribution. In contrast, the regularized fit (blue curve) seems to model the data
better.

Fig. 2. Example of a least-squares fit (red curve) and a regularized least-squares fit
(blue curve). The black data points are the training data. In the least-squares sense,
the overall distance between the data points and the red wiggly fit is less than the blue
smooth fit, but the latter looks ‘more correct’.

Returning to our spectral reconstruction problem, taking linear regression as
an example, the matrix A corresponds to a set of image RGBs (m = 3), and B
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refers to the spectra we are trying to recover (k is the number of spectral chan-
nels we have measured). The insight that we explore in this paper is that there
is no reason why the fits for different spectral channels should be regularized al-
together. Rather, we seek to consider the per-channel regression problem, where
each spectral channel is recovered in turn, and correspondingly, each row of M
is solved in turn. This simple modification allows us to carry out a per-channel
regularization that ensures individual optimizations for all spectral channels in
the spectral reconstruction problem.

Either for the conventional global regularization or for our per-channel ap-
proach, care must be taken not to overly tune the terms in M to the data at
hand. This led us to develop a modified cross validation procedure. Our method
separates the data on hand into three subsets, respectively for training, regular-
ization and testing, which is a novel adjustment from the standard methodology
[20] and is another contribution of this paper.

2 Background

2.1 Hyperspectral Images and RGB Simulation

In a hyperspectral image, spectra are measured discretely at some sampled wave-
lengths. Suppose the visible spectrum runs from 400 to 700 nanometers and the
spectral sampling is every 10 nanometers, we get a 31-dimensional discrete rep-
resentation of spectra, denoted as r ∈ R31.

Correspondingly, the spectral sensitivities of the R, G and B camera sensors
can also be represented in discrete vector form (i.e. as 31-dimensional vectors),
respectively denoted as sR, sG and sB . Then, as per the illustration in Fig. 1 we
can write image formation as [26]:

x =

RG
B

 =

sTR

sTG

sTB

 r , (3)

where x = (R,G,B)T is the 3-value RGB camera response.
In the SR problem (the bottom of Fig. 1) we seek to recover hyperspectral

images from the RGB images. Denote an SR algorithm as Ψ : R3 7→ R31,

Ψ(x) ≈ r . (4)

2.2 Regression-Based Spectral Reconstruction

The general regression-based formulation of the SR problem is written as

Ψ(x) = Mϕ(x) , (5)

where ϕ(·) is a feature transformation which maps each RGB to a correspond-
ing p-term feature vector, and in turn it is mapped by the regression matrix
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M. Each of the various regression-based models [15, 11, 17, 18, 2] adopts a be-
spoke definition of ϕ(x). For details of the considered models, including Linear,
Root-Polynomial and Adjusted Anchored Neighborhood Regression [15, 17, 2],
see Appendix A.

Least-Squares Optimization The most common least-squares optimization
seeks to minimize the sum of squared errors between the ground-truth train-
ing spectral data and the reconstruction from their corresponding RGBs: Ψ(x).
Given the formulation of Ψ(x) in Equation (5), the least-squares optimization of
M is formulated as:

M = arg min
M

( N∑
i=1

||ri −Mϕ(xi)||22
)
, (6)

where N is the number of data points in the training set and i indexes an
individual spectrum.

Collating all spectral training data in a data matrix R = (r1, r2, ..., rN ) and
the corresponding feature vector matrix Φ = (ϕ(x1), ϕ(x2), ..., ϕ(xN )), Equation
(6) can be written as:

M = arg min
M

(
||R−MΦ||2F

)
. (7)

Here || · ||2F is the squared Frobenius norm, which is exactly the sum-of-squares
of all entries of the enclosed matrix.

Tikhonov Regularization In regression-based SR, the most common method
to regularize a model is Tikhonov Regularization [15, 24], which hypothesizes
that a more natural fit is obtained when the ‘magnitude’ (or the ‘matrix norm’)
of M is bounded to some extent. Based on this assumption, the least-squares
optimization in Equation (7) is extended to incorporate a regularization term:

M = arg min
M

(
||R−MΦ||2F + γ||M||2F

)
. (8)

Here, the ||M||2F term (the regularization term, or penalty term) is controlled
by a user-defined regularization parameter γ ≥ 0, which is usually determined
empirically [13, 21].

Equation (8) is solved in closed form [15]:

M = RΦT(ΦΦT + γI)−1 , (9)

where I is the p× p identity matrix (recall that p is the dimension of the feature
vectors ϕ(x)).
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3 Proposed Method

In spectral reconstruction, we wish to recover spectral measurements in the
range from 400 to 700 nanometers (the visible spectrum). Suppose we know the
intensity of light entering the camera at 400 nanometers. Given this knowledge if
we wished to predict the value of the spectrum at 410 nanometers, it makes sense
to assume a similar value as the one at 400 nanometers. Indeed, the fact that
the intensity values at close-by wavelengths are similar is why we can represent
the continuous visible spectrum at discrete wavelengths. Conversely, one could
not use the knowledge of light at 400 nanometers to predict the spectral value
at, say, 700 nanometers.

And yet, in the literature when we regularize the regression-based SR models,
we are - in some sense - assuming that all wavelengths are related. Our new
per-channel reformulation of Tikhonov regularization for spectral reconstruction
effectively allows the recovery of the spectral values at distant wavelengths to
be considered more independently from one another.

3.1 Per-Channel Regularization

Let us split the regression matrix M by row: M = (m1,m2, ...,m31)T, such that
the general form of regression-based SR formulated in Equation (5) becomes

Ψ(x) = Mϕ(x) =


mT

1

mT
2

...

mT
31

ϕ(x) =


r̂1

r̂2
...

r̂31

 , (10)

where (r̂1, r̂2, ..., r̂31)T = r̂ is the reconstructed spectrum. For an arbitrary kth

spectral channel, the estimated intensity value r̂k is given by r̂k = mT
kϕ(x).

Note that as we represent the regression model by channel, we do not alter
the original model. This says that the regression-based spectral reconstruction
has always been in such a way that the reconstruction for each spectral channel
depends exclusively on the corresponding row of M.

Given this fact, we might expect that each row of M would be optimized
independently. However, this was not the case for the conventional regularized
least-squares solution in Equation (9). Indeed, we see in Equation (8) the regu-
larization term is only controlled by one single regularization parameter γ and
the fits for all spectral channels (all rows of M) are regularized by the same γ.
Regardless of how we optimize this γ parameter, this setting clearly contradicts
to the inherent independence between the rows of M.

Let us split the spectral reconstruction problem into 31 independent prob-
lems, where the function Ψk : R3 7→ R reconstructs the kth-channel values of
the reconstructed spectra by the kth row of M:

Ψk(x) = mT
kϕ(x) . (11)
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Then, we are to determine mT
k , as the least-squares fit for the kth channel data.

Recall the training spectral data matrix R whose columns are individual training
spectra, now we split R by spectral channel instead:

R = (r1, r2, ..., rN ) =


ρT
1

ρT
2
...

ρT
31

 , (12)

where ρT
k

includes the kth channel values of all training spectral data. mT
k is

then optimized following the regularized least-squares optimization:

mT
k = arg min

mT
k

(
||ρT

k
−mT

kΦ||22 + γk||mk||22
)
, (13)

and solved in closed form:

mT
k = ρT

k
ΦT(ΦΦT + γkI)−1 . (14)

Here γk represents the channel-wise regularization parameter that only controls
the regularization for the kth channel.

Clearly, our per-channel regularization scheme (Equation (14)) solves the
regression matrix M row-by-row, such that each row is ready to be regularized
independently. The remaining question is then how we are going to optimize
these regularization parameters.

3.2 Modified Cross Validation

Perforce, regularization parameters (conventionally the single γ and our per-
channel γk’s) are determined empirically. In the literature, a grid-search ap-
proach is adopted, where different parameters are tried to regularize the model.
These ‘intermediate models’ are then used to recover spectra from a set of unseen
RGB images, and the model that minimizes the evaluation criteria is selected.
For example, see [11, 17, 2].

As usual we would like to train, regularize and test a model using the images
from the same database, we must partition the database into several subsets
for these different usages. All (to our knowledge) deep-learning models simply
separate the image database into 3 subsets randomly (respectively for training,
validation and testing, in the parlance of deep learning), see [22, 6]. However,
this setting can potentially create so-called ‘unfair’ separations, such that if the
database is separated differently, the results may vary.

A better practice is using a cross-validation process. In this paper we develop
our own cross validation scheme, which is modified from the conventional K-
fold cross validation [20]. This is because the conventional K-fold only seeks to
separate a dataset into training and testing data, and here we need an additional
partition as the regularization data.
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In Fig. 3 we show the comparison between the conventional 4-fold cross
validation (left) and our method (right). For both methods the same experiment
is conducted 4 times. In each trial, the conventional method selects 3 out of
4 portions of data for training (marked in blue) and the remaining part is for
testing (marked in orange). In our method, however, only 2 out of 4 portions of
data are for training, which allows 1 portion of data (marked in green) used for
regularization, that is to determine the γ and γk parameters. Subject to these
terms we solve for the best regression model for the training (blue) data. The
performance statistics are calculated based on the recovery errors on the testing
(orange) data and averaged over the 4 trials.

Fig. 3. The conventional 4-fold cross validation (left) and the modified scheme used in
this paper (right). Each colored patch represents equal amount of randomly allocated
data. The blue, orange and green patches represent the data for training, testing and
regularization, respectively.

Notice for our cross validation method there actually exists more possible
permutations than the presented 4-trial setting. To be exact, there should be 12
different permutations. We remark that according to our empirical study, exper-
imenting with more trials (than the presented setting) does not make significant
difference in the performance statistics.

4 Experiments

4.1 Considered Models

In this paper we consider 3 regression-based models:

– Linear Regression (LR) [15]

– Root-Polynomial Regression (RPR) [17]

– Adjusted Anchored Neighborhood Regression (A+) [2] .

For all the above models we adopt both the original regularization (as reported
in their citations and as per Equation (9)) and our per-channel regularization
(as per Equation (14)).
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4.2 Database

We use the ICVL hyperspectral image database [3] (Fig. 4), which provides
201 hyperspectral images of spatial dimension 1392× 1300 and with 31 spectral
channels. The spectral channels represent narrow-band intensity measurements,
respectively at every 10 nanometers (nm) between 400 and 700 nm.

The corresponding RGB images are simulated following the linear RGB sim-
ulation setting (Equation (3)), and the CIE 1964 color matching functions [10]
are used as the spectral sensitivities.

Fig. 4. Example scenes from the ICVL hyperspectral database [3]. Note that the shown
RGB images are rendered only for display (not the ground-truth RGB images that used
in the experiments).

4.3 Evaluation Criteria

The selected evaluation metric is Relative Absolute Error (RAE) [4, 5], which is
defined per channel as:

RAE(rk, r̂k) =

∣∣∣∣rk − r̂krk

∣∣∣∣ , (15)

where rk and r̂k are respectively the kth-channel values of the ground-truth and
reconstructed spectra. Effectively, this metric measures the percentage absolute
error. RAE is the most common performance measure used in recent research,
and the rationale of using this metric can be found in [4].

5 Results and Discussion

In Table 1, we present the per-channel error statistics of LR (left table), RPR
(middle table) and A+ (right table) under the original settings - where a single
penalty term is used in the regularization [15, 17, 2] - and our per-channel regu-
larization method. The spectral channels are represented by the wavelengths λ
(nm). We also calculate the percentage ‘improvements’ as:

Improve (%) = 100× RAEoriginal −RAEours
RAEoriginal

, (16)
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Table 1. Spectral reconstruction results at each spectral channel for LR (left), RPR
(middle) and A+ (right). Significant improvements (> 10%) are marked in bold and
with underlines. For each model, the Mean RAE error over all spectral channels are
given in the bottom of each table and marked in gray.

LR

λ
Heikki-
nen et
al. [15]

Ours Improve

nm RAE (×10−2) %

400 26.96 26.89 0.3%

410 17.63 17.57 0.4%

420 12.13 12.08 0.4%

430 10.10 10.05 0.4%

440 4.05 4.02 0.8%

450 2.14 2.07 3.4%

460 5.07 5.06 0.1%

470 7.06 7.04 0.3%

480 8.83 8.79 0.4%

490 8.16 8.12 0.6%

500 7.47 7.42 0.7%

510 5.49 5.43 1.1%

520 1.71 1.68 1.6%

530 1.72 1.71 0.9%

540 3.30 2.96 10.4%

550 4.04 3.58 11.4%

560 4.07 3.56 12.4%

570 3.18 2.64 16.9%

580 1.78 1.47 17.4%

590 1.51 1.48 1.6%

600 1.10 1.10 0.1%

610 2.82 2.55 9.7%

620 4.05 3.56 12.1%

630 3.99 3.52 11.7%

640 5.08 4.51 11.2%

650 4.87 4.60 5.5%

660 5.34 5.02 6.0%

670 7.04 6.58 6.4%

680 6.79 6.56 3.3%

690 5.72 5.62 1.6%

700 10.39 10.31 0.8%

All 6.24 6.05 3.1%

RPR

λ
Lin
et al.
[17]

Ours Improve

nm RAE (×10−2) %

400 21.15 19.51 7.8%

410 13.36 12.27 8.2%

420 9.31 7.83 15.9%

430 7.51 6.40 14.7%

440 2.91 2.50 14.0%

450 1.87 1.62 13.3%

460 3.50 3.12 10.9%

470 4.94 4.18 15.4%

480 6.05 5.32 12.1%

490 5.31 4.88 8.1%

500 5.05 4.68 7.3%

510 3.73 3.59 3.6%

520 1.73 1.58 8.8%

530 1.27 1.22 4.0%

540 2.48 2.28 8.1%

550 3.03 2.75 9.3%

560 2.72 2.63 3.4%

570 2.30 1.93 15.8%

580 1.23 1.14 6.9%

590 1.11 1.02 8.0%

600 1.02 0.96 5.9%

610 1.93 1.82 6.2%

620 2.82 2.35 16.9%

630 2.76 2.50 9.4%

640 3.30 3.17 3.9%

650 3.76 3.28 12.8%

660 4.05 3.93 3.1%

670 5.44 5.17 5.0%

680 5.55 5.24 5.5%

690 5.51 5.45 1.1%

700 8.96 8.88 0.9%

All 4.70 4.30 8.6%

A+

λ
Aeschb-
acher et
al. [2]

Ours Improve

nm RAE (×10−2) %

400 16.01 16.08 -0.5%

410 10.41 10.43 -0.2%

420 7.10 7.11 -0.1%

430 5.68 5.68 0.0%

440 2.28 2.23 2.3%

450 1.54 1.28 16.7%

460 2.83 2.47 12.6%

470 3.80 3.40 10.5%

480 4.70 4.32 8.1%

490 4.41 4.16 5.7%

500 4.11 3.94 4.1%

510 3.12 3.01 3.4%

520 1.31 1.27 2.6%

530 1.16 1.15 1.3%

540 1.98 1.97 0.6%

550 2.38 2.36 0.8%

560 2.33 2.31 0.7%

570 1.82 1.80 0.9%

580 1.18 1.16 1.8%

590 1.06 1.05 1.2%

600 0.88 0.88 0.6%

610 1.62 1.55 4.2%

620 2.17 2.07 4.8%

630 2.26 2.15 4.8%

640 3.04 2.80 7.7%

650 3.31 3.12 5.9%

660 3.86 3.68 4.6%

670 5.23 4.81 8.0%

680 5.16 4.79 7.3%

690 4.66 4.65 0.3%

700 8.01 7.97 0.6%

All 3.85 3.73 3.2%

which is presented in the rightmost column of each table. In the bottom of each
table, the Mean RAE results (averaging over all spectral channels) are shown.

First, we see that for all considered models, our method improves the RAE
in multiple channels by over 10% (marked in bold and with underlines), with
maximal improvements around 16-17%.

Secondly, in terms of Mean RAE performance, our method improves the
RPR model the most, by an 8.6% increment, compared to 3.2% for A+ and
3.1% for LR. Significantly, the A+ model is the leading sparse coding model,
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which is shown able to perform equally-well as some deep-learning solutions [2].
By improving the A+ model, we effectively bring forward the shallow-learned
baseline. Moreover, our method reduces the gap between RPR and A+. Relative
to A+, RPR model is much simpler (with significantly less model parameters)
[17], which ensures more effective model re-training and shorter runtime.

Lastly, for the A+ model, it seems curious that the per-channel performances
in the first three channels (400, 410 and 420 nm) degrade by minute differences.
Indeed, this means the regularization parameters we chose for these channels are
not actually optimized for the test-set data. We remark that this is most likely
originated from the unequal separation of data subsets in cross validation, such
that the best regularization parameter for the regularization-set data does not
correspond to the best for the test-set data. We are investigating how to remedy
this issue.

For one example image in the ICVL database [3], we visualize the spectral
reconstruction errors as the Mean RAE error maps in Fig. 5. It is clear that for
all models our method improves the Mean RAE in various parts of the image.
For example, the tree stem for LR and RPR, and the grassy ground for A+.

Fig. 5. Visualizing the spectral reconstruction outcome of the considered models under
the original setting (top row) and our new regularization method (bottom row). The
RGB image (left) is rendered for illustration purpose, which is not the RGBs used for
spectral reconstruction.

6 Conclusion

In the spectral reconstruction (SR) problem, hyperspectral images are recon-
structed from RGB images. Many approaches are based on least-squares regres-
sion, where the fitting function is modelled by a simple linear transformation,
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and a Tikhonov regularization process is applied to improve model generaliz-
ability. Conventionally, the fits for all spectral channels are jointly regularized.
We demonstrate that the fit for each spectral channel can be formulated inde-
pendently, such that the fit for each channel is regularized (therefore optimized)
independently. We also provide a novel modification of K-fold cross validation
so that the models can be fairly trained, regularized and tested with a single
image database. Compared to the original models, our per-channel regulariza-
tion method improves the accuracy of recovery for individual spectral channels
by up to 17% increments, and by 3-9% in mean improvements over all spectral
channels.
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A Appendix: Regression Models

A.1 Linear Regression

Linear regression (LR) [15] assumes a linear map from RGB to spectra. The
spectral estimate is written as

Ψ(x) = Mx , (17)

where M is a 31× 3 regression matrix.

A.2 Root-Polynomial Regression

As a simple non-linear extension from LR, in Root-Polynomial Regression (RPR)
[17] we expand a series of root-polynomial terms from each RGBs. Denote
ϕα : R3 7→ Rp as the α-order root-polynomial transformation, the example
transformations for the 2nd, 3rd and 4th order RPR are:

Order Root-Polynomials

ϕ2(x) R,G,B,
√
RG,
√
GB,

√
BR

ϕ3(x)
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√
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√
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√
BR,

3
√
RG2,

3
√
GB2,

3
√
BR2,

3
√
R2G,

3
√
G2B,

3
√
B2R, 3

√
RGB

ϕ4(x)

R,G,B,
√
RG,
√
GB,

√
BR,

3
√
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3
√
GB2,

3
√
BR2,

3
√
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3
√
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3
√
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√
RGB,

4
√
R3G,

4
√
R3B,

4
√
G3R,

4
√
G3B,

4
√
B3R,

4
√
B3G,

4
√
R2GB,

4
√
G2RB,

4
√
B2RG

The spectral reconstruction then seeks to linearly map these root-polynomial
vectors to spectra:

Ψ(x) = Mϕα(x) . (18)

In this paper we set α = 6, which is the 6th-order RPR.

A.3 Adjusted Anchored Neighborhood Regression (A+ Sparse
Coding)

The leading sparse coding method ‘A+’ [2] assumes linear maps from RGBs to
spectra (effectively, operates LR in every neighborhood). Denote Ψ i(x) as the
spectral reconstruction mapping for the data in the ith neighborhood. On input
of an RGB x, the reconstruction is written as:

neighborhood(x) = i ⇒ Ψ i(x) = Mix . (19)

See [2] for more details about the model.


