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Abstract— Accurate detection of the cloud in remote 
sensing analytics is considered an essential task in 
remote sensing imagery with various spectral, temporal 
and spatial information. As a result we propose a multi-
feature fusion deep convolutional neural networks for 
analysis of remote sensing satellite images so as to 
detect clouds, which are the region of interest. To 
ensure the algorithm was trained with data acquired 
from multiple satellites, the Landsat 7 ETM, Landsat 8 
OLI/TIRS and Gaofen-1 wide field view datasets were 
used. The experimental results obtained showed that 
the proposed model gave accuracy, precision and recall 
measures of 95.2%, 89% and 89.9%respectively. The 
developed algorithm posted consistent and accurate 
results for cloud detection using satellite images that 
had clouds of different types and those obtained over 
different land surfaces that contain other objects in the 
images.  
 
Keywords— Deep convolutional neural networks, multi-
feature fusion, remote sensing satellite imagery.   
 

I . INTRODUCTION 
Presence of clouds is seen to pose a challenge in 

the process of extracting information of the surface 
and/or atmosphere in remote sensing satellites in 
addition to affecting the amount of radiation a surface 
can receive[1]. Accurate detection of the cloud in 
remote sensing analytics has so far been seen to be a 
challenging task due to the various shapes the clouds 
may take in addition to having different ground objects 
captured in the satellite images[2]. To identify clouds 
given a satellite image, three approaches have so far 
been evaluated, that is, threshold based approaches 
which evaluate the reflectance and brightness across a 
given channel so as to detect presence of clouds, 
machine learning algorithms such as support vector 
machine(SVM)[3], artificial neural networks 
(ANN)[4] and random forest[5] that  learn from  
handcrafted features so as to detect presence of clouds 
in an image and deep-learning technique[6] that  
automatically learn high complex features given a 
training dataset.  

[7]reviewed literature on cloud detection using 
remote sensing satellite imagery from 2014 -2018.In 
their work, it was reported that most researchers 

explored a variety of cloud detection forms such as 
Cloud/No Cloud, Thin Cloud/ Thick Cloud and 
Snow/Cloud using threshold based techniques, deep 
learning algorithms and machine learning algorithms 
such as ANN, decision trees, random forests and 
Bayesian classification. Threshold based techniques 
were observed to perform differently for different 
climatic conditions or areas with different surface type 
thus making them have poor universality while 
machine learning algorithms that used handcrafted 
features were observed to be dependent on the feature 
selection process as different people have different 
understanding of clouds and their features. As a result, 
deep learning algorithms became more appealing due 
to their capability of automatically extracting highly 
complex features based on the spectral, temporal and 
spatial information provided in the training dataset.  

Depending on the task being performed, deep 
learning techniques for cloud detection have been 
categorized to three major categories that is, patch 
based deep learning approach which uses an image 
patch as an input and gives a labelled output indicating 
whether the image is cloudy or not cloudy, region 
based deep learning techniques that segment an input 
image to different regions that are labelled using a pre-
trained  network and a pixel level deep learning 
technique that takes a fixed size input image and trains 
the model to output a pixel level labels that have the 
same size as the input image. 

In this work, a multi-feature fusion deep 
convolutional neural network (MFF – DCNN) to 
predict presence of cloud given a remote sensing 
satellite image as an input is proposed. A single set 
feature, created by fusing the spectral, temporal and 
spatial features, is used to train the developed model 
for cloud detection.  
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II . RELATED WORK 
[8] Developed a CNN algorithm for cloud detection based 

on a residual network (ReSNet) architecture which was 
crafted from the u-net architecture by adding a clipping layer, 
batch normalization and halving the depth of feature maps. 
The dataset obtained from the NASA Landsat 8 satellite 
consisted of five spectral band combinations that is the 
red/green/blue/infrared (RGBI) band, the red/green/blue 
(RGB) and the green band alone. In their work, they noted 
that the develop CNN model posted good results for semantic 
segmentation in addition to improving the performance levels 
and reducing the time it took to train the model by reducing 
the requirements during the preprocessing phase. To improve 
on the performance measure of the CNN algorithm for cloud 
detection, they stated the need for a method that would fully 
incorporate the spectral, spatial and temporal dimensions. 

[9] Proposed a technique of detecting clouds that was 
based on cloud segmentation by fusing multi-scale 
convolutional features (MSCF) with aim of improving on the 
accuracy of the convolutional neural network (CNN) for 
object detection especially when using a multispectral image 
that contains the visible and infrared bands only. The 
proposed deep learning technique was based on fully 
convolutional network (FCN) for pixel-to-pixel semantic 
segmentation and Semantic Segmentation (SegNet) 
architecture which was built as a convolutional encoder-
decoder for semantic segmentation of the pixel values. To 
train and evaluate the proposed model, images from Gaofen-1 
WFV satellite were used and the performance posted by the 
developed model compared with two other techniques, that is, 
a multi-feature combined method (MFC) and a deep 
convolutional network (DCN).The obtained results shows 
that the MSCN model performs better with an accuracy level 
of 97.85% compared to the MFC model that posted an 
accuracy of 96.80%. Additionally, the MSCF was seen to 
keep details of the cloud boundaries on the cloud mask 
produced. For future studies, they recommended use of cloud 
images obtained from different satellite imageries to 
investigate if their suggested model can be generalizable on 
the different datasets. 

[10]proposed a two-step deep learning technique for 
cloud detection on remote sensing satellite imagery. The first 
process involved use of a feature concatenation network 
which would obtain  the cloud probability map from deep the 
convolutional neural network while the second process 
involved extraction of multilevel structural features using a 
multi-window guided filtering so as to refine the cloud mask. 
To validate the proposed model, the 502 Gaefen-1 WFV 
cloud images collected from May 2013 to December 2016 
and obtained from different global regions, was used. To 
evaluate the performance measure  of the model, the 
accuracy, the Intersection-Over-Unions(IOU) , Hansens 
Kuipers Discriminant(HK), False Alarm Ratio(FAR) and 
Probability Of Detection(POD, metrics were used and then 
compared with traditional cloud detection methods such as a 
multi-feature combined (MFC)[11], Scene Learning for 
Cloud Detection on Remote-Sensing Images[12] and a 
progressive refinement scheme [13]. According to the 
quantitative results obtained the proposed model posted a 

better performance with an accuracy of 95.45%, POD of 
89.09%, FAR of 2.67%, HK of 93.07% and an IOU of 
85.38%. They further recommended on improvements of the 
computational efficiency of the proposed model for cloud 
detection. 

 
III. METHODOLOGY  

A.  Dataset Description 
To train and validate the model, satellite images obtained 

from different satellites and covering different land surfaces 
as illustrated in the fig 1 were used. A total of  90 Landsat 8 
Operational Land Imager/Thermal Infrared Sensor 
(OLI/TIRS) satellite images with a resolution of 30m  which 
are provided to the  public by [14], 160 Landsat 7 Enhanced 
Thematic Mapper Plus(ETM+) with a resolution of 30m[15]  
and 100 Gaofen-1 wide field view(WFW) with a resolution 
of 16m[16] were used. The Landsat-8 images were  broadly 
categorized to eight biomes, that is, barren, forest, grass/crop, 
shrub land, urban, water and are further divided to four 
classes, that is, cloud, thin cloud, cloud shadow and clear. 
According to [17], data used to train a model should be more 
as compared to training dataset with a preferred percentage 
split of 70/30 whereby 70% of the total dataset is used to train 
the model while the other 30% is used to evaluate its 
performance. In our study, to obtain the training and test 
dataset, percentage split was used to randomly split the 
datasets whereby 70% of the each dataset was used for 
training the model while the remaining 30% was used for 
testing the performance of the developed model for cloud 
detection given satellite images.   

B. The Proposed Method 
The proposed MFF – DCNN for cloud detection is 

composed of a deep coarse network  for extraction of high 
level features and three deep fine extraction network for 
separation of the cloud pixels from other objects present in an 
image as illustrated in fig 2.A fully connected (FC) layer is 
used to flatten the outputs obtained from the coarse  and the 
fine modules and the output obtained from this layer fed to a 
feature fusion layer that is used to fuse features obtained from 
the four network components. The output from the feature 
fusion layer used for classification. 

1) Deep Coarse Network: The deep coarse network 
(DCN) is constituted of three convolutional layers for the 
purpose of extracting high level features. The first layer is 
structured such that it is comprised of 36 filters and a kernel 
size of 3*3. The rectified linear unit(ReLU) activation 
function is then be applied to the convolved patches and a 
2*2/2 max-pool function applied to each response generated. 
The second and the third convolution layers are then 
modelled such that they are made of 64 filters with the ReLU 
activation function and a 5*5 kernel and a 2*2 max-pooling 
with stride 2.  
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Fig 1:  Display of the Obtained Datasets on various land surfaces Source: [18] 
 

2)  Deep Fine Extraction Network: Most of the 
images acquired from remote sensing satellites are 
rarely annotated and also lack bounding boxes to 
represent the most likely region of interest 
(ROI)[19]. As a result, this deep fine extraction 
network is developed to help in identification of the 
ROIs. The three deep fine extraction layer are built 
using the ResNet50 architecture which has so far 
proved to have better performance for object 
detection as compared to the other convolutional 
architectures in addition to helping to mitigate the 
vanishing gradient problem[20]. The areas marked 
by the bounding boxes are then extracted using ROI 
pooling layer so as to come up with a feature map to 
be fed to a fully connected layer that would compute 
the score for the input image for each class. The fig 3 
illustrates the structure of the deep fine extraction 
module. 

    3) Feature Fusion layer: The feature fusion layer 
is introduced to the architecture so as to ensure that 
the features extracted from the deep-coarse and 
deep-fine networks are combined to form a single 
feature set for classification.To avoid overfitting and 
improve on the generalization of the model, cross 
entropy loss function[21] was used to regularize the 
feature fusion process and  the softmax regression 
function[22], defined in equation (1) used for 
classification.  

        ( )   [
   ( )

  
      ( )

]
 

  (1) 

 
where x is the filter i score obtained from the previous 
layer and   𝑠𝑜𝑡𝑚𝑎   is the corresponding output.  
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Fig 2:   The Proposed Multi-Feature Fusion Deep Convolutional Neural Network for cloud detection 

 

 
 
Fig 3:   The Architecture of the Deep Fine Extraction Network 

 

IV.   RESULTS  

A.  Performance metrics 

The developed model was trained to detect clouds 
given a remote satellite image dataset that captures 
different land surfaces in addition to containing 
spatial, temporal and spectral information. To evaluate 

the performance levels for extracting and fusing 
multiple features  for cloud detection using the 
proposed model,  the accuracy, precision and recall 
measures as specified in equation (2),(3) and 
(4)respectively were used.  

 

     𝑎    
     

           
  (2) 
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 Where TP is the true positives, TN is the true 
negatives, FP is the false positives and FN is the false 
negatives.  
 
B.  Results and Discussion 

In our work the performance measure of  the  FCN 
network proposed by [9], multi-feature fusion of point 
and block feature using SVM classifier proposed by 
[2] and a multilevel feature cloud detection FCN 
proposed by [10] are compared with our proposed 
model. These models were evaluated using the test 
datasets that contained a total 57 Landsat-8 images 
that were different from the images used to train the 
model and the accuracy results obtained are as 
summarizer in table 1.These results showed that our 
model performed the best with an accuracy level of 
99.06 which was 1.21% higher than that of the fully 
convolutional network implemented using the Segnet 
architecture. Which performed as the second best 
model for cloud detection. Of the four compared 
models, the model composed of the feature 
concatenation and window guided filtering gave the 
lowest accuracy level of 92.92%. 

TABLE 1: QUANTITATIVE ANALYSIS OF THE OBTAINED RESULTS 

Author Architecture Accuracy 

(%) 

[9] Fully Convolutional layers + 

Segnet 

97.85 

[2] Multi-feature fusion of point 

feature and block feature 

95.36 

[10] Feature Concatenation + 
Window guided Filtering 

92.92 

Ours MFF – DCNN 99.06 

 
 

Furthermore, the recall and precision measure 
obtained when testing our model were 89.9% and 89% 
respectively and an increase in the number of epochs 
to about 25 epochs was seen to lead to an increase in 
both the training and validation accuracy of the 
proposed model but this was seen to stabilize. Further 
increase of the number of epochs led to an unstable 
increase and decrease in the training and validation 
accuracy as illustrated in the fig 4. 

The ability of the proposed MFF – DCNN to 
effectively detect both thick and thin clouds is mainly 
been attributed to the use of ResNet50 skip 
connections in the DFCN that enables the model 
utilize all available feature for cloud detection. 

  

Fig 4:   Proposed Model training and validation accuracy against 

the number of epochs 

According to[20] the residual block of the ResNet 
architecture as illustrated in the fig 4 enables a model 
train deeper neural networks by optimally tuning the 
number of layers while training the model. 
Consequently, it is associated with its high capabilities 
of addressing the vanishing gradient problem that is 
frequent especially when more layers are added to a 
deep learning model. Fusing both the high level 
features obtained from the deep-coarse network and 
the low level features from the DFCN enables the 
model take into consideration all features available in 
remote sensing satellite imagery, that is, the spectral, 
textural and spatial information during the training 
process. Thus the model is capable of learning more 
information and as a result enable it improve on its 
predictive predictability. 

 

 
 

Fig 5:   ResNet Residual Block 
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V. CONCLUSION  

In this work, we propose a multi-feature fusion 
extraction based on deep convolutional neural network 
for cloud detection in remote sensing analytics given a 
satellite image that consists of spectral, spatial and 
textural information. The proposed MFF – DCNN 
model architecture consisted of a deep-coarse network 
for extraction of high level features and deep-fine 
network for extraction of low level features. For 
identification of the region of interest, feature fusion 
layer made of a fully connected layer was then used to 
fuse features identified in the deep-coarse and deep-
fine networks and the result fed to a softmax 
regression function for classification. The cross 
entropy loss function was then used to regularize the 
outputs. The quantitative results obtained showed that 
the proposed model was capable of performing well 
given datasets that have different clouds types with 
varying cloud size and density and as a result, it was 
concluded that this model can also be replicated to 
different scenarios for accurate and reliable cloud 
detection. The proposed model is thus seen to be 
useful in providing insights about clouds in remote 
sensing analytics and as a results it has proved to be 
useful in tasks such as prediction of the amount of 
solar irradiance a given surface can receive given the 
locations’ atmospheric and cloud conditions.  

For future works, we recommend evaluation of the 
proposed model on images obtained from other 
satellites such as Sentinel-2, SPOT-5 and the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) data so as to evaluate generalizability of the 
proposed model on different datasets. Additionally, 
more research should be made on how to improve on 
the computational efficiency of the proposed model. 
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