
Energy Consumption Measurement Frameworks for
Android OS: A Systematic Literature Review

Vladislav Myasnikov∗, Stanislav Sartasov†, Ilya Slesarev‡ and Pavel Gessen§
∗Saint Petersburg State University

vladislav.myasnikov@bk.ru
†Saint Petersburg State University

stanislav.sartasov@spbu.ru
‡Saint Petersburg State University

slesarev.pr@gmail.com
§Saint Petersburg Polytechnical University

pashagess2@mail.ru

Abstract—In a modern world smartphones became a com-
monly used electronic devices performing numerous day-to-
day tasks and much more. Quick battery discharge degrades
user experience, and computationally intensive or badly written
programs are responsible for it. It is not always evident which
tool to use and how to set up an experiment to estimate energy
consumption of a specific application. For this we conducted a
Systematic Literature Review (SLR) to list existing frameworks to
measure application power metering for Android OS, to classify
the approaches used to create them and also to assess their
accuracy and experimental methodology. Our findings indicate
that although there is a considerable amount of studies in this
field with various approaches, there is still a vacant place for a
readily available tool, and it is difficult to compare accuracy of
different frameworks. However there is a solid set of practices
and techniques for experimental setup in application energy
measurement.

I. INTRODUCTION

It is impossible to imagine a modern world without smart-
phones and other mobile devices. Their compact size com-
bined with significant computational capabilities grant them a
firm position as a day-to-day informational and recreational
tool. At the end of 2019 a number of smartphone users is
expected to be 3.2 billion with Android OS as a leading mobile
operating system [1].

As smartphones and tablets are mobile electronic devices,
its user experience is substantially defined by battery lifetime.
While hardware components are constantly improving with
power-saving electronics and more capacitous batteries being
available to the market, inefficiently written software causes
degradation of user experience due to elevated charge drain.

Different applications and even different versions of the
same application consume energy differently. A school of
thought called ”green software development” advocates a need
to consider energy consumption as well as performance met-
rics during application development [2]. A common practice is
energy-efficient refactoring — such a change in software code
that doesn’t change its end user functionality but decreases its
energy footprint.

Was a particular energy refactoring effective? How much
energy did we save by applying it? To answer these questions

one should be able to compare application or module energy
consumption before and after refactoring. Therefore a tool
for conducting such experiments is required. Such a tool
may come as one-time testbed for a specific project or a
more generic and reusable framework or utility. It should be
noted that there’s little uniformity among such tools. They
differ not only in metering methodologies but in measurement
results as well, i.e. some frameworks measure battery charge
percentage change, other calculate consumed power in watts,
while another group operates in abstract units of measure.

In order to help practitioners and engineers better under-
stand current state-of-the-art approaches to energy consump-
tion measurement and to select proper approach, technique or
tool for a particular experiment, we conduct a systematic liter-
ature review (SLR) on the energy consumption measurement
frameworks for mobile devices using Android OS. We selected
this mobile platform as it is the most presented platform on
the market compared to iOS and Windows Phone [3], and it
is also open-sourced, meaning that some types of frameworks
(for example those that modify OS kernel) might be absent on
other platforms.

This paper is organized as follows. In Section 2 our method-
ology for SLR is described and research questions (RQs) are
formulated. Section 3 contains answers for RQs. Limitations
of this study are reported in Section 4. A side question of
relating our proposed framework classification to a number of
commercial profilers is addressed in Section 5. Conclusions
are drawn and future work is outlined in Section 6.

II. METHOD

We followed SLR guidelines by Kitchenham and Charters
[4] with a number of differences:

• Instead of manual search process we addressed online
search engine. While this decision certainly affects the
selection of studies compared to manual search, we used
a large number of papers to make a preliminary list and
introduced additional phases to study selection process,
so we think the impact of this change on SLR quality is
negligible.

Copyright© 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



• Quality assessment was done along with the data ex-
traction process and in some sense — as a part of
it. However Kitchenham and Charters [4] allow such
methodology, noting that quality information can be used
either to assist primary study selection by constructing
detailed inclusion/exclusion criteria prior to the main data
collection activity or to assist data analysis and synthesis,
so it is collected along with the main data.

A. Research Questions

A following list of research questions (RQs) was compiled
during initial literature assessment:

• RQ1: What approaches exist to estimate code fragments,
methods or application energy consumption under An-
droid OS?

• RQ2: Are there open source code repositories or other
programming artifacts for corresponding frameworks?

• RQ3: What devices are used in measurement experi-
ments?

• RQ4: How many frameworks specify or suggest experi-
mental methodology?

• RQ5: What is the measurement precision and what is the
base scenario to compare to?

However after preliminary data extraction we also added
the following questions due to the freqently occuring gaps in
methodology in the reviewed studies:

• RQ6: What units of measurements are used in experi-
ments with a particular framework and what is measured?

• RQ7: How do frameworks deal with metering hardware
frequency being considerably lower than CPU frequency?

RQ6 is answered to classify all the different ways report
measurement results. RQ7 came into attention due to the
possibility of a child thread be entirely executed between
multimeter synchronization impulses therefore its contribution
to the energy consumption would not be properly recorded.

B. Search Process

A preliminary list of 931 studies was formed with a Google
Scholar1 resource. The query was ”android ”energy-efficiency”
framework”, therefore ”energy-efficiency” was required to
appear as a phrase in a study text.

C. Study Selection

At first inclusion criteria were rather simple — include
studies about energy measuring frameworks, exclude all others
— but it was quickly became apparent they were not sufficient.
Indeed some studies were discussing a software and hardware
complex or purely software tool for measuring energy expen-
diture which was generic enough to be called a framework.
However many articles contained a description of a testbed —
a testing environment that measures specific program energy
consumption in one way or another. In a considerable amount
of cases the distinction between a testbed and a framework was
blurry. We consider a programming artifact to be a testbed if

1https://scholar.google.com

the experiment itself and its conclusions are the centerpiece
of the corresponding article. If, however, this artifact is the
main discussion point for the article, we consider it to be a
framework.

Usually a testbed is only vaguely described, while frame-
works are documented in detail, up to the point of open
source repositories, so this separation worked well. There
was a handful of notable exceptions however where a study
focused on a specific energy-efficiency question also contained
a detailed description of its testing environment along with the
experimental methodology and software architecture. In such
cases a question was asked if this testbed is described in such
a detail that it can be a subject of a framework-centered article.
In the case of positive answer a study was added to short-list.

Additionally we do not include articles regarding smart
watches and similar devices as its functionality is rather lim-
ited compared to the smartphone, therefore only mainstream
Android OS is considered as a focus of this SLR. We also
exclude articles focused on Windows Phone and iOS.

To summarize, our final criteria to include a study into a
short-list was as follows:

• Studies describing technical artifacts for other operating
systems than mainstream Android OS are excluded.

• Studies focused on a framework as an end result of a
research are included.

• Studies focused on other topics but containing enough
information on a testbed or a method to make one for it
to be considered alienable as a standalone framework are
included.

• All other articles are exlcuded.
At first stage Myasnikov, Sartasov and Gessen processed

every article independently. An article was assigned ”+” if
a reviewer considered it to be worthy of inclusion, ”-” if a
review was negative and ”∼” if in doubt. Three pluses or two
pluses and a tilde meant inclusion to short-list, while an article
with three minuses was excluded from further reading. Other
review combinations signified review conflicts. About 45% of
studies were marked conflicts at the end of this phase.

Secondly, studies with conflicting reviews were additionally
reviewed by Slesarev, and each article was read in greater
detail and discussed until a consensus was formed among the
researchers. At the end of this phase 51 articles were added
to short list.

Some studies in the result list deserve specific mention.
Although WattsOn framework [5] targets Windows Phone, it
was included because authors claim their approach is portable
to Android OS. 3 additional articles were added to the short
list manually as they were not a part of original study list:

• Yoon, Kim et al. [6]
• Zhang, Tiwana et al. [7]
• Li and Gallagher [8]
Those studies became known either due to past literature

reviews in similar topics or during review process when they
were referenced in multiple other articles. They were also
reviewed independently by three researchers and got 3 pluses
for review.



Third stage of study selection was done along with data
extraction. 6 studies in fact were written about a different
subject while looking like a framework article at a top level,
so our short-list contained 48 articles.

However at this time we’ve found out that in some cases
multiple studies were describing the same framework under
different angles or at different points of development cycles.
It is a common situation for an ongoing research project. As
the focus of our SLR is the frameworks and not the articles
per se, if multiple studies were written by the same or similar
collective of authors from the same institution and described
a similarly named frameworks based on a similar principles,
after discussion and consensus between researchers they were
considered to be written about a single framework, and data
extraction results were merged for these studies. In particular
we grouped the articles concerning the following frameworks:

• JouleUnit by Wilke et al. [9], [10]
• Greendroid by Couto et al. [11], [12], [13]
• PETrA by Di Nucci, Palomba et al. [14], [15]
• Aggarwal et al. [16] and Feghi [17]
• Li and Gallagher [18], [8]
• Ahmad et al. [19], [20]

In the end, out of 931 studies aggregated automatically and
3 papers added manually our short-list contained 48 articles
summarized into 41 frameworks.

D. Data Extraction

To answer the stated RQs we answered the following data
extraction questions for each included study or study group:

• Conceptual questions:
1) What is the method of reading current battery charge

level or energy expenditure? Examples include ex-
ternal multimeter, internal sensor, Android OS API
etc.

2) How large is the part of an application to be
profiled? For example, one may measure energy
consumption of a single line of code, a code block,
a method, a unit-test, an application or all currently
running applications.

3) What is the end result of a measurement experi-
ment?

4) What are the units of measurement utilized in a
framework (i.e. watts, joules, relative units)?

• Technical questions:
1) Is the application code executed on a smartphone

or special test device and what is its Android OS
version?

2) What kind of code instrumentation is used if any?
In this context we define code instrumentation as
addition of framework-specific subprograms (i.e. for
method start and end logging) to the target source
code.

3) How is energy consumption measurement started
from a technical standpoint?

4) How is raw metering data downloaded or otherwise
obtained for processing?

5) What are the raw data transformations used to
present experiment outcome?

6) Is there an open source code for a framework?
• Experimental methodology questions:

1) What are the preliminary actions to undertake on a
test device before starting measurements? Examples
include turning off Wi-Fi, stopping applications,
charging up to 100%, controlling device temperature
etc.

2) Is measurement accuracy estimated? If yes, what is
the base of comparison?

3) Does framework experimental methodology con-
sider frequency of metering tools? What is the
frequency of a tools used by authors?

If an article didn’t contain an information required to answer
the question or if a question was not applicable to a specific
article, it was also noted.

A pool of works was distributed along Myasnikov, Sle-
sarev and Sartasov, and data from each study was extracted
independently. Quality control was applied selectively if there
was a misunderstanding between team members regarding
particular data extraction result for a specific study. In this
case data extraction was repeated collectively until consensus
was formed.

Data extraction results were aggregated in an online docu-
ment2. We were able to extract relevant information for each
question for each framework in the list.

E. Quality assessment

Generally SLRs are accompanied with a quality assessment
procedure concerning every included article. As we’re more
interested in frameworks than in individual articles themselves,
we decided to modify this process by assessing the quality
of individual studies if they were not grouped with other
publications, otherewise we assessed a group of articles as a
whole. Therefore if a framework is described in two articles,
we assess the quality from both of them simultaneously.

To assess the quality we formulate the following questions:
1) Is there an open-source code for the framework?
2) Is framework measurement approach described?
3) Is experimental methodology described?
4) Is framework accuracy assessed?
These questions intentionally overlap with our RQs, as

this information is in our opinion essential if a reader wants
to understand a proposed framework. They were scored as
follows:

• Question 1: yes (Y) if a repository can be found, partly
(P) if a program using a framework can be found, but not
a source code, no (N) otherwise. Even if an article states

2https://docs.google.com/spreadsheets/d/
17D1ArPavFQaFPGnU-OI3r8x1QoboWOoEa-rHR-9U98I/edit?
usp=sharing



a number of lines of code for a described framework or
gives code fragments or algorithms, it is still a no.

• Question 2: yes (Y) if a framework approach is described
in great detail, and entire thought process from principles
to implementation can be tracked, partly (P) if only a
general description of framework principles is present,
no (N) otherwise.

• Question 3: yes (Y) if a methodology is described in great
detail and limits and bounds are stated, partly (P) if only a
broad description of measurement methodology is given,
no (N) otherwise.

• Question 4: yes (Y) if an experiment and a base case
are described, partly (P) if some consideration is given
to accuracy, but not a thorough one, no (N) otherwise.

The scoring procedure was Y = 1, P = 0.5, N = 0. Article
quality was obtained as a sum of individual question scores.
Results are given in Table I.

III. DISCUSSION OF RESEARCH QUESTIONS

This sections contains our findings in relation to the specific
research questions as stated above.

A. RQ1: What approaches exist to estimate code fragments,
methods or application energy consumption under Android
OS?

We can classify different approaches for software energy
consumption estimation into two bins: if power measurement
is direct or indirect.

Direct measurement approach means that some metering
agent is directly measuring voltage, current or even power.
Subclasses of this approach are as follows:

• External meter: External digital multimeter is con-
nected to battery contacts of smart device. Sometimes
to compensate voltage drop in Li-ion batteries during
discharge and therefore normalize power readings an
external power generator working as a constant voltage
source is connected to testing device instead of default
battery. Framework launches an application in question or
a unit test alongside power measurement. In the end total
power consumption is estimated by linear interpolation
as

E =

Nread−1∑

i=1

Ui ×
Ii+1 + Ii

2
× (ti+1 − ti) (1)

where E is total energy, Nread is number of power
readings, Ui is ith voltage read, Ii is ith current read,
ti is time of ith read. Some multimeters write the time
of a read directly, while for other ti+1 − ti is an inverse
of a multimeter frequency. Step interpolation is also used
in some works.
If a more detailed report is needed, for example at a
level of methods or code blocks, then the source code
is instrumented with additional logging instructions for
method or code beginning and end, and two data traces

are generated — power readings and application execu-
tion trace as in Couto et al. [11]. In this case system
clocks on smartphone and multimeter or controlling PC
should be synchronized before the start of experiments.
Power readings can then be aligned with execution trace
and provide an insight which method or piece of code
is responsible for high energy usage. As instrumentation
introduces additional code to be executed, its energy
overhead should also be estimated and subtracted from
final readings.

• Internal meter: This approach utilizes internal power
meters installed on the smartphone by manufacturer and
Android OS API to access them. While generally such
a tool can get a good power consumption estimate for
a smartphone as a whole, under specific experimental
conditions it can be trimmed down to a level of a
single application in question. Because smartphone and
power sensor are using the same system clock, there are
no issues with clock synchronization. Power readings
requests may be integrated into instrumentation code.
Energy consumption is estimated in the same way as
before.

Indirect measurement approach (or model-based approach)
means that profiling software is aggregating some information
regarding code execution and relates it to energy consumption
using some mathematical model. Frameworks utilizing this
approach operate in two phases: model calibration and energy
estimation. At first stage model coefficients are determined
or tuned with preliminary experiments or reference data. It is
an important step not only for different smartphone models,
but for different devices of a same model as well [21]. After
a model is tailored for a device, actual energy metering
experiments may be commenced.

Subclasses are formed based on the type of aggregated
information used in the model:

• Working time model: For this group information regard-
ing working time of various smartphone systems is aggre-
gated. Various devices may consume energy differently
under different modes of operation. For example, Wi-Fi
module consumes different amounts of energy when idle,
when looking for a network and when transferring data
over a network. Therefore energy consumption value is
calculated as

E =

Ndev∑

i=1

NPi∑

j=1

Pij × tij (2)

where E is total energy, Ndev is a number of tracked
devices on a smartphone, NPi is a number of different
power characteristics of ith device, Pij is a jth power
characteristic of ith device, tij is active time for ith device
operating under Pij power characteristic.
Calibration phase consists of experiments for determining
power profiles for individual components using one of the
direct measurement approaches: both external and inter-



TABLE I
STUDIES QUALITY

Q1 Q2 Q3 Q4 Quality
Studies Repository Approach Methodology Experiment score

Zhang et al. [7] Y Y Y Y 4
Hindle et al. [21] Y Y Y P 3,5

Di Nucci, Palomba et al. [14], [15] P Y Y Y 3,5
Tuysuz, Uçan and Trestian [22] P Y Y Y 3,5

Wilke et al. [9], [10] Y Y P P 3
Hao et al. [23] N Y Y Y 3

Couto et al. [11], [12], [13] Y Y Y N 3
Bareth [24] N Y Y Y 3

Kamiyama, Inamura and Ohta [25] N Y Y Y 3
Saksonov [26] N Y Y Y 3

Sahar, Bangash and Beg[27] Y Y P P 3
Ahmad et al. [19], [20] N Y Y Y 3
Pandiyan and Wu [28] N Y Y Y 3

Huang et al.[29] N Y Y Y 3
Oliveira et al.[30] N Y Y P 2,5

Aggarwal et al.[16], Feghi [17] N Y P Y 2,5
Westfield and Gopalan [31] P Y N Y 2,5

Dolezal and Becvar [32] N Y Y P 2,5
Hu et al. [33] N Y P Y 2,5

Yoon, Kim et al. [6] N Y P Y 2,5
Larsson and Stigelid [34] N Y P Y 2,5

Fischer, Brisolara and Mattos [35] N Y P Y 2,5
Lee, Yoon and Cha [36] N Y P P 2

Mittal, Kansal and Chandra [5] N Y N Y 2
Chen and Zong [37] N Y P P 2

Hung et al. [38] N Y N Y 2
Carette et al. [39] N Y Y N 2

Kapetanakis and Panagiotakis [40] N Y P P 2
Dong, Lan and Zhong [41] N Y P P 2

Lee et al. [42] N P P Y 2
Chung, Lin and King [43] N Y P N 1,5

Shin et al. [44] N P N Y 1,5
Jung, Kim and Cha [45] N Y P N 1,5

Tsao et al. [46] N Y N P 1,5
Metri [47] N Y P N 1,5

Gao et al.[48] N P P P 1,5
Banerjee et al. [49] N Y N P 1,5

Li and Gallagher [18], [8] N Y P N 1,5
Li et al. [50] N Y P N 1,5

Walcott-Justice [51] N Y N N 1
Kim, Kyong and Lim[52] N Y N N 1

nal meters are conceptually suitable. Linear regression
is used to extract power coefficients from experimental
data. As an alternative some frameworks utilize Android
power profile data [53].
Energy estimation is assessed by measuring active device
time during experimental code execution. Different com-
ponents have different ways for measuring their active
time, i.e. CPU stores information about its time in differ-
ent power states in proc folder, while Wi-Fi generates
system events when it transitions from one power state
to another.
Additional estimations may also be incorporated into such
model, for example, corrections for battery discharge rate
[44].

• Instruction energy model: This group of frameworks
considers energy consumptions of various code instruc-
tion types — conditional statements, loop controls,

method calls, floating-point operations etc. Energy con-
sumption is calculated as

E =

Ninstr∑

i=1

Pi × ni (3)

where E is total energy, Ninstr is number of different
instruction types in a model, Pi is power consumption of
a single instruction of ith type, ni is number of ith type
instructions in the code.
Model calibration is done by measuring power consump-
tion of each instruction type in a synthetic tests using
direct approach.
Total energy is calculated from instruction statistics of a
specific code execution trace. It should be noted that it
is not required to launch test code under Android OS if



no specific Android API is invoked. Instruction statistics
may be aggregated in any suitable environment.

• Method/API call energy model: This approach is similar
to the previous one, but instead of a power profile for a
single instruction energy consumption of a system or API
call, or framework method is calculated. Models under
this approach are created under assumption that most
of the time and energy is spent outside of application
code, and therefore good estimation of application energy
consumption can be obtained by analyzing its API usage.

We assign each of the listed frameworks to its approach in
the Table II.

TABLE II
APPROACHES FOR ENERGY CONSUMPTION ESTIMATION

Direct measurement
External meter [43], [9], [21], [46], [39],

[50], [52], [34], [41]
Internal meter [9], [45], [51], [37], [40], [34], [35]

Indirect measurement
Working time model [44], [11], [14], [5], [47], [36], [32],

[48], [25], [24], [49], [38], [26], [6],
[7], [27], [52], [22], [29], [42]

Instruction energy model [23], [18], [19]
Method/API call energy model [30], [16], [31], [33]

B. RQ2: Are there open source code repositories or other
programming artifacts for corresponding frameworks?

This research question intentionally overlaps with the Ques-
tion 1 in Quality Assessment section. Energy consumption
measurement frameworks are practical and generic tools by
definition, therefore it is reasonable to expect its source code
available for reuse. As an alternative a metering application
may also be sufficient.

Among the 41 included frameworks the results are as
follows:

• 5 frameworks have their source code available in repos-
itory: JouleUnit [9], [10], GreenMiner [21], GreenDroid
[11], [12], [13], EnSights [27], PowerTutor [7]

• 3 frameworks are openly presented as a ready application:
PowerTutor [7], PETrA [14], [15], ”PowerProfiler &
Energy-aware Network Selection” application in Google
Play by Uçan, Tuysuz and Trestian [22]. A web-site for
another framework, Orka [31], is available in Imperial
College of London intranet.

• 3 studies include code samples or statistics in the text:
Sema [35], Huang et al. [29], Kapetanakis and Panagio-
takis [40].

Note that PowerTutor [7] is marked as having both a source
code and an application available. Non-mentioned studies
don’t refer to the source code.

It should be noted separately that all of the frameworks
with their code available are not kept up to date. PowerTutor
and JouleUnit were abandoned over 5 years ago. At the
time of writing (January 2020) most recent commits are
found in GreenMiner (May 2018), EnSights (August 2018)

and GreenDroid (January 2019), so we may call them semi-
abandoned. In our experience lack of recent commits usually
indicates either a research project being finished or it was
abandoned for some reason. Additionally, none of the projects
can be built out of the box, and build instructions are not
provided in details. As stated before, PowerTutor was used in
a number of other studies when it was supported, but it is not
surprising that a significant amount of more recent testbeds
we’ve seen in studies during study selection phase are based
on industrial grade Monsoon power monitor [54]3.

We conclude that studied frameworks rarely provide their
code in open source repositories. Those who do are not easy to
launch. What’s worse, not all of the frameworks are available
to the practinioners even in the form of proprietary software.

C. RQ3: What devices are used in measurement experiments?

The number of devices running Android OS is hard to
reliably count: from the very first HTC Dream model line to
modern foldable smartphones as well as tablets. Android OS
is also continues to being developed with a major release by
Google every year. For example Android Q version released
in 2019 supports foldable smartphones and 5G-devices [55].
Additionally, Android API is not static, although generally
an application is forward compatible with a newer Android
OS version [56]. Regardless, application well-behaving on a
specific version of Android platform might be glitching on
another version due to the API change. With such variety of
devices and versions it is important to understand what range
of devices and Android OS versions are covered by existing
energy metering frameworks.

We obtained the following distribution of target devices
from the listed frameworks:

• A special testbed is used in ∼17% studies. In this context
a testbed is a special platform running Android OS which
is not a smartphone or a tablet, although it might be
functionally similar. For example, Odroid-A platform has
a set of functions similar to Samsung Galaxy S2 [44].

• An emulator is used in ∼12% studies. Emulator allows
to run applications without necessity to procure a real
device. However emulator is not a complete substitute
for a smartphone or a tablet, in particular application
performance might be worse in emulated environments
thus negatively affecting measurement accuracy. Another
limiting factor is a number of devices available for
emulation, for example, only one model of the Nexus 7
tablet is emulated in Westfield and Gopalan [31]. Hence
a range of available emulated devices is significantly
limited compared to commercially available smartphone
and tablet ranges, albeit this approach is significantly
cheaper. WattsOn framework [5] is also included into this

3Monsoon power monitor is a high frequency multimeter to be connected
between smart device battery and electronics. It is capable to upload mea-
surement results to a PC. While it was designed with smart device energy
measurements in mind, it is just that - a high-quality multimeter, which can
be used in a variety of scenarios not limited to Android power profiling.
Therefore we do not consider Monsoon to be a metering framework by itself,
but it can lie in a foundation of one.



category as its authors claim it to be portable to Android
emulators.

• Real devices such as smartphones and tablets are used in
the other studies. Smartphones are much more prevalent
than tablets — the latter are experimented upon in a single
study [51]. A number of devices used for experiments
varies from 1 to 3.

To evaluate a potential range of devices for a particular
framework one can try different methods. Firstly, this range
may be estimated using target Android OS version used in the
experiments described in a selected study. Then the article is
considered applicable for devices with the specified version
and (with a caution) higher due to forward compatibility [56].
Such an assessment, however, is rather imprecise as there are
no guarantee that experiments were conducted on a minimally
available version. Secondly, an estimate of supported Android
versions can be based on measurement tools being used in
experiments if they are specified in a study. In general this
assessment is more precise than the first. Thirdly, it’s worth
to take into account technical restrictions imposed by the
framework itself if they are mentioned.

With the listed frameworks we obtained the following
results:

• In the articles where it was possible to draw conclusions
on Android version experiments are conducted on An-
droid OS versions 2 to 5, so approximately 90% of all
devices are supported [57].

• Some restrictions are stated explicitly, for example, de-
vice power profile must be uploaded to the framework
server prior to experiments [19]. However, in some
studies its restrictions are implied, for example, Android
Power Profiler tool used for energy metering is available
only for Android 5.0+ devices [30], while Trepn Profiler
is available for a limited range of devices for Android
4.0+ [51], [47], [33].

• At least 12 frameworks require root access for the device,
mainly to use additional API. It might be unacceptable
for some users as rooted devices void the manufacturer’s
warranty. Additionally there is a risk of disrupting proper
OS functioning under root privileges compared to a non-
root user.

• In 7 of those 12 frameworks it is not enough to just
have a root access, as one must also integrate a kernel
module into the OS [45], [46], [36], [6], [42] or otherwise
modify an existing Android framework [48], [39]. Such
preparatory actions impose a considerably higher entry
barrier than simply obtaining root access rights for the
device.

In the end the range of supported devices is wide despite
some of the frameworks targeting testbeds or emulators. While
individual restrictions make some frameworks harder to set up
than others, we conclude that development tools versioning
and framework accessibility in general (see RQ2) is more
limiting for their usage than device range.

D. RQ4: How many frameworks specify or suggest experi-
mental methodology?

It is not enough to write code, launch a framework to
estimate its energy consumption and get results. Experimental
methodology is as important as framework itself. By method-
ology we mean a set of rules, procedures and techniques aimed
to decrease, eliminate or otherwise take control of external and
internal influences, which are not independent variables of the
experiment, on experimental outcome. In a way, methodology
defines a context of framework usage as authors see it, and
non-stringent approach to experimental setup and outcome
interpretation leads to innacurate or outright wrong results.
Ill-thought procedures or rules or lack of thereof in a study is
an alarming signal.

In this regard studies in our list generally take experimental
methodology into consideration with only 6 articles not men-
tioning it. We extracted this information from the others and
aggregated them into following groups:

• Testing environment setup.
• Repeated launch of tests, benchmarks etc.
• Overhead estimation.
Table III contains study distribution into each group.
A smartphone or a tablet is a complex device with numerous

settings. Using it as a testing device requires to pay attention
to its configuration. To a lesser extent this is also true for
emulator. Such parameters include the following:

1) Reducing activity of background processes (both system
and non-system) [23], [51], [39], [27], [40], [28].

2) Increasing scheduling priority of the subject application
[23].

3) Decresing screen brightness or switching it off com-
pletely [21], [25], [39], [27], [28], [22], [29].

4) Switching off all unnecessary modules (Wi-Fi, 3G, GPS,
accelerometer, proximity etc.) [39], [26], [20], [40], [28].

5) Charging battery for the same level [24], [39], [22].
6) Shutting down for cooling down the battery heat [39].
7) Warmup execution [30].
8) Time waiting before beginning a new test in order to let

background processes calm down [32], [27].
9) Application reinstalling [21].

10) Application cache erasing [14], [27].
11) Rebooting the device [26].
12) Factory data reset [24], [26].
If left unchecked these factors introduce additional energy

drain and thus skew measurement results and decrease re-
peatability, therefore a proper setup is required. About 40%
of the listed frameworks take it into consideration one way or
another.

A framework itself might introduce additional energy con-
sumption. For example, code instrumentation is required to
obtain execution trace, but as it is implemented in the form
of additional code, it inevitably introduces energy overhead.
Aggregating system data while executing a test suite is another
reason behind elevated energy consumption during measure-
ment. To alleviate this problem one should estimate this over-



head and subtract it from measurement results. In particular
code instrumentation is estimated by running all the tracking
code from a selected trace without the original test code and
measuring its energy footprint. Around 50% of all studies
address this issue, with some studies only stating measures
to overcome it [37], [35], while other actually estimate its
effect [25], [6].

A notable number of studies — about 37% — repeat
their measurements multiple times to get an average or mean
value of consumed energy. In this way authors reduce random
metering equipment jittering and OS scheduling impact on
measurement results [9], [30], [17], [29].

Chung, Lin and King [43] and Jung, Kim and Cha [45]
should be mentioned separately. Those studies specify amount
of time for the experiment to last to produce adequate results.
However they do not specify reasoning behind selecting par-
ticular values, so we do make another group for them.

Overall, we conclude that collectively studies in our list con-
tain enough guidelines for a practitioner to properly conduct
energy consumption estimation process.

TABLE III
EXPERIMENTAL METHODOLOGY GROUPS

Group Number of papers
Overhead estimation 20
Environment setup 16

Relaunching 15
None 6

E. RQ5: What is the measurement precision and what is the
base scenario to compare to?

Measurement accuracy is one of the key characteristics of
energy profiling framework. Thus a question of framework
accuracy might be expected to be answered in a corresponding
study. Our review shows that accuracy estimation of some sort
was carried out approximately in 61% works, which can be
divided by a type of estimation into the following groups:

• Comparison with direct measurement.
• Comparison with another tool (frameworks, power mod-

els).
Study distribution into each group is shown in Table IV.

Some studies fell into several groups at the same time.
If a study compares framework accuracy with a baseline in

the form of external power or current metering device data, we
correspond it to comparison with direct measurement group.
Such a device can be an ordinary multimeter [20] or a special
equipment like, for example, Monsoon [14], [5], [6]. Accuracy
is estimated as a relative difference between framework and
equipment data. Note that baseline scenario organization for
this group is similar to the direct measurement approach in
framework building (see RQ1). A significant limitation of
this technique is also the similar — usage of an external
meter comes at a price of estimating only the total power
consumption of a test device without breaking it down by
hardware components, and therefore intercomponent compar-
ative analysis may be limited and require specific experimantal

setup or even impossible. This accuracy estimation technique
is used both for direct measurement and model-based.

Another way to assess accuracy of a newer framework is to
compare it with an already existing tool which is considered
to be a baseline. Once again accuracy is a relative difference
between frameworks. Several studies match themselves against
a PowerTutor framework [31], [22], while one of the studies
compares the proposed framework with Appscope [42]. While
such comparisons allow researchers to evaluate measurement
accuracy with respect to the few existing solutions, lack of
homogenity in baseline framework selection indicates that
there is no universally accepted accuracy standard.

As stated above, several studies fell into several groups at
the same time. For example, in some studies a comparison is
made both with real measurements and with other frameworks
[19], [35], [42]. One interesting take on this approach is
described in Saksonov [26] where a derivable energy profile
is compared to the default Android Power Profile4 and direct
measurements.

Based on this we conclude that such two-factor estimation
process provides better context of actual framework accuracy.
Complete lack of accuracy assessment strongly indicates a
study of a subpar quality.

TABLE IV
MEASUREMENT ACCURACY EVALUATION GROUPS

Comparison group Number of papers
Real measurements 18

Another tool (framework, power model) 13
None 17

F. RQ6: What units of measurements are used in experiments
with a particular framework and what is measured?

Code energy consumption measure using a framework can
be expressed in different terms. For example, recall equation
2. With the direct approach total energy is the most obvious
way to estimate consumed energy. However when voltage is
constant amount of consumed Ampere-hours is as informative
as total energy. Likewise, if power reads are regular their
amount and distribution contain all necessary information.
Similar idea is also frequently used in model-based approach
for estimating CPU power usage [53]. Moreover, the same
value can be presented with varying degree of accuracy. For
example, under some experimental setups energy may be
better measured in µJ than in mJ or J for a more conclusive
results. Therefore lack of homogenity in result presentation
among the listed frameworks can be explained.

Table V aggregates the characteristics measured in the listed
studies and distributions of the corresponding measurement
units. Among absolute characteristics power and energy were
most often measured with their values presented in mW and J,
respectively, current, voltage and electric charge are estimated
less often. In specific cases higher accuracy measurement was

4An XML file detailing power characteristics of smartphone components
provided by its manufacturer.



used with µW for power [47], and nJ for energy [28]. However,
some studies are not precise in terminology, in particular
difference in battery charge is also labeled as consumed energy
[44].

It is not uncommon to estimate specific energy calculated
per unit of device operation. Examples include instructions
[43], MHz of processor, screen inch or dB of speakers [32],
bits of transmitted traffic [29].

Relative quantities are also encountered in the listed studies,
although rarely. Banerjee et al. [49] introduce a measure
reflecting the energy efficiency of the application for a certain
time period. Dong, Lan and Zhong [41] measure energy
consumption in percentages relative to the total energy con-
sumption of the system.

Jung, Kim and Cha [45] organize their measuring process
using both absolute and relative quantities. The percentage
of screen brightness, the percentage of processor utilization
and its frequency, the strength of Wi-Fi and 3G signals in
dBm were measured along with many other characteristics of
a device energy behavior.

Overall, about 65% of the listed studies report a single
quantity, in other studies two or more are reported.

TABLE V
MEASURED CHARACTERISTICS

Quantity Number of papers Accuracy distribution
Power 21 mW — 14, W — 6, µW — 1
Energy 22 J — 12, mJ — 7,

kJ — 1, µJ — 1, nJ — 1
Current 3 A — 2, mA — 1
Voltage 2 V — 1, mV — 1

Electric charge 3 mAh — 2, mAms — 1

G. RQ7: How do frameworks deal with metering hardware
frequency being considerably lower than CPU frequency?

This RQ was included at later stages of data extraction
process as a reaction to the following phenomena.

Modern CPUs including systems on a chip like smartphones
or tablets operate at frequencies of several GHz. While the
operating voltage for a CPU is more or less constant5, the
current it draws can vary tremendously. When multiple cores
are working, it is higher than in the case of a single core
working. Entire CPU or even each of its cores may potentially
work at different frequencies with different corresponding cur-
rent, changing dynamically — this process is called Dynamic
Voltage Frequency Scaling (DVFS). Such changes in drawn
current may appear at frequencies of at least MHz range.

On the contrary metering hardware in the listed works
operates at considerably lower frequencies. Maximum fre-
quency of 100 KHz is found in Wilke et al. [9], [10], but
the bulk of studies uses multimeters operating way below

5For Li-ion and Li-pol batteries commonly used in modern smartphones
voltage drops slightly between 90% and 20% of charge, but it is largely
insignificant drop. Electronic devices can in fact safely operate in a range of
voltages, so only a significant drop in voltage after 20% of charge results in
functional degrade.

10 KHz. As amperemeters average variable current between
synchronization impulses, power spikes of higher frequencies
may be smoothed out to levels of measurement errors and pass
undetected. Therefore it is important to understand if studies
dealing with direct measurement approach frameworks or di-
rect measurement baseline comparison alter their methodology
to address this issue.

We’ve identified 10 frameworks that in one way or another
acknowledge it:

• Mittal et al. [5], Dolezal and Becvar [32], Saksonov [26],
Pandiyan and Wu [28] turn off DVFS completely or set it
to a more controlled mode of operation, so CPU current
draw is at least more predictable and consistent.

• Hung et al. [38], Yoon et al. [6], Zhang et al. [7] include
CPU frequency data as an additional input for total energy
consumption estimation.

• Couto et al. [11], Li and Gallagher [18] adjust test running
time to be comparable to metering hardware frequency.

• Larsson and Stigelid [34] adjust metering frequency to
test running time. We include this study with caution
though, as authors access Android API and not an internal
meter itself, therefore frequency of API calls might be
unrelated to frequency of internal meter readings.

We conclude that the issue is not widely acknowledged, but
it can be alleviated at least to an extent both by configuring
the test device and by properly setting up experiment. We
suggest that testing those measures for adequacy in a real-
life multicore scenario with threads created and destroyed
regularly and at high frequency is an open challenge.

IV. STUDY LIMITATIONS

One of the main issues when conducting SLR is to find all
relevant studies to include. We used automatic search system
(Google Scholar) and therefore our search is as efficient and
thorough as this service is. While the query term ”energy
efficiency” allowed us to find a good amount of relevant
studies, we admit that in some of the additionally included
articles it was absent. There is a probability that we missed
some other relevant studies not using this term in the text.

Additionally several months passed since our original search
and article publication, so there is also a possibility of some
newer articles published after summer 2019 being missed in
our study.

It is also possible that we missed to group some articles,
although we don’t think there’s a high probability to it. We
assume our merge process was reliable enough as an idea to
merge [16] and [17] into a single group came initially from
their common institution of origin despite completely different
sets of authors.

Another limitation was a selective quality control of a
data extraction process. In some cases particular studies were
handled by a single researcher with extracted data being well-
written and not raising questions, so other researchers relied
on this data instead of original study. Such process could
introduce errors in extracted data due to misunderstanding of
a study.



V. CLASSIFICATION OF SOME COMMERCIAL POWER
PROFILERS

As we prepared this article, a frequently asked question
was how to relate results obtained from SLR to a number
of commercially available power profilers used in practical
Android development. While comparative accuracy overview
is out of the scope of this article, we think it is useful to apply
framework classification obtained in RQ1 to those profilers.
Our goal here is to help practitioners better understand their
intended use cases. The list is definitely not exhaustive, but
those were the most frequently mentioned profilers.

Trepn Power Profiler [58] is a tool developed by Qualcomm
which is no longer supported. It is a direct measurement
framework using internal meter, and therefore its energy
consumption data is as accurate as the meter itself is. This
issue was acknowledged by developers and a list of accurate
devices was compiled [59].

BatteryHistorian [60] is a tool for background system in-
formation aggregation in Android OS. Not only it provides
power drain information but also statistics of runtime system
events like Wi-Fi scans or wakelocks. Being classified as a
direct measurement framework with internal meter, it displays
energy consumption as percentage of battery charge which is
a victim to battery degradation. A noticable drop in battery
charge usually requires a significant amount of computations
and/or peripherals work, therefore this value is not suitable for
short time experiments, for example, those that run only for
several seconds.

Android Studio Energy Profiler [61] shows energy con-
sumption as a real-time graph in relative units. Regretfully,
there is virtually no documentation on the model itself, but
after analyzing the information obtained from various sources
(such as StackOverflow [62]) and experimenting with tool
itself we came to the conclusion it is a working time model-
based solution. It aggregates various system events, assigns
them weights and gives a resulting relative power drain metric.
While it is granular enough to be used for energy refactorings
efficiency estimation, we have concerns if its ”one-size-fits-
all” model is representative of real smart devices hardware
energy consumption.

VI. CONCLUSIONS AND FUTURE WORK

The results of our study indicate that there are various
approaches to measure application energy consumption in An-
droid OS with some frameworks utilizing external equipment
to gather necessary data and others using previously calibrated
models. While there are merits to all of those approaches it
is difficult to compare framework accuracy with one another
based on the studies themself as there is no uniform accuracy
estimation methodology presented in the listed publications.

Even if one is going to compare frameworks experimen-
tally, only a handful of studies have their source code or
sample application openly available which considerably limits
framework representation for such analysis. What’s worse,
code repositories look mostly abandoned, and framework start-
up documentation is scarce. We conclude that under these

circumstances accuracy comparison between approaches is
currently extremely hard to undertake.

On a brighter side, these frameworks are reported to be
used. To our knowledge only a PowerTutor framework [7] was
able to evolve further and became a broadly used application,
while some of the frameworks were documented to be used
internally as a tools for higher level research projects [21],
[11].

A number of devices supported by existing frameworks is
large, so even if a practitioner would write a framework itself,
test device itself is not a limiting factor. A set of method-
ological practices and techniques was established to improve
measurement accuracy, and even relatively low frequency of
hardware equipment compared to measured device can be
offset by smart experimental design, although we think that
there are still open questions in this area.

We’ve also shown that our proposed classification is useful
to analyze possible use cases for commercially available power
profilers targeting Android OS.

Results of our study affected design decisions and helped to
continue developent of our own tool for energy consumption
metering for Android OS - a working time model-based
Navitas framework6. From the beginning it was conceived as
an open-sourced framework which could be used in different
scenarios, and one of possible applications we’re developing is
a plugin for Android Studio IDE. Its development, evaluation
and application for energy refactorings is a focus for future
work.

ACKNOWLEDGMENT

Authors would like to thank Lanit-Tercom company for
hosting our research project as part of its Summer School’19.

REFERENCES

[1] Marko Milijic, “29+ Smartphone Usage Statistics: Around the World in
2020,” https://leftronic.com/smartphone-usage-statistics/, 2019, [Online;
accessed 14-January-2020].

[2] C. Sahin, F. Cayci, I. Manotas, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
2012 1st International Workshop on Green and Sustainable Software,
GREENS 2012 - Proceedings, 06 2012.

[3] S. O’Dea, “Share of global smartphone shipments by operating sys-
tem from 2014 to 2023,” https://www.statista.com/statistics/272307/
market-share-forecast-for-smartphone-operating-systems/, 2019, [On-
line; accessed 14-January-2020].

[4] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” vol. 2, 01 2007.

[5] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, ser.
Mobicom ’12. New York, NY, USA: Association for Computing
Machinery, 2012, p. 317–328. [Online]. Available: https://doi.org/10.
1145/2348543.2348583

[6] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Applica-
tion energy metering framework for android smartphones using kernel
activity monitoring,” in Proceedings of the 2012 USENIX Conference on
Annual Technical Conference, ser. USENIX ATC’12. USA: USENIX
Association, 2012, p. 36.

6https://github.com/Stanislav-Sartasov/
Navitas-Framework/



[7] L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in 2010
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), Oct 2010, pp. 105–114.

[8] X. Li and J. P. Gallagher, “Fine-grained energy modeling for the source
code of a mobile application,” in Proceedings of the 13th International
Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services, ser. MOBIQUITOUS 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 180–189. [Online].
Available: https://doi.org/10.1145/2994374.2994394

[9] C. Wilke, S. Götz, and S. Richly, “Jouleunit: A generic framework
for software energy profiling and testing,” in Proceedings of the 2013
Workshop on Green in/by Software Engineering, ser. GIBSE ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 9–14.
[Online]. Available: https://doi.org/10.1145/2451605.2451610

[10] C. Wilke, “Energy-aware development and labeling for mobile applica-
tions,” Ph.D. dissertation, 03 2014.

[11] M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Greendroid: A tool for analysing power consumption in the android
ecosystem,” in 2015 IEEE 13th International Scientific Conference on
Informatics, Nov 2015, pp. 73–78.

[12] M. Couto, “Monitoring energy consumption in android applications,”
2014.

[13] M. Couto, T. Carção, J. Cunha, J. Fernandes, and J. Saraiva, “Detecting
anomalous energy consumption in android applications,” 10 2014, pp.
77–91.

[14] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. De Lucia, “Petra: A software-based tool for estimating the energy
profile of android applications,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), May 2017,
pp. 3–6.

[15] ——, “Software-based energy profiling of android apps: Simple, effi-
cient and reliable?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 103–114.

[16] M. Feghhi, “Multi-layer tracing of android applications for energy-
consumption analysis,” 2017.

[17] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle, and E. Stroulia, “The
power of system call traces: Predicting the software energy consumption
impact of changes,” in Proceedings of 24th Annual International Con-
ference on Computer Science and Software Engineering, ser. CASCON
’14. USA: IBM Corp., 2014, p. 219–233.

[18] X. Li and J. Gallagher, “An energy-aware programming approach for
mobile application development guided by a fine-grained energy model,”
05 2016.

[19] R. W. Ahmad, A. Naveed, J. J. P. C. Rodrigues, A. Gani, S. A. Madani,
J. Shuja, T. Maqsood, and S. Saeed, “Enhancement and assessment
of a code-analysis-based energy estimation framework,” IEEE Systems
Journal, vol. 13, no. 1, pp. 1052–1059, March 2019.

[20] R. Ahmad, A. Gani, S. h. Ab hamid, A. Naveed, K. Ko, and J. Rodrigues,
“A case and framework for code analysis-based smartphone application
energy estimation,” International Journal of Communication Systems,
vol. 30, 11 2016.

[21] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C.
Campbell, and S. Romansky, “Greenminer: A hardware based
mining software repositories software energy consumption framework,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, ser. MSR 2014. New York, NY, USA: Association
for Computing Machinery, 2014, p. 12–21. [Online]. Available:
https://doi.org/10.1145/2597073.2597097

[22] M. Tuysuz, M. Uçan, and R. Trestian, “A real-time power monitoring
and energy-efficient network/interface selection tool for android smart-
phones,” Journal of Network and Computer Applications, vol. 127, 11
2018.

[23] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating android
applications’ cpu energy usage via bytecode profiling,” in 2012 First
International Workshop on Green and Sustainable Software (GREENS),
June 2012, pp. 1–7.

[24] U. Bareth, “Simulating power consumption of location tracking algo-
rithms to improve energy-efficiency of smartphones,” in 2012 IEEE 36th
Annual Computer Software and Applications Conference, July 2012, pp.
613–622.

[25] T. Kamiyama, H. Inamura, and K. Ohta, “A model-based energy profiler
using online logging for android applications,” in 2014 Seventh Inter-
national Conference on Mobile Computing and Ubiquitous Networking
(ICMU), Jan 2014, pp. 7–13.

[26] A. Saksonov, “Method to derive energy profiles for android platform,”
2014.

[27] H. Sahar, A. Bangash, and M. Beg, “Towards energy aware object-
oriented development of android applications,” Sustainable Computing:
Informatics and Systems, vol. 21, 11 2018.

[28] D. Pandiyan and C. Wu, “Quantifying the energy cost of data movement
for emerging smart phone workloads on mobile platforms,” in 2014
IEEE International Symposium on Workload Characterization (IISWC),
Oct 2014, pp. 171–180.

[29] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p.
225–238. [Online]. Available: https://doi.org/10.1145/2307636.2307658

[30] W. Oliveira, R. Oliveira, F. Castor, B. Fernandes, and G. Pinto, “Rec-
ommending energy-efficient java collections,” in 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), May
2019, pp. 160–170.

[31] B. Westfield and A. Gopalan, “Orka: A new technique to profile
the energy usage of android applications,” in 2016 5th International
Conference on Smart Cities and Green ICT Systems (SMARTGREENS),
April 2016, pp. 1–12.

[32] J. Dolezal and Z. Becvar, “Methodology and tool for energy consump-
tion modeling of mobile devices,” in 2014 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW), April 2014,
pp. 34–39.

[33] Y. Hu, J. Yan, D. Yan, Q. Lu, and J. Yan, “Lightweight energy
consumption analysis and prediction for android applications,” Science
of Computer Programming, vol. 162, 05 2017.

[34] M. Larsson and M. Stigelid, “Energy efficient data synchronization in
mobile applications : A comparison between different data synchroniza-
tion techniques,” Ph.D. dissertation, 08 2015.

[35] L. M. Fischer, L. B. d. Brisolara, and J. C. B. d. Mattos, “Sema: An
approach based on internal measurement to evaluate energy efficiency
of android applications,” in 2015 Brazilian Symposium on Computing
Systems Engineering (SBESC), Nov 2015, pp. 48–53.

[36] S. Lee, C. Yoon, and H. Cha, “User interaction-based profiling system
for android application tuning,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
ser. UbiComp ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 289–299. [Online]. Available: https://doi.org/10.
1145/2632048.2636091

[37] X. Chen and Z. Zong, “Android app energy efficiency: The impact of
language, runtime, compiler, and implementation,” in 2016 IEEE In-
ternational Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing
and Communications (SustainCom) (BDCloud-SocialCom-SustainCom),
Oct 2016, pp. 485–492.

[38] S. Hung, F. Liang, C. Tu, and N. Chang, “Performance and power
estimation for mobile-cloud applications on virtualized platforms,” in
2013 Seventh International Conference on Innovative Mobile and Inter-
net Services in Ubiquitous Computing, July 2013, pp. 260–267.

[39] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb 2017, pp. 115–126.

[40] K. Kapetanakis and S. Panagiotakis, “Efficient energy consumption’s
measurement on android devices,” in 2012 16th Panhellenic Conference
on Informatics, Oct 2012, pp. 351–356.

[41] M. Dong, T. Lan, and L. Zhong, “Rethink energy accounting
with cooperative game theory,” in Proceedings of the 20th Annual
International Conference on Mobile Computing and Networking, ser.
MobiCom ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 531–542. [Online]. Available: https://doi.org/10.
1145/2639108.2639128

[42] S. Lee, W. Jung, Y. Chon, and H. Cha, “Entrack: a system facility for
analyzing energy consumption of android system services,” 09 2015, pp.
191–202.



[43] Y. Chung, C. Lin, and C. King, “Aneprof: Energy profiling for android
java virtual machine and applications,” in 2011 IEEE 17th International
Conference on Parallel and Distributed Systems, Dec 2011, pp. 372–379.

[44] Donghwa Shin, Kitae Kim, Naehyuck Chang, Woojoo Lee, Yanzhi
Wang, Qing Xie, and M. Pedram, “Online estimation of the remaining
energy capacity in mobile systems considering system-wide power
consumption and battery characteristics,” in 2013 18th Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan 2013, pp. 59–64.

[45] W. Jung, K. Kim, and H. Cha, “Userscope: A fine-grained framework
for collecting energy-related smartphone user contexts,” in 2013 Inter-
national Conference on Parallel and Distributed Systems, Dec 2013, pp.
158–165.

[46] S. Tsao, C. Kao, I. Suat, Y. Kuo, Y. Chang, and C. Yu, “Powermemo:
A power profiling tool for mobile devices in an emulated wireless
environment,” in 2012 International Symposium on System on Chip
(SoC), Oct 2012, pp. 1–5.

[47] G. Metri, “Energy efficiency analysis and optimization for mobile
platforms,” 2014.

[48] X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou, “E-android: A new
energy profiling tool for smartphones,” in 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), June 2017, pp.
492–502.

[49] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA:
Association for Computing Machinery, 2014, p. 588–598. [Online].
Available: https://doi.org/10.1145/2635868.2635871

[50] D. Li, C. Sahin, J. Clause, and W. G. J. Halfond, “Energy-directed test
suite optimization,” in 2013 2nd International Workshop on Green and
Sustainable Software (GREENS), May 2013, pp. 62–69.

[51] K. Walcott-Justice, “Maue: A framework for detecting energy bugs from
user interactions on mobile applications,” 2016.

[52] H.-J. Kim, J. Kyong, and S.-S. Lim, “A systematic power and perfor-
mance analysis framework for heterogeneous multiprocessor system,”
Journal of IEMEK, vol. 9, pp. 315–321, 12 2014.

[53] “Power Profiles for Android,” https://source.android.com/devices/tech/
power, 2019, [Online; accessed 14-January-2020].

[54] Monsoon Solutions, Inc., “High voltage power monitor,” https://www.
msoon.com/online-store, 2019, [Online; accessed 18-August-2019].

[55] “Android 10 for Developers,” https://developer.android.com/about/
versions/10/highlights, 2019, [Online; accessed 14-January-2020].

[56] “Application forward compatibility.” [Online]. Available: https://
developer.android.com/guide/topics/manifest/uses-sdk-element.html#fc

[57] “Distribution dashboard.” [Online]. Available: https://developer.android.
com/about/dashboards

[58] “Trepn Power Profiler,” https://developer.qualcomm.com/forums/
software/trepn-power-profiler, 2019, [Online; accessed 14-January-
2020].

[59] “Which mobile devices report accurate system power consumption?”
https://developer.qualcomm.com/forum/qdn-forums/software/
trepn-power-profiler/28349, 2013, [Online; accessed 14-January-2020].

[60] “Analyze power use with Battery Historian,” https://developer.android.
com/topic/performance/power/battery-historian, 2020, [Online; accessed
14-January-2020].

[61] “Inspect energy use with Energy Profiler,” https://developer.android.
com/studio/profile/energy-profiler, 2019, [Online; accessed 14-January-
2020].

[62] “Energy consumption on Android Studio Pro-
filer,” https://stackoverflow.com/questions/52647045/
energy-consumption-on-android-studio-profiler, 2018, [Online;
accessed 14-January-2020].


