
Successive Cancellation Permutation Decoding of
Extended BCH codes

Nikolai Iakuba and Peter Trifonov
ITMO University

{nyakuba, pvtrifonov}@itmo.ru

Abstract—BCH codes are used in many applications, including
optical transport networks, flash memory and video broadcast-
ing. This paper introduces soft decision permutation decoding
algorithm for extended BCH codes based on it’s representation
as polar codes with dynamic frozen symbols. The proposed
algorithm outperforms bounded distance hard decision decoding
and provides flexible tradeoff between performance and decoding
complexity.

I. INTRODUCTION

Bose-Chaudhuri-Hocquengham (BCH) codes are still ex-
tensively used in many practical applications, such as optical
transport networks, flash memory and video broadcasting. A
BCH code with constructive minimum distance δ can be
decoded using bounded distance hard decision decoders, which
can correct t = ⌊ δ−1

2 ⌋ errors.
Several one-pass schemes of Chase decoding were proposed

[1], which evaluate error-locator polynomials for all test vec-
tors using a single pass of the Berlekamp’s algorithm. A good
overview of various soft decision algebraic decoding methods
developed for BCH codes is given in [2].

Other soft decision decoding methods based on Viterbi and
ordered statictics decoding algorithms can provide maximum-
likelihood decoding at cost of substantial increase in decoding
complexity [3], [4].

In this paper a soft-input decoding algorithm based on
successive cancellation decoding for primitive extended BCH
codes is presented. It uses the representation of extended
BCH codes as polar codes with dynamic frozen symbols,
and employs permutation decoding techniques to enhance
performance.

The proposed decoding algorithm is based on the successive
cancellation list decoder developed in [5] for polar codes, and
provides a flexible tradeoff between decoding performance
and complexity. Simulations show, that the proposed decoder
performs better than hard-decision decoder, however it does
not guarantee bounded distance decoding of BCH codes.

II. BCH AND REED-MULLER CODES

In this paper we consider extended primitive narrow-sense
BCH codes (eBCH codes) over F2. Generator polynomial
of a BCH code of length n = 2m − 1 with constructive
minimum distance δ has roots α, α2, . . . , αδ−1, where α
denotes primitive element of GF(2m).

Hence, the check matrix of eBCH(2m, k, d ≥ δ) code is
defined as a binary image of the matrix

H =

1 1 1 1 ... 1
0 1 α α2 ... αn−1

...
...

...
...

...
...

0 1 αδ−2 α2(δ−2) ... α(n−1)(δ−2)

0 1 αδ−1 α2(δ−1) ... α(n−1)(δ−1)

 , (1)

where all linearly dependent rows are eliminated.
It can be seen that BCH codes are closely related to Reed-

Muller and polar codes. Polar (n, k) code is defined as a set
of vectors

C =
{
un−1
0 A⊗m | un−1

0 ∈ Fn
2 , ui = 0, ∀i ∈ F

}
, (2)

where A = (1 0
1 1), ⊗m denotes m-times Kronecker product of

the matrix A with itself, and F , |F| = k denotes set of frozen
symbols, which depends on a transmission channel.

A Reed-Muller code of length 2m and order r can be defined
as a special case of polar codes:

RM(r,m) =
{
un−1
0 A⊗m | ui = 0, ∀i : wt(i) < m− r

}
,
(3)

where wt(i) denotes Hamming weight of the index.
Both polar and Reed-Muller codes can be decoded using

successive cancellation (SC) algorithm. Suppose, that the
codeword of (n = 2m, k) polar (or Reed-Muller) code
cn−1
0 = un−1

0 A⊗m is transmitted through the channel W with
transition probabilities W (y|x), and the noisy vector yn−1

0 is
passed to the decoder.

The decoding algorithm is based on recursive computation
of transition probabilities

Wi(y
n−1
0 , ui−1

0 |ui) ,
∑

un−1
i+1 ∈Fn−i−1

2

1

2n−1

n−1∏

i=0

W (yi|ui). (4)

At the receiver end symbols ûφ, φ = 0, . . . , n − 1 can be
estimated one by one:

ûφ =

{
argmaxuφ∈F2

Wφ(y
n−1
0 , ûφ−1

0 |uφ), φ 6∈ F
0, φ ∈ F . (5)

Due to the recursive structure of the matrix A⊗m encoding
and decoding can be done in O(n log n) operations.

A. Successive cancellation list decoding algorithm

Unfortunately, SC decoding of polar codes of moderate
lengths leads to rather poor performance, since the estimates
ûφ are computed without taking into account frozen symbols

Copyright© 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

ui, i > φ, i ∈ F . However, performance of the SC algorithm
can be enhanced by considering several possible paths ûn−1

0

in the code tree.
This approach is used in the successive cancellation list

(SCL) decoding algorithm introduced by Tal and Vardy [5].
Interestingly, the same idea was described earlier by Dumer
and Shabunov in their work [6] devoted to the decoding of
Reed-Muller codes. Below we revise the min-sum version of
the SCL algorithm.

The SCL decoder successively extends L vectors ûφ
0 of

equal length trying to maximize their score

M(ûφ
0 , y

n−1
0) =

φ∑

i=0

τ(ûi, S
(i)
m (ûi−1

0 , yn−1
0)), (6)

where

τ(u, S) =

{
0, if (−1)u = sgn(S)

−|S|, otherwise
(7)

is the penalty function. S
(i)
m (ûi−1

0 , yn−1
0) denotes the log-

likelihood ratio given by

S
(2φ)
λ (û2φ−1

0 , yn−1
0) = sgn(a) sgn(b)min(|a|, |b|),

S
(2φ+1)
λ (û2φ

0 , yn−1
0) = (−1)û2φa+ b,

(8)

where n = 2m−λ, a = Sφ
λ−1(û

2φ−1
0,e + û2φ−1

0,o , y
n/2−1
0),

b = S
(φ)
λ−1(û

2φ−1
0,o , yn−1

n/2−1), and S
(i)
0 = logW(yi|0) −

logW(yi|1). Here ûφ
0,o and ûφ

0,e denote subvectors of ûφ
0

consisting of elements on odd end even indices respectively.
The list size L defines the complexity O(Ln log n) of the
decoding.

B. Dynamic frozen symbols

It was shown in [7], that any (n = 2m, k, d) code with check
matrix H can be represented as a polar code with dynamic
frozen symbols. Let denote Am = A⊗m, where A = (1 0

1 1).
Since A−1

m = Am, it is possible to choose matrices V and
W , such that H = V AT

m and cn−1
0 HT = un−1

0 WV T = 0.
Hence, some symbols ui, i ∈ F can be set to predefined linear
functions of previous symbols, i.e.

uji =
∑

s<ji

Vi,sus, 0 ≤ i < n− k, (9)

where V ∈ Fn−k×n
2 is a constraint matrix and ji is the

maximal index of the non-zero element of the row Vi,−.
Encoding can be done by evaluation of cn−1

0 = un−1
0 WAm,

where W ∈ Fn×n
2 ,WV T = 0 is a precoding matrix.

Note, that for eBCH(2m, k, d > δ) code the number of
dynamic frozen symbols of weight t equals to the total number
of elements of weight t in cyclotomic classes, containing
α, α2, . . . , αδ−1 (see Theorem 2 [7]). This theorem provides
an empiric observation that representation of a eBCH code as a
polar code leads to relatively good set F , therefore successive
cancellation decoding may be applied to decode eBCH code.

III. PROPOSED APPROACH

Observe, that automorphism group of Reed-Muller codes
contains general affine group [8]. In other words, it can
be shown that any permutation of symbols in a codeword
π(x) = Mx + b, where x is a binary representation of a bit
index (coordinate), and M is non-singular matrix, defines an
automorphism of a Reed-Muller code.

It was proposed in [6] to initialize the SCL decoder with
several permutations of a codeword to further enhance decod-
ing performance. We propose to apply this idea to the decoding
of eBCH codes.

Let consider a eBCH(n, k, d) code C and its check matrix
H defined as it was shown in equation (1). Consider a permu-
tation taken from automorphism group of the corresponding
Reed-Muller supercode R, C ⊆ R. This permutation applied
to H defines an equivalent code C′, which may not be equal
to C, although C′ ⊆ R. Since C′ is also included in R,
representations of C and C′ as polar codes will have similar
sets of frozen symbols F . For instance, Theorem 2 is still
valid for equivalent codes obtained that way, and performance
of successive cancellation decoding doesn’t differ much.

The algorithm Decode illustrates the proposed method.
Main parameters of the algorithm are list size L, and the
set of permutations P = {π0, . . . , πl} of size l. Note that
each permutation of P also defines permutation on the check
matrix H of the considered eBCH code. Hence, permutation
may share different sets of frozen symbols F and different
constraint matrices V .

In line 1 the constraint matrix V (i) and set of frozen symbols
F (i) are evaluated for each permutation πi as it was described
in section II-B. Permuted input vector of log-likelihood ratios
S0 = (S

(0)
0 , . . . , S

(µn−1)
0) is used to initialize paths with

indices i = 0, . . . , l − 1 in line 4. In line 5 list U is filled
with these paths.

The list U consists of triplets 〈M, ûφ−1
0 , i〉, which define

paths considered by the decoder on iteration φ. Here M
denotes a path score, ûφ−1

0 is a vector of bits estimated on
previous phases, and i is a permutation index.

The main decoding loop starts with line 6. In line 9 values
S
(i)
m (ûi−1

0 , yn−1
0) are computed according to (6)–(8), and set

of continuations Ũ is constructed.
Function GetBestPaths(U , L) returns L continuations with

highest scores from the set U . Selected continuations are
passed to the next decoding iteration.

The decoder terminates when phase φ = n is reached, and
path ûn−1

0 ∈ U with the highest score is returned.
The complexity of the proposed algorithm is determined by

SCL decoding and equals to O(Ln log n).

IV. CHOOSING THE SET OF PERMUTATIONS

Decoding performance of the algorithm described in previ-
ous section highly depends on the initial set of permutations
P passed to the decoder. Unfortunately, we have no analytic
way to construct P , although one may use greedy approach
to form P by choosing permutations one by one.

Procedure Decode(L,P,S0)
input : list size L of the decoder,

set of permutations P = {π0, . . . , πl},
log-likelihood ratios S0 = (S

(0)
0 , . . . , S

(µn−1)
0)

output: estimated bits ûn−1
0

1 for i← 0 to l − 1 do
(V (i),F (i))← GetConstraintMatrix(πi)

2 U ← ∅
3 for i← 0 to l − 1 do
4 InitPath(Permute(S0, πi), i)
5 U ← U ∪ {〈0, ǫ, i〉}

// (score, path, permutation index)

6 for φ← 0 to n− 1 do
7 Ũ ← ∅ // list to be sorted

8 foreach (M, ûφ−1
0 , i) ∈ U do

9 S ← CalcS(ûφ−1
0) // penalty

10 if φ ∈ F (i) then
11 b← GetFrozenBit(ûφ−1

0 , V (i))

12 Ũ ← Ũ ∪
{
〈M + τ(b, S), (ûφ−1

0 , b), i〉
}

13 else
14 Ũ ← Ũ ∪

{
〈M + τ(0, S), (ûφ−1

0 , 0), i〉
}

15 Ũ ← Ũ ∪
{
〈M + τ(1, S), (ûφ−1

0 , 1), i〉
}

16 U ← GetBestPaths(Ũ , L)

17 〈M, ûn−1
0 , i〉 ← GetBestPaths(U , 1)

18 return PermuteInverse(ûn−1
0 , πi)

The automorphism group of Reed-Muller codes is too large
to test all possible permutations. Recall, that we consider
permutations π(x) = Mx+ b, where M is non-singular.

Observe, that some permutations are equivalent in terms of
successive cancellation decoding performance. That is, some
permutations may only permute the order of computation of
(8) and not change values of penalties computed at each
phase of the list decoding algorithm. These permutations were
described by Bardet et al. in [9] and have form π(x) = Tx+b,
where T is non-singular lower triangular matrix.

For the purpose of searching good set of permutations for
the list decoding algorithm we propose to restrict the set of
possible permutations to the set of permutations π(x) = Mx,
which are not equivalent in terms of successive cancellation
decoding. Two permutations π1, π2 we call equivalent if
π1(x) = Tπ2(x), where T is non-singular lower triangular
matrix.

This number is still too large to brute force every possible
permutation, therefore we propose to pick permutations at
random. Each permutation is generated in the following way.
Let start with the zero permutation matrix M of size m. First
row of M is generated at random out of 2m−1 possible non-

zero binary vectors. Second row of M is generated such that
it doesn’t end in the same column as the first row. Third row
shouldn’t end in the same columns as first and second rows
and so on. The total number of possible permutations therefore
is reduced to

∏m
i=1 2

i − 1.
We start with a single permutation, which corresponds to

the standard bit ordering of the check matrix H . That is, the
binary representation of the second row in (1) corresponds to
the vector (0, 1, 2, . . . , 2m − 1).

Other permutations are chosen iteratively: for a fixed signal
to noise ratio Nmax permutation matrices are generated at ran-
dom, than the permutation leading to smallest error probability
of the proposed list decoding algorithm is added to P . Updated
set P is used in searching for the next permutation.

V. NUMERIC RESULTS

Performance of the proposed algorithm was measured de-
pending on the list size L and number of initial permutations
l. Figures 1, 2 were obtained by simulation of transmitting
106 codewords of eBCH(256, 155, 28) code through additive
Gaussian (AWGN) channel with binary phase-shift keying
(BPSK) modulation. Permutations for the considered code
were obtained by simulation with L = 64, Nmax = 1000
and Eb/N0 = 5.5 dB. Curves entitled “hard” and “uncoded”
illustrate FER of bounded distance hard decision decoding and
transmission of uncoded data respectively.

Figure 1 illustrates the dependence of error probability on
the list size L. It can be seen, that the proposed algorithm
outperforms bounded distance decoder even on the list size
L = 64 approximately by 0.125 dB. It can be seen, that
performance gain grows almost linearly with increase of the
list size: performance curve shifts to the left by ≈ 0.25 dB
when L doubles.

Figure 2 illustrates the dependence of error probability on
the size of permutation set P . It can be seen, that the most
significant gain is obtained by employing two permutations,
further increase of the set P provides significantly smaller
gain. Moreover, large set P may lead even to performance
degradation, since all permutations are processed within a
single list, and in average each permutation “occupies” some
fraction of available paths, which is limited.

Summing up, permutation techniques can provide substan-
tial performance gain, although this gain is determined mostly
by the list size L. Performance gain grows linearly, while L
increases exponentially.

VI. CONCLUSION

To conclude, the proposed soft decision decoding algorithm
for eBCH codes provides performance gain compared to
bounded distance decoding. The proposed algorithm is based
on the representation of eBCH codes as polar codes with
dynamic frozen symbols, and uses SCL decoding with list
size L to jointly decode several permutations of an input noisy
vector. Decoding complexity is defined by the list size L and
equals to O(Ln log n). Appropriate choice of permutations can
sufficiently improve decoding performance, and can be done
using greedy algorithm.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 3 3.5 4 4.5 5 5.5 6

F
E

R

Eb/N0, dB

L 64, l 6
L 128, l 6
L 256, l 6
L 512, l 6

L 1024, l 6
hard

uncoded

Figure 1: Performance of the SCL permutation decoding with
different list size L

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 3 3.5 4 4.5 5 5.5 6

F
E

R

Eb/N0, dB

L 256, l 1
L 256, l 2
L 256, l 3
L 256, l 4
L 256, l 5
L 256, l 6

hard
uncoded

Figure 2: Performance of the SCL permutation decoding with
different number of permutations l

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and
Higher Education of Russian Federation, project (Goszadanie)
no. 2019-0898.

REFERENCES

[1] Y. Wu, “Fast chase decoding algorithms and architectures
for reedsolomon codes”, IEEE Transactions on Informa-
tion Theory, vol. 58, pp. 109–129, 1 2012.

[2] N. Kamiya, “On algebraic soft-decision decoding algo-
rithms for BCH codes”, IEEE Transactions on Informa-
tion Theory, vol. 47, pp. 45–58, 1 2001, ISSN: 1557-9654.

[3] C. Choi and J. Jeong, “Fast and scalable soft decision
decoding of linear block codes”, IEEE Communications
Letters, vol. 23, pp. 1753–1756, 10 2019.

[4] T. L. Tapp, A. A. Luna, X.-A. Wang, and S. B. Wicker,
“Extended hamming and bch soft decision decoders for
mobile data applications”, IEEE Transactions on Com-
munications, vol. 47, pp. 333–337, 3 1999.

[5] I. Tal and A. Vardy, “List Decoding of Polar Codes”,
IEEE Transactions on Information Theory, vol. 61,
pp. 2213–2226, 5 2015.

[6] I. Dumer and K. Shabunov, “Soft-decision decoding of
Reed-Muller codes: Recursive lists”, IEEE Transactions
on Information Theory, vol. 52, pp. 1260–1266, 3 2006.

[7] P. Trifonov and V. Miloslavskaya, “Polar Subcodes”,
IEEE Journal on Selected Areas in Communications,
vol. 34, pp. 254–266, 2 2016, ISSN: 1558-0008.

[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of
Error-Correcting Codes. North Holland, 1983, p. 782,
ISBN: 9780444851932.

[9] M. Bardet, V. Dragoi, A. Otmani, and J. Tillich, “Alge-
braic properties of polar codes from a new polynomial
formalism”, 2016 IEEE International Symposium on In-
formation Theory (ISIT), pp. 230–234, 2016.

