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Abstract. Threats due to payment-related frauds are always a pri-
mary concern for financial institutions (FIs), often leading to huge
losses and impacting consumer experience. To combat emerging
frauds and improve the system’s robustness, FIs need an efficient
system to detect fraud while authorizing payments. The biggest chal-
lenge in developing a fraud detection system is a high degree of class
imbalance between fraudulent and legitimate transactions. Recently,
Generative Adversarial Networks (GANs) are employed as an over-
sampling technique to augment the dataset with synthetic minority
samples.

In this paper, we present a systematic study to train GANs for
synthetic fraud generation, demonstrating improved classifier perfor-
mance detecting fraud. Training of GANs is conducted in various set-
tings, including min-max objective and with or without auxiliary loss
discriminating synthetic fraud and real fraud from non-fraud sam-
ples. Auxiliary loss is obtained using contrastive loss or triplet loss.
Quality of trained GANs is estimated by evaluating the lift in clas-
sifier performance when trained with dataset augmented with syn-
thetic fraud. Further, the effect of Discriminator Rejection Sampling
(DRS) is studied in synthetic sample selection used for training data
augmentation. The performance comparison of different settings pro-
posed in this study is evaluated using a publicly available Credit-Card
dataset and showed an absolute improvement of up to 6% in Recall
and 3% in precision. We hope this paper will help advance the ap-
plicability of GANs with a practical insight into the research that has
been done on this topic so far and open doors to interesting future
research direction.

1 INTRODUCTION

Credit card has become a ubiquitous method for online payment.
Consequently, the increase in more sophisticated fraudulent transac-
tions is alarming. The fraudulent transactions affect the user level and
business level, resulting in financial loss and customer trust. Banks
and fintech companies need an efficient system to monitor the mas-
sive volume of transaction logs and detect the frauds[6, 27]. How-
ever, it should not decline legitimate transactions affecting consumer
experience.

The commonly used pipeline for the fraud detection system em-
ploys a binary classifier to distinguish samples of fraud transactions
from the legitimate ones [26, 12, 36]. The fraudulent transactions are
rare; they represent a tiny fraction of activity within an organization,
resulting in class imbalance. The class imbalance issue makes the bi-
nary classifiers biased towards the majority class and hence makes
the fraud detection a challenging problem [23, 22, 7]. A similar high
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degree of class imbalance is observed in a variety of real-world ap-
plications like medical diagnosis, information retrieval system, bioin-
formatics [31, 1, 34, 17, 21, 38, 39].

There exist several techniques for the class imbalance learning
[35, 24, 15, 36]. [30] has done a comparative study of several super-
vised and unsupervised machine learning algorithms to handle the
class-imbalance in credit card fraud detection. One of the solutions
to the class imbalance problem is to re-balance the training sets used
by the binary-classifier [2, 11, 21]. There exist several oversampling
techniques that have proved to be effective in handling class imbal-
ance. The commonly used methods are variants of SMOTE(Synthetic
Minority Oversampling Techniques) [9, 20, 8]. The SMOTE aims to
generate samples along the line between two samples of the minority
class. However, these methods generate synthetic samples based on
the existing samples in the dataset and fail to capture minority class
distribution. Hence can’t detect new fraudulent transactions.

Recently, Generative Adversarial Networks (GAN) [16, 29] have
received a lot of attention from the research community of credit card
fraud detection. Several works [14, 33, 5, 40] have shown the efficacy
of GAN for augmenting the dataset with synthetic minority (fraud)
samples. However, mode collapse is a common phenomenon that oc-
curs with GANs. Mode collapse happens when GAN generates lim-
ited varieties of samples and hence fails to capture the whole data
distribution. To overcome the issue of mode collapse, researchers
[33, 5] have used different architectures of GAN like WGAN[3],
Least Square GAN[28], Relaxed WGAN[19] to augment the dataset
and have shown an improvement in the classifier’s performance. On
the other hand, [40] has trained a GAN based architecture to gener-
ate complementary samples of the majority class(legitimate transac-
tions). They have used a combination of two WGANs and two Au-
toencoders and use a three-phase training process for fraud detection.

In this paper, a comprehensive study of several existing techniques
to train GANs in fraud detection scenario is conducted along with
highlighting their merits and demerits. We have shown experiments
on conditional WGAN-GP for the generation of fraudulent data con-
ditioned separately on class labels for fraud samples obtained from
k-means clustering or non-fraud samples from the training set. It is
observed that just using GANs may lead to boundary distortion hence
leading to a drop in the performance for the majority class (legiti-
mate transactions). We have proposed an auxiliary loss using Triplet
Network and Siamese Network separately on top of the WGAN-GP
model to learn more discriminative fraud samples. Further, the ef-
fect in the quality of synthetic samples is studied when the WGAN-
GP network is trained in an end to end fashion along with a neural
network-based classifier and found to be useful for dealing with the
boundary distortion problem. All the models are simple architecture
with few parameters and are trained end-to-end for the generation of
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fraudulent data as compared to [40]. We have further shown the ap-
plicability of Discriminator Rejection Sampling [4] to improve the
quality of the synthetic fraud samples used for data augmentation. In
the later section, we have highlighted an open problem in data aug-
mentation, which is how to decide on the number of synthetic fraud
samples for data augmentation.

The paper is organized as follows. In section 2, we have described
several configurations used to train the WGAN-GP model for im-
proved data augmentation. The structural details of these configura-
tions are provided in section 3 along with the dataset description,
and other experimental settings followed. Section 4 compares the
performance of all the models and visualizes the synthetic samples
obtained for data augmentation. It also talks about the effect of in-
creasing the number of synthetic samples in the augmented set on
the classifier’s performance. Finally, section 5 concludes the article
and provides a possible future research direction.

2 METHODOLOGY
2.1 Fraud detection framework
Fraud Detection is formulated as a binary classification problem. For
each transaction record in the dataset, we have a feature vector and
corresponding class label (fraud or non-fraud).The commonly used
pipeline for credit card fraud detection using generative models[13,
33, 14, 5] is described below:

1. Train a GAN to generate the fraudulent samples from the train set.
2. Augment the training set with the synthesized fraud samples.
3. Train a classifier on the original and augmented training set sepa-

rately and compare the performances.

2.2 Data augmentation using different
configurations of WGAN-GP

2.2.1 WGAN-GP

We use a WGAN-GP [18] architecture to oversample from the fraud-
ulent (minority) class. It has a Generator module G : Z −→ X pa-
rameterized by θG and a discriminator module D : X −→ [0, 1]
parameterized by θD. Where, Z is a set of random noise vector sam-
pled from unit Gaussian distribution N (0, 1) and X is a set of the
feature vector of the fraud samples. Below are the loss functions to
train the Discriminator(D) and Generator(G) module in WGAN-GP:

LD =
1

n

n∑
i=1

(DθD(x̃fi)−DθD(xfi) + λ(||∇x̃DθD(x̃fi)||2 − 1)2

(1)
where, x̃fi = tx̂fi + (1− t)xfi with 0 ≤ t ≤ 1
.

LG =
1

n

n∑
i=1

(−DθD(GθG(zi))) (2)

Where, x̂fi and xfi are the generated and real fraud samples re-
spectively and z is a random noise sample.

2.2.2 Conditional WGAN-GP

We add conditions to WGAN-GP [5] , as shown in Figure 1, and ex-
tend the input space of the model. G : Z×Y −→ X
D : X×Y −→ [0, 1]
Where Y is the set of conditions corresponding to the features in
X set. We conduct two separate experiments with different condi-
tional variables, one with class labels of the fraud samples obtained
using k-means clustering and second with the non-fraud samples in

the training set. The loss functions for the Discriminator(D) and Gen-
erator(G) module in conditional WGAN-GP are described below:

LD =
1

n

n∑
i=1

(DθD(x̃fi ,yfi)−DθD(xfi ,yfi)+

λ(||∇x̃DθD(x̃fi ,yfi)||2 − 1)2
(3)

LG =
1

n

n∑
i=1

(−DθD(GθG(zi,yfi),yfi)) (4)

Figure 1. Conditional GAN

2.2.3 WGAN-GP with Siamese Network

Siamese Network [25] uses Contrastive divergence loss to minimize
the distance between positive pairs and maximize the distance be-
tween negative pairs. We use it on top of the underlying WGAN-GP
model, as shown in Figure 2 to ensure the distribution learned by the
generator for the fraud samples does not overlap with the non-fraud
samples. We train both the network in an end-to-end fashion.

Siamese Network has two Neural Network with the shared weights
and maps the fraud (real and generated) and non-fraud samples into
a shared space such that the distance between them is preserved. We
pass the pairs of generated, and real fraud samples as positive pairs
i.e., (x̂f ,xf , l = 1)and generated fraud samples and real non-fraud
samples as negative pairs i.e., (x̂f ,xnf , l = 0) to the Siamese Net-
work S parameterized by θS and train the generator and Siamese
network on Contrastive divergence loss function as defined below:

LS =
1

n

n∑
i=1

(li)
1

2
d(SθS(x̂fi), SθS(xfi))

2+

(1− li)
1

2
{max(0,m− d(SθS(x̂fi), SθS(xnf i)))}

2

(5)
where, d is the euclidean distance and m is the margin hyperparam-
eter.

2.2.4 WGAN-GP with Triplet Network

The Triplet Network has three Neural Network with the shared
weights and maps the fraud (real and generated) and non-fraud sam-
ples into a shared space such that the distance between them is pre-
served using triplet loss function. The objective of the triplet loss[32]
is to minimize the distance between the generated fraud samples
and real fraud samples and simultaneously maximize the distance
between the generated fraud samples and real non-fraud samples;
hence, it is a max-margin framework.

We pass the triplet generated fraud samples, real fraud samples,
and real non-fraud samples, i.e., (x̂f ,xf

+,xnf
−) to the Triplet Net-

work T parameterized by θT and train the generator and Triplet Net-
work on Triplet loss function as defined below:

LT =
1

n

n∑
i=1

max(0,m+ d(TθT(x̂fi), TθT(xfi))

− d(TθT(x̂fi), TθT(xnf i)))

(6)

where, d is the euclidean distance and m is the margin hyperparame-
ter.



Figure 2. Different configurations used to train WGAN-GP architecture.

2.2.5 WGAN-GP with Classifier

We train the WGAN-GP model with a binary Classifier, as shown
in Figure 2. We pass the generated fraud samples along with the
real non-fraud samples into a classifier C parameterized by θC and
train the generator on the classification loss. In this configuration,
we have two different classifiers in the network, C tries to distin-
guish samples from fraudulent (minority) and non-fraudulent (ma-
jority) transactions. Whereas, another classifier, discriminator(critic)
D, tells how far is the learned distribution from the true distribution.
This configuration of WGAN-GP and classifier ensures that the gen-
erated fraud samples do not overlap with the real non-fraud samples
and, simultaneously, follow the distribution of the minority(fraud)
class. We use binary cross-entropy loss to train the classifier and the
generator module of the architecture, as defined below:

L =

n∑
i=1

− log(CθC(x̂fi))− log(CθC(xnf i)) (7)

2.2.6 WGAN-GP with Discriminator Rejection Sampling

In the standard GAN, it is a common practice to discard the dis-
criminator after training and generators are used for synthetic data
generation. It is believed that after training a GAN, the generator
perfectly captures the underlying data distribution. However, recent
studies[4, 37] have shown that the GANs do not converge to the true
data distribution, and the trained generator still generates samples
that can be easily distinguished by the discriminator from the real
sample. They have also shown that the discriminator captures the
data distribution more closely than the generators. Hence, we should
consider the distribution defined by both the generator and discrimi-
nator for better quality samples.

We use Discriminator Rejection Sampling(DRS) method [4], to
sample from the distribution learned by the discriminator pd(x). We
use DRS as a post-processing step, where we use the trained discrim-
inator D∗ to improve the synthetic fraud samples from the trained
generator G∗.

3 EXPERIMENTAL SETUP
3.1 Dataset description
All the experiments uses publicly available Credit-Card dataset [11].
The dataset has transactions for two days done in September 2013
by the European cardholders. There are 284807 transactions in the
dataset, out of which 492 are fraudulent transactions, i.e., the frauds
account for 0.172% of the total transactions. 31 features represent the
transactions, namely ’Amount,’ ’Time,’ ’Class,’ and 28 other numer-
ical features obtained from PCA (V1, V2,... V28). Feature ’Time’

has time elapsed from the first transaction, and ’Class’ has label 1
for fraudulent transactions and 0 otherwise. There is no missing val-
ues in the dataset. We use Log transformed ’Amount’ values to give
more normal distribution and normalize the features between 0 and
1. We divide the dataset into a train and test set such that the train set
has 70% of the transactions in the dataset i.e., 199364 transactions,
and the test set has 30% of the transactions in the dataset i.e., 85443
transactions. 344 and 148 fraud samples account for 0.173% of the
total transactions in the training and testing set, respectively.

3.2 Architecture details
Lift in the performance of XGBoost classifier [10] is used as a metric
to quantify the quality of generated synthetic samples when used for
augmenting the training set. To evaluate various settings of WGAN-
GP, we train it on different loss functions with the aim of generating
more realistic fraud data. The architectural information of all the dif-
ferent configurations used is described below:

1. WGAN-GP
The generator module of the WGAN-GP model has four fully con-
nected layers with 30, 128, 256, 512 neurons, respectively, Relu is
the activation function used after each layer except the last layer.
The generator accepts the random noise of dimension 30 as input.
The discriminator has a series of 5 fully connected layers with 30,
512, 256, 128, 1 neurons respectively in each layer, Relu is used
as the activation function in all the layer except the last layer has
Sigmoid activation. We train both the discriminator and generator
module together on the loss function defined in Equation 1 and
2, respectively. We set LAMBDA = 10.0 in the Gradient-Penalty
term. We iterate over the discriminator module 5 times per genera-
tor module update. We train the model using Adam Optimizer for
10000 epochs with mini-batch of size 64 and learning rate 2e-4.
We observe the convergence of the model at around 4000 epoch.

2. Conditional WGAN-GP
We use a k-means clustering algorithm to divide the fraud dataset
into 2 clusters and label the fraud samples as 0 or 1 accordingly.
We pass the labels of fraud samples as a condition to the WGAN-
GP along with random noise as input and train the WGAN-GP
model with the same architecture as defined above. To form pairs
of fraud and non-fraud samples, we randomly pick samples from
the respective classes and pair them. We trained the model on the
loss function defined in Equation 3 and 4 and observed the model’s
convergence at 4000 epoch.

3. WGAN-GP with Triplet Network
We form a triplet of the synthetic samples obtained from the gen-
erator with the real fraud samples and real non-fraud samples and
pass them to the Triplet Network. The network has three neural



networks with shared weights. There are three fully connected
layers with 30, 30, and 2 neurons, respectively. Each layer has
a Relu activation except for the last layer. It uses Triplet loss to
simultaneously ensure that the positive pair of generated and real
fraud samples are close and the negative pair of generated fraud
and real non-fraud samples are apart by some margin. We set the
hyperparameter margin to 1 in the Triplet loss function defined in
the Equation6. We trained the triplet network with the WGAN-GP
model end-to-end using the Adam optimizer for 5000 epochs and
observed the convergence at around 3500 epoch.

4. WGAN-GP with Siamese Network
We use the same architecture of the WGAN-GP model, as men-
tioned above. We pair the synthetic samples obtained from the
generator with the real fraud samples and real non-fraud samples
to form positive and negative pairs simultaneously and pass it to
the Siamese Network. The Siamese Network has two neural net-
works with shared weights. There are three fully connected layers
with 30, 30, and 2 neurons, respectively. Each layer has Relu acti-
vation except for the last layer. It uses Contrastive divergence loss
defined in Equation 5 to ensure that the positive pair of generated
and real fraud samples are close and some margin separates the
negative pair of generated fraud and real non-fraud samples. We
set the hyperparameter margin to 1 and eps to 1e-9 in the Con-
trastive loss function defined in the Equation5. We train the entire
network end-to-end using the Adam optimizer for 5000 epochs
and observe the model saturation at around 3000 epochs.

5. WGAN-GP with Classifier
In this experiment, we add a binary classifier module on top of the
WGAN-GP model. We pass the generated fraud samples from the
generator to the classifier module along with the real non-fraud
samples from the training set. The classifier then distinguishes be-
tween the fraud and non-fraud samples. The classifier has three
fully connected layers with 30, 30, and 2 neurons in each layer,
respectively. All the layers have Relu activation, and the last layer
has Softmax activation. We train the classifier and generator pa-
rameters on the loss function defined in Equation 7 using Adam
optimizer with a learning rate of 0.001. Initially, we train only
the WGAN-GP model for 1000 epochs. Later we train the entire
network end-to-end for 5000 epochs and observe the model satu-
ration at around 2500 epochs.

4 RESULTS
4.1 Performance metrics
In credit card fraud detection, the class of interest is the fraud (mi-
nority) class. Here, the cost of false positive and false negative are
not equal. An ideal system should precisely identify the fraud sam-
ples while reducing the number of false positives. Accuracy is the
ratio of samples correctly classified by the classifier, i.e. (TP+TN)/N.
However, for the imbalanced dataset, accuracy is not the correct mea-
sure of the classifier’s performance. We pay attention to the cat-
egorical prediction ability. Hence we report, Precision(specificity),
Recall(sensitivity) and F1-Score to evaluate the performance of the
model. Precision refers to the percentage of your results that are rel-
evant, i.e., TP/(TP+FP). Recall refers to the percentage of total rele-
vant results correctly classified by your algorithm. i.e., TP/(TP+FN).
F1- score combine both the precision and recall metrics into one, and
it is the harmonic mean of Precision and Recall.

The results of all the different configurations of WGAN-GP em-
ployed to solve the task of credit card fraud detection is illustrated
in Table 1. First, we train an XGBoost classifier on the training set’s
transactions and test the performance on the testing set. Next, we use

Augmentation Method Precision Recall F1-Score
Without Augmentation 0.90 0.76 0.83
WGAN-GP 0.88 0.81 0.84

Conditional
WGAN-GP

Labels from
k-means 0.88 0.81 0.84

Non-Fraud
Samples 0.86 0.81 0.82

WGAN-GP + Triplet Network 0.89 0.82 0.85
WGAN-GP + Siamese Network 0.88 0.82 0.85
WGAN-GP + Classifier 0.92 0.78 0.84
WGAN-GP + DRS 0.90 0.82 0.86
WGAN-GP + Classifier + DRS 0.93 0.79 0.85

Table 1. Performance of XGBoost classifier trained on augmented set
obtained from different configuration of WGAN-GP model.

a WGAN-GP model to learn the distribution of fraud samples and
used the trained generator of the WGAN-GP architecture to over-
sample the minority class (fraud) data and augment the training set.
We further train an XGBoost classifier on the augmented training set
and report the performance on the testing set. We can observe from
Table1 that there is an absolute improvement of 5% in Recall in the
XGBoost Classifier trained on the dataset augmented by WGAN-GP
model as compared to the original dataset.

We also use the conditional WGAN-GP model to generate fraud
samples based on some conditions like class labels and non-fraud
samples. Fraud samples are clustered into k classes using k-means
clustering and corresponding cluster IDs are assigned as labels. In
our experiment fraud samples are classified into 2 clusters. We pass
these labels to the conditional WGAN-GP model as conditions to
generate fraud samples. From Table 1, it can be observed that the per-
formance of the classifier remains the same when trained on the aug-
mented dataset obtained from the WGAN-GP model conditioned on
labels from k-means clustering. In another setting where conditional
WGAN-GP model is trained to learn the transformation of non-fraud
samples to fraud did not perform better leading to absolute drop of
2% in Precision as observed in Table 1. Further investigation is re-
quired to identify the performance drop as the model output do not
conform to our hypothesis where generating fraud from non-fraud
samples should perform better.

The study proposed training of GANs with auxiliary loss func-
tions using triplet loss or siamese network loss for effective synthetic
data generation. Experimental results using both the loss function
demonstrated an improvement in Recall by 1%. However, an abso-
lute improvement of 2% and 1% can be observed in Precision with
Triplet and Siamese Network, respectively, as compared to the simple
WGAN-GP model. This further proves the benefits of incorporating
auxiliary loss along with existing WGAN-GP training.

In WGAN-GP with classifier, the generative module is trained on
two loss functions. The first loss corresponds to classifier which tries
to distinguish between the fraud and non-fraud samples and another
classification loss for discriminator that distinguish between the real
and generated fraud samples. These two classifier modules, in turn,
helps the generator to synthesize well-discriminative fraud samples
that follow the fraud class distribution. Table 1 shows an absolute
improvement of 3%in Precision and a reduction of 3% in the Recall
compared to the simple WGAN-GP model. However, as compared
to the XGBoost classifier trained on the original dataset, there is an
improvement of 2% in Recall and Precision.

The performance of the XGBoost classifier trained on the aug-
mented dataset depends on the quality of the generated fraud sam-
ples. Hence to improve the Recall, the generated fraud samples
should be well-discriminative than the non-fraud samples. Recent



studies [4, 37] have shown that the samples generated from the
trained generator are not similar to the real class samples, which dis-
criminator would have otherwise rejected easily. We employ the dis-
criminator rejection sampling method, proposed in [4]. The trained
discriminator is used to filter out the poor-quality samples from the
generator as a post-processing step and are used for training dataset
augmentation. Table 1 shows an absolute improvement of 2% in
Precision and 1% in Recall using discriminator rejection sampling
with WGAN-GP to augment the dataset over the simple WGAN-GP
model. However, compared to the XGBoost classifier trained on the
original dataset, the performance is similar in Precision with a 6%
absolute improvement in Recall.

A reduction in Precision may result in misclassification of legit-
imate transactions as fraudulent transactions, hence penalizing the
banks in terms of customer trust and comfort. From the previous
experiments, we have observed adding a classifier module on the
WGAN-GP model results in an improvement in Precision. To im-
prove the quality of samples injected into the augmented set, we
used Discriminator Rejection Sampling (DRS) for all the configu-
rations of the WGAN-GP model discussed above. With DRS on the
WGAN-GP model, we observe an absolute improvement of 2% and
1% in Precision and Recall over the simple WGAN-GP model. In
the case of the WGAN-GP+Classifier model, we observe an ab-
solute improvement of 1% in both the Precision and Recall. How-
ever, for WGAN-GP+Triplet Network and WGAN-GP+Siamese
Network model, no improvement was observed on applying DRS.

Figure 3. Samples generated from (a)WGAN-GP and
(b)WGAN-GP+Classifier model

4.2 Comparison of samples generated by different
models

A visualization of the distribution of fraud transactions learned by
the simple WGAN-GP model and the WGAN-GP+Classifier model
is shown in as shown in Figure 3. For this a 10000 syhnthetic fraud
samples are drawn from both the trained models and plotted it against
real fraud samples and 10000 real non-fraud samples from the train-
ing set. Figure 3 illustrates that the WGAN-GP model learns a class
boundary from the fraud samples and sample synthetic fraud data
from within the learned class boundary. Also, it can be observed that
these samples are not uniformly distributed but are generated from
the high population area. In the case of the WGAN-GP+Classifier
model, Figure 3 shows that the generated fraud samples are uni-
formly distributed and more spread out as compared to the simple
WGAN-GP model.

4.3 Effect of increasing the number of synthetic
samples on the classifier’s performance

There are 344 fraud samples in the training set, let us denote it by
Nf . We generate fraud samples in the multiples ([1/4, 1/2, 1, 2, 4, 8,
16, 32, 64, 128, 256, 512]) of Nf to augment the dataset and study
the effect on the classifier’s performance. The Table 2 and Figure

Figure 4. Effect of increasing generated fraud samples in the augmented
set

4 shows the effect of increasing the generated fraud samples(N ) in
the augmented set on the classifier’s performance. We report the val-
ues of performance metrics at Epoch 4100 for the WGAN-GP model
and Epoch 2000 for the WGAN-GP+Classifier model. From Table
2, we observe the best performance of the WGAN-GP model when
N = Nf , i.e., when the number of generated samples is equal to the
number of real fraud samples. And for the WGAN-GP+Classifier
model, the best performance is observed when N = 2Nf , i.e., when
the number of generated samples is equal to twice the number of
real fraud samples. Also, from Figure 4, we observe that as the num-
ber of generated fraud samples increases, the Recall of WGAN-GP
model increases, but Precision and F1-Score drops. However, for the
WGAN-GP+Classifier model, we can observe that the Precision and
Recall drops after 4Nf and Nf , respectively.

N WGAN-GP WGAN-GP+Classifier
Precision Recall F1 Score Precision Recall F1 Score

86 0.895 0.804 0.847 0.913 0.777 0.839
172 0.892 0.784 0.834 0.914 0.784 0.844
344 0.873 0.791 0.830 0.92 0.777 0.842
688 0.851 0.811 0.830 0.921 0.784 0.847
1376 0.811 0.811 0.811 0.926 0.764 0.837
2752 0.781 0.818 0.799 0.933 0.757 0.836
5504 0.753 0.824 0.787 0.925 0.75 0.828
11008 0.668 0.818 0.736 0.836 0.723 0.775
22016 0.541 0.845 0.660 0.886 0.736 0.804
44032 0.313 0.858 0.458 0.886 0.736 0.804
88064 0.193 0.865 0.316 0.886 0.736 0.804
176128 0.123 0.878 0.215 0.908 0.736 0.813

Table 2. Performance of XGBoost classifier as the number of generated
samples(N) is varied in the augmented set obtained from WGAN-GP and

WGAN-GP+Classifier model.

5 CONCLUSION AND FUTURE WORK
The paper presented a detailed study on applicability and effective-
ness of GANs. Various GANs variants along with ones proposed in
this study is compared to evaluate the efficacy of data augmentation
for downstream classification task. Among different training proce-
dures WGAN-GP when trained with a classifier in an end-to-end
fashion performed well as shown in our study improving both preci-
sion and recall of XGBoost based fraud classifier. Further we found
that Discrimiantor Rejection Sampling technique when applied for
selection of synthetic samples generated using WGAN-GP with clas-
sifier provided an incremental lift. Next we also demonstrated the
effect in the overall performance of fraud classifier with increase in
synthetic samples used for training data augmentation. We believe
the outcomes presented in this study would help readers in quickly
identify the right settings of GANs utilised in fraud space.

A promising future research direction is to experiment with Re-
inforcement Learning based algorithm to automatically identify the
quality and count of samples to be used for augmenting the training
dataset leading to improved performance
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