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Abstract— Social Manufacturing is a novel approach where
different members of a community can interact within a
cyber-physical social space in order to achieve specific and
personalized solution for manufacturing processes. In such
digital scenario, interactions, driven by information flows, can
be divided in different branches depending on the actors
involved in the whole process. One particularly critic branch
for such collective production, is the one that captures the
information related with product design, due to its direct
link with creativity. Here we show how active tools based
on Artificial Intelligence triggers artificial creativity that
can be used for the user capabilities augmentation. We
show how the use of deep generative models, based on
Variational Autoenconders, offers solutions for a particular
social manufacturing platform for furniture design combined
with additive manufacturing to drive the transition from a
digital framework to a real context.

I. INTRODUCTION
The co-creation of fully customized products can be

achieved though the exchange of data and processes between
members of a community [1], [2], [3], [4]. This is the essence
of social manufacturing (SM), a novel approach where
such data is shared within a cyber-physical social space
(CPSS) [5], [6], triggering massive decentralized co-creation
processes. As a collective phenomena, interactions define
behavior and emergent dynamics of the individuals and the
group [7], [8]. Such interactions can take place with the
environment but also among individuals of the community,
meaning an individual or cognitive component and a social
one of the information hold by the whole system. While
in a biological framework such information driven by
physical interactions is enconded in complex biochemical
networks [9], [10], [11], the way artificial agents interact
is usually sensed, digitalized and processed by hardware
and software, and through the use artificial intelligence
algorithms these interactions derives in artificial collective
behavior. Considering the digital social space defined within
a SM framework, the information that quantifies such
interactions comes from very different sources related with
the different actors involved in a manufacturing process.
Even in some cases, this information is embedded in the
actions taken by the members of the community, coming
from experiences out form the CPSS. Which results in a high
difficulty to extract information hidden in a space different
from that where cyber-physical interactions take place,
and that could be used by intelligent algorithms to drive
production strategies. With this in mind, one can visualize
the cyber-physical social space as a multidimensional one,
with multiple channels holding information flows in terms

of services (see 1), technology or design each of them with
different degree of explicitness regarding agent (community
member) knowledge. One key element within the SM
landscape is the so called prosumer, a consumer that
participates actively in social manufacturing assuming also
the role of a producer. The more involved the prosumers
(agents) get into the product manufacturing, the more
reach the final product results through self-organizing and
social-enabled mechanism. However, contrary to what would
be an ideal SM context, where all the members of a
community are pure prosumers, the current approaches to
SM shows the presence of customers and also services
providers in an independent way. In such scenario, the
symmetry conditions of the assumed roles distribution, or
the fact that all the actors might be not equally active, results
in a potential weakness of the whole SM workflow for the
emergence of a collective production.

In order to achieve such customization of products
based on collective behavior, one particularly critic channel
that captures the interactions within the CPSS is the one
composed by the information related with product design.
Such criticality comes not just from the above mentioned
risks regarding the possible absence of agents providing
such knowledge to the CPSS. But also from the intrinsic
difficulty to define variables that hold the essence of a
design, to represent it as information to be stored, shared and
customized. To overcome such issue Artificial Intelligence
provides different approaches. Specifically Deep Generative
Design tools such as Generative Adversarial Networks [12]
(GANs) and Variational Autoencoders [13] (VAE) have been
shown as powerful frameworks to provide solutions in a
wide range of complexity dimensional reduction problems
and generation [14], [15]. And more interestingly for the
scope of this work, they have also been reported as active
tools for 3D shapes generation [16] of specific products.
In this context. these kind of methods by training through
existing large 3D datasets such as Shapenet [17], manage
to encode, in terms of distributions, the values of the most
representative variables of certain family of shapes into what
is called a latent space. And introducing variational methods
they trigger the generation of new models based on the
information stored in the latent space. We propose the use of
this information captured in such latent space to overcome
the sparsity within the CPSS channel that holds information
in terms of product design.

In this work we present an active tool based on generative
modelling for augmented design to be developed within the
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Fig. 1: Cyber-physical social space for Social Manufacturing Different roles within Social Manufacturing Frameworks are projected
into an interation space (CPSS). In real frameworks most of the actors are not pure prosumers so that many different roles appears and
interact. From the interactions different information channels can be separated and summarized in three main branches (requirements,
constrains and preferences) to drive a model for a final customized product.

european project INEDIT [18]. The main goal of this project
is to build a Do it Together ecosystem to demonstrate the
potential of real SM approaches within Circular Economy
[19]. For that the INEDIT platform brings together a
very wide spectrum of stakeholders around the furniture
manufacturing providing four cross use cases: sustainable
wood panels manufacturing and 3D-printing of wood as a
disruptive approach [20], 3D printing of recycled plastic
and ‘smartification’. Keeping the as a central principle the
idea of designing globally and producing locally. The part
of our contribution to this project that we present in this
paper covers the augmentation of the design capabilities of a
potential user of the INEDIT platform. For that we developed
a VAE following the β-VAE approach [21], [22] developed
for a progressive processing of the information during the
training process of the network. We will show how our VAE
works and provide results for the creation of digital models
of furniture. Furthermore we provide real examples of such
outcomes obtained through additive manufacturing[23].

II. RESULTS AND DISCUSSION

For the development of the generative model, we used
a Variational Auto Encoder structure, adapted for 3D
convolutions, as shown in Figure 2. In the encoder section,
each stage comprises a 3D convolutional layer, a batch
normalization [24] and a Leaky ReLU activation [25]. The
convolutional layer uses a kernel of (4 x 4 x 4) with a stride
of two, therefore, decreasing the spatial dimensions while
increasing the number of filters. The final vector of features
is then reshaped into a tensor of size [n] and connected
with fully connected layers to the ”mean” and ”std” layers.

These two layers are used to conform a set of n Gaussian
distributions with mean and standard deviation given by the
output of the layers. These distributions are then randomly
sampled to conform the latent vector of the given input. In the
decoder, the reverse process is applied, using 3D Transposed
Convolutions with kernel size (4 x 4 x 4) and stride of two to
increase the spatial dimensions along the decoder, resulting
in a tensor of the same dimensions than the input tensor.

This architecture was trained in pytorch [26] using 3d
models of chairs, taken from the dataset Shapenet [17]
under the category ”chair”, and converted to a voxelized
representation of shape [32 x 32 x 32] via the library Kaolin
[27]. A total of 4 samples were used.

The loss function to minimize is a compound function
between Binary Cross-Entropy and Kullback-Leibler
divergence [28], adjusted with a gain proportional to the
epoch number, as shown in 1, with i being the epoch number,
yv the input value of each voxel and ŷv the predicted value
of each voxel. With this loss, we look that, at the beginning
of the training, the focal point of the optimization is the
reconstruction, meaning, the weights in the convolutional
layers. However, as the training advances, the loss gives
more weight to the disentanglement of the latent variables,
therefore optimizing the latent representation.

Loss =−
∑
v∈V

(yv log ŷv + (1− yiv) log(1− ŷv))

+ iβ

n∑
j=0

σ2
j + µ2

j − log(σj)− 1
(1)

This training procedure was performed for a different



Fig. 2: Network architectureThe network architecture. In blue: the input kernels and in green: the output kernels The figure is so wide
in order to hold also the printed models to compare with the outcome of the digital platform.

number of dimensions for the latent space and for different
number of epochs. We find that the optimal point that
minimizes both KL-divergence and reconstruction is n = 50
and Epochs = 100.

After the training, the samples were obtained by random
sampling the latent space with samples from a N(0, 1)
distribution. The voxelized representations were transformed
to a 3D mesh using the marching cubes algorithm [29], and
the artifacts of this transformation were removed using a
Laplacian smoothing operation [30] and a re-mesh filter.

Finally, the samples were 3D printed at 1:10 scale using
a consumer 3D printer with a wood-filled filament 1. The
results, while not being comparable to the fabrication of a
real-scale chair, demonstrate the possibility of manufacturing
complex shapes with a wood-like appearance, texture, touch
and smell.

III. CONCLUSIONS

We have developed a augmented design tool based on
Variational Autoencoders for its integration in a Social
Manufacturing platform. Specifically we have presented
a contextualization of our tool within the INEDIT
project framework as a co-creation landscape for furniture
manufacturing based on the Do it Together concept. The
presented approach, adapted from β-VAE model, will

1FormFutura Filaments: https://www.formfutura.com/

provide a powerful tool for designers but also a help tool for
users without any previous experience or expertise in design.
The results have shown how Variational Autoenconders
provide a robust method for creativity augmentation, which
might be a fundamental active tool to increase the knowledge
encoded in the CPSS. This works shows how Artificial
Intelligence might enhance the capabilities hidden in Social
Manufacturing frameworks.
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