
Fuzzy system as a method of controlling LEGO
Linefollower vehicle using C# programming language
Krzysztof Grzesicaa, Jakub Wadasa

a Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice

Abstract
In this article we present our implementation of intelligent system developed for a LEGO robot. We have built a robot which
is using sensors to trace the line and follow it. The model of tracing is based on fuzzy rules, which have been done to follow
the shape of a black line on the white background. The system was implemented using C# language for LEGO Mindstorm
elements. Results of our experiments show that the robot is able to follow various shapes of black lines.

Keywords
LEGO robot, Line detection, Fuzzy rules

1. Introduction
In many fields of industry and production various ro-
botics are applied to help in situations where the work
may be dangerous for humans or there is required high
precision at work. To start the research in such field
we have selected LEGO mindstorm elements. This rob-
ot model is easy to develop just by using simple bricks
in many shapes from the set. The set also provides
a programmable electronics with a variety of sensors.
On the other hand such approach is widely presented
in other literature, what gave us an inspiration to de-
velop our idea.

In [1] a model of LEGO blocks was used to work
with human gestures, where sensors were used to read
gestures and therefore take actions in mindstorm ele-
ments. In [2] was presented how to use such LEGO
models to help in first contact with machine intelli-
gence. Authors describe good practices when using
LEGO Mindstorm as a platform for programming ar-
tificial intelligence systems. As presented in [3] these
models also support creative thinking, especially when
we develop new algorithms that must be programmed
in a special way accepted by the LEGO Mindstorm
platform. There are various approaches to use pro-
gramming languages in developing such robots.

However the most necessary is tu use an optimal
library, which will support all necessary function that
provide optimal connection and configuration between
elements of the robot. In [4] was discussed how to se-

SYSTEM 2020: Symposium for Young Scientists in Technology,
Engineering and Mathematics, Online, May 20 2020
" krzygrz684@student.polsl.pl (K. Grzesica);
jakuwad985@student.polsl.pl (J. Wadas)
�

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

lect such libraries and optimize them for robotic con-
structions. Also some approaches are based on frame-
works, as proposed in [5] that frameworks are also
possible for other constructions based on arduino el-
ements, which provide similar possibilities of robotic
constructions. All these what we want to create de-
pends on our ability to develop the construction and
than to implement the control software. An interest-
ing discussion was given by [6, 7].

The other aspect of robotic models is to select a pro-
per decision support model. In many IoT constructions
we can find various approaches. In [8] was proposed
how to combine neural networks with rules in a form
of soft set table. While in [9] the fuzzy rule system
was implemented with neural networks to work in a
smart house environment. It is also very popular to
develop fuzzy rules working on images, as discussed
in [10]. Mechanical vehicle constructions also very
often benefit from artificial intelligence, both at con-
struction and simulation level, as proposed in [11, 12,
13, 14].

Our approach is using C# language to implement
control system based on fuzzy rules to first detect and
than follow the line. The LEGO Mindstorm robot is
using two servo-motors as accelerators of wheels con-
trolled by our developed artificial intelligence to fol-
low the line. our experiment shows that our construc-
tion is well defined and can follow even the complex
lines on the board.

2. Model
In this section we will describe how we have developed
the model both from programming side and thinking
model.

mailto:krzygrz684@student.polsl.pl
mailto:jakuwad985@student.polsl.pl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Vehicle construction

2.1. Project assumptions
The aim of this project was to build an artificial in-
telligence system based on fuzzy logic, which would
steer the vehicle used in LEGO Line-follower compe-
tition. Based on readings, the system must decide how
to change the speed of each engine, so that:

• The vehicle does not go off the road (A moment
when a black line is not between vehicle’s wheels
is considered going off the road)

• The vehicle goes as fast as possible

The robot is connected to computer via Bluetooth.
The robot sends raw readings and data to computer
where all necessary calculations are being performed.
Then, based on calculation results appropriate com-
mands from the computer are sent to robot.

2.2. Robot Construction
To accomplish that task we have built a vehicle using
LEGO parts. The robot is based on intelligent EV3
brick, it is equipped with two color sensors, which
measure the level of reflected light they emit. The ve-
hicle is driven by two independent engines which di-
rectly spin the wheels. The actual look of vehicle can
be seen in Fig. 1 and Fig. 2.

3. Mathematical Model

3.1. Normalization
Firstly, we must normalize the readings from color sen-
sors to negate the hardware differences. To do that we
must first calculate parameters 𝑃𝐿 and 𝑃𝑅 accordingly
as:

𝑃𝐿 = 100
𝑊𝐶𝐿 − 𝐵𝐶𝐿 (1)

Figure 2: The bottom of the vehicle

𝑃𝑅 = 100
𝑊𝐶𝑅 − 𝐵𝐶𝑅 (2)

Where 𝑊𝐶𝐿 and 𝐵𝐶𝐿 are accordingly, maximum and
minimum reading value of left sensor. 𝑊𝐶𝑅 and 𝐵𝐶𝑅
are maximum and minimum reading values of right
sensor. These values are obtained during setup con-
figuration. Reading output is determined using the fol-
lowing formula:

𝑟𝑒𝑎𝑑𝐿 = |(𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝐿𝑒𝑓 𝑡 − 𝐵𝐶𝐿) ∗ 𝑃𝐿 − 100| (3)

𝑟𝑒𝑎𝑑𝑅 = |(𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑅𝑖𝑔ℎ𝑡 − 𝐵𝐶𝑅) ∗ 𝑃𝑅 − 100| (4)

Where 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝐿𝑒𝑓 𝑡 and 𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑅𝑖𝑔ℎ𝑡 are respectively
raw vuales returned by left and right color sensor.
𝑟𝑒𝑎𝑑𝐿 and 𝑟𝑒𝑎𝑑𝑅 take values from 0 to 100, where 0
means total white, 100 - pure black.

After that, the resultant reading value meaning the
inclination of the road is calculated accordingly to the
following formula:

𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑟𝑒𝑎𝑑𝑅 − 𝑟𝑒𝑎𝑑𝐿
10 (5)

If both color sensors went off the road the variable
𝑟𝑒𝑎𝑑𝑖𝑛𝑔 i set to 10 or -10 depending on the side of road
the sensors are located.

10

Figure 3: Reading membership functions

Figure 4: Speed membership functions

3.2. Fuzzyfication
To determine grade of membership Bell shaped and
Linear functions are used. The formulas are as follows:

𝐵𝑒𝑙𝑙 =
{ 1

1+| 𝑥−𝑐𝑎 |2𝑏 , 𝑦 ⩽ 𝑥 ⩽ 𝑧
0 , 𝑥 < 𝑦 ∨ 𝑥 > 𝑧

(6)

𝐿𝑖𝑛𝑒𝑎𝑟 =
{

1 , 𝑥 < 0
0 , 𝑥 ⩾ 0 (7)

Where 𝑎, 𝑏 are parameters. Variables 𝑦 and 𝑧 are end-
points of interval. Variable 𝑐 stands for center of func-
tion. In our project 𝑏 = 2.5 and 𝑎 = 2.5 in all but
one membership function. The membership function
Straight uses 𝑎 = 1.5. The reading membership func-
tions can be seen in Fig.3, while speed membership
functions in Fig. 4.

Then, the resultant vehicle speed composed from
separate engines speeds is being calculated. In order to
determine it we calculate each engine’s grade of mem-
bership for all of speed membership functions and ac-
cordingly to fuzzy rules base shown in Tab. 1 we con-
duct necessary calculations.

Figure 5: Application window before configuration

Figure 6: Application window after configuration

Table 1
Speed base of rules

Left/Right rear slow medium fast
rear rear slow slow slow
slow slow slow medium medium

medium slow medium medium fast
fast slow medium fast fast

The results are being grouped by the rules they cor-
respond with and for each of rule we choose the biggest
value. Lets assume that the biggest value for rule slow
is 𝑢𝑤 , for medium - 𝑢𝑚 and for fast - 𝑢𝑓 . The final
resultant speed is obtained by using center of gravity
method defined as:

𝑠𝑝𝑒𝑒𝑑 =
𝑢𝑤 ∗ 𝑝𝑠 + 𝑢𝑚 ∗ 𝑝𝑚 + 𝑢𝑓 ∗ 𝑝𝑓

𝑢𝑤 + 𝑢𝑚 + 𝑢𝑓
(8)

where 𝑝𝑠 = 10, 𝑝𝑚 = 50 and 𝑝𝑓 = 90 are coefficients of
speed rules.

11

Table 2
Inclination base of rules

Speed/Reading HL EL S ER HR
fast HL HL S HR HR

medium HL EL S ER HR
slow HL EL S ER HR

HL - Hard Left, EL - Easy Left, S - Straight,
ER - Easy Right, HR - Hard Right

3.3. Deffuzyfication
The next step is to calculate the inclination, which con-
sists of resultant speed and resultant reading values.
In order to determine it we calculate resultant speed
grade of membership for all of speed membership func-
tions and resultant reading grade of membership for
all of reading membership functions. Then, accord-
ingly to fuzzy rules base shown in Tab. 2 we conduct
necessary calculations. The results are being grouped
by the rules they correspond with and for each of rule
we choose the biggest value. Lets assume that the big-
gest value for rule HL is 𝑢1, for EL - 𝑢2, for S - 𝑢3, for ER
- 𝑢4 and for HR - 𝑢5. The final inclination is obtained
by using center of gravity method defined as:

𝑖𝑛𝑐 = 𝑢1 ∗ 𝑝1 + 𝑢2 ∗ 𝑝2 + 𝑢3 ∗ 𝑝3 + 𝑢4 ∗ 𝑝4 + 𝑢5 ∗ 𝑝5
𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 + 𝑢5

(9)
where 𝑝1 = −100, 𝑝2 = −50, 𝑝3 = 0, 𝑝4 = 50, 𝑝5 = 100

are coefficients of inclination rules accordingly for HL,
EL, S, ER and HR.

Finally, the rule with the greatest inclination grade
of membership value is chosen. Depending on it, the
engines speeds are calculated and set. For Hard Left
(10) and (11), for Easy Left (12) and (13), for Straight
(14) and (15), for Easy Right (16) and (17) and for Hard
Right (18) and (19).

𝐿𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐
4 (10)

𝑅𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 (11)

𝐿𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 ∗ 1.5 (12)

𝑅𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 ∗ 2 (13)

𝐿𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 = 100 (14)

𝑅𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 = 100 (15)

𝐿𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 ∗ 2 (16)

𝑅𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 ∗ 1.5 (17)

𝐿𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐 (18)

Figure 7: Reading method

𝑅𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 = 𝑖𝑛𝑐
4 (19)

where 𝑖𝑛𝑐 is the inclination value calculated before.
In case of Easy Left and Easy Right if the 𝑖𝑛𝑐 value is
lesser than -50 or greater than 50, then it is set to 50.

4. Implementation
Let us now present the software we have done.

4.1. Application
Based on the mathematical model described above, we
have created a robot control application. The applica-
tion has a very simple graphical user interface, which
makes it user-friendly. In Fig. 5 and Fig. 6 application
window can be seen.

4.2. Program code
The program is written in 𝐶#. In addition to the stan-
dard .𝑁𝐸𝑇 libraries, the program uses the 𝐿𝑒𝑔𝑜.𝐸𝑣3
library for communication between the computer and
the robot. The program has been divided into classes
and appropriate methods.

Reading method This method is responsible for the
normalization of color sensor data. This method also
serve as a precaution against loosing the route by a
robot. Method code can be seen in Fig. 7.

HowTheRouteRuns method This method is a frag-
ment of the fuzzy system. It combines the route incli-
nation with the current vehicle speed and decides how
to react based on that data. A piece of the method code
is in Fig. 8.

Robot class This is the class which object repre-
sents vehicle instances in the program. The most im-
portant class fields and properties representing the state

12

Figure 8: HowTheRouteRuns method

Figure 9: Robot class

Figure 10: Go method

of the object can be seen in Fig. 9. 𝐵𝑟𝑖𝑐𝑘 class ob-
ject, which belongs to the 𝐿𝑒𝑔𝑜.𝐸𝑣3 library represents
the LEGO EV3 brick. 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 property represents
the state of connection between the program and the
robot. Fields 𝑙𝑒𝑓 𝑡𝑆𝑒𝑛𝑠𝑜𝑟 and 𝑟𝑖𝑔ℎ𝑡𝑆𝑒𝑛𝑠𝑜𝑟 store values
obtained from color sensors. Fields _𝑙𝑒𝑓 𝑡𝑀𝑜𝑡𝑜𝑟 and
_𝑟𝑖𝑔ℎ𝑡𝑀𝑜𝑡𝑜𝑟 store current motors speeds.

Go method This method belongs to the 𝑅𝑜𝑏𝑜𝑡 class.
The method is responsible for the robot’s movement.
It contains loop in which the fuzzy system makes cal-
culations, decides about the next move and finally ma-
kes that move by setting the power of motors. The full
code of the method can be found in Fig. 10.

ChooseTurn method This method belongs to the
𝑅𝑜𝑏𝑜𝑡 class. It is called in the loop described above.

Figure 11: ChooseTurn method

Figure 12: TurnHard method

Figure 13: Test route

The method is responsible for choosing the direction
in which the robot should go. The code for this method
is shown in Fig. 11.

TurnHard method This method also belongs to the
𝑅𝑜𝑏𝑜𝑡 class. It is responsible for updating the variables
representing the current motors power. The full code
of the method can be seen in Fig. 12. The 𝑅𝑜𝑏𝑜𝑡 class
also has 𝑇𝑢𝑟𝑛𝐸𝑎𝑠𝑦 and 𝐺𝑜𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡 methods whose
operations are analogous to the 𝑇𝑢𝑟𝑛𝐻𝑎𝑟𝑑 method.

13

Figure 14: A part of a test ride

5. Tests
In order to test how the vehicle performs we created a
test route (Fig. 13). The route is a 19-millimeter-wide
black line on a white background. It is quite compli-
cated due to a lot of 90◦ angle turns, it does not contain
crossroads though. The vehicle runs through the route
precisely but with little speed. It is worth mentioning
that the system is incredibly sensitive to any changes
in lightning and the non-uniformity of it. A part of a
test ride can be seen in Fig. 14.

6. Conclusion
Because of poor functioning of some of 𝐿𝑒𝑔𝑜.𝐸𝑉 3 li-
brary functions that our project was based on, the re-
sults were not as good as we had imagined. Commands
must have been initialized for a specified time amount
which led to delays and unstable movement of vehicle.
What is more, in order to work properly the program
had to use function 𝐷𝑒𝑙𝑎𝑦(), which stops the robot
suddenly for few milliseconds.

Considering that 𝐿𝑒𝑔𝑜.𝐸𝑉 3 library has not been up-
dated for 7 years and it’s author officially abandoned
the project, rewriting the whole project to 𝑅𝑜𝑏𝑜𝑡𝐶 lan-
guage seems to be the best way to improve program’s
performance, allowing the program to run on EV3 brick
itself. Apart from solving problems mentioned above,
that approach would also terminate problems connect-
ed with Bluetooth connection latency.

References
[1] L. I. Kovács, Gesture-driven lego robots, Acta

Universitatis Sapientiae, Informatica 11 (2019)
80–94.

[2] Á. Martínez-Tenor, A. Cruz-Martín, J.-A.
Fernández-Madrigal, Teaching machine learning
in robotics interactively: the case of rein-
forcement learning with lego® mindstorms,

Interactive Learning Environments 27 (2019)
293–306.

[3] N. L. Fanchamps, L. Slangen, P. Hennissen,
M. Specht, The influence of sra programming
on algorithmic thinking and self-efficacy using
lego robotics in two types of instruction, Inter-
national Journal of Technology and Design Edu-
cation (2019) 1–20.

[4] A. Spanò, A. Cortesi, Legodroid: A type-driven
library for android and lego mindstorms interop-
erability, Sensors 20 (2020) 1926.

[5] J. Vega, J. M. Cañas, Pybokids: An innova-
tive python-based educational framework using
real and simulated arduino robots, Electronics 8
(2019) 899.

[6] J. Wang, X. Du, H. Wang, Research & imple-
mentation of multitasking lego robots, in: 2019
IEEE 4th International Conference on Advanced
Robotics and Mechatronics (ICARM), IEEE, 2019,
pp. 655–659.

[7] R. Giuliano, G. Cardarilli, C. Cesarini, L. Di Nun-
zio, F. Fallucchi, R. Fazzolari, F. Mazzenga, M. Re,
A. Vizzarri, Indoor localization system based on
bluetooth low energy for museum applications,
Electronics (Switzerland) 9 (2020) 1–20.

[8] M. Woźniak, D. Połap, Soft trees with neural
components as image-processing technique for
archeological excavations, Personal and Ubiqui-
tous Computing (2020) 1–13.

[9] M. Woźniak, D. Połap, Intelligent home systems
for ubiquitous user support by using neural net-
works and rule based approach, IEEE Transac-
tions on Industrial Informatics (2019).

[10] G. Capizzi, G. Lo Sciuto, C. Napoli, D. Polap,
M. Woźniak, Small lung nodules detection based
on fuzzy-logic and probabilistic neural network
with bio-inspired reinforcement learning, IEEE
Transactions on Fuzzy Systems 6 (2020).

[11] J. T. Starczewski, P. Goetzen, C. Napoli, Triangu-
lar fuzzy-rough set based fuzzification of fuzzy

14

rule-based systems, Journal of Artificial Intel-
ligence and Soft Computing Research 10 (2020)
271–285.

[12] M. Woźniak, D. Połap, Hybrid neuro-heuristic
methodology for simulation and control of dy-
namic systems over time interval, Neural Net-
works 93 (2017) 45–56.

[13] G. Capizzi, F. Bonanno, C. Napoli, Hybrid neural
networks architectures for soc and voltage pre-
diction of new generation batteries storage, 2011,
pp. 341–344.

[14] F. Bonanno, G. Capizzi, C. Napoli, Some remarks
on the application of rnn and prnn for the charge-
discharge simulation of advanced lithium-ions
battery energy storage, 2012, pp. 941–945.

15

	1 Introduction
	2 Model
	2.1 Project assumptions
	2.2 Robot Construction

	3 Mathematical Model
	3.1 Normalization
	3.2 Fuzzyfication
	3.3 Deffuzyfication

	4 Implementation
	4.1 Application
	4.2 Program code

	5 Tests
	6 Conclusion

