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Abstract
This paper presents a comparison between two different types of classifiers, neural Network and KNN (k nearest neighbors)
. The object is to decide which one better handles recognising numbers, from zero to ten, that have been handwritten. In
this project we designed a program that analyses data from a database, and feeds this data to the classifiers, which in turn
analyse the input from the user and make a prediction based on the information gained from the training data. The aim is
to see whether there are any significant differences when it comes to the accuracy and speed of the learning processes. The
comparison will be made based on the accuracy of the predictions with different configurations and parameters. Both these
classifiers work in a different way and can be used efficiently for different purposes and this paper will present data that will
help decide whether either of these is better suited in this particular area.
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1. Introduction
Artificial neural networks are computing systems, whi-
ch are based on the anatomy of the human brain. The
brain is made up of billion of neurons, which are inter-
connected by quadrillions of connections, called syn-
apses, which allow the information to flow between
the neurons. Currently, because of the huge network
of connections, the human brain exceeds any super-
computer in terms of processing power. Its structure
can be used to create artificial networks, which use
artificially created neurons and synapses, which are
able to process information and make predictions [1,
2, 3] and guesses based on the knowledge gained [4,
5]. This process is known as Deep Learning and it is
widely used today in voice recognition, driver less cars
and can be found in devices we use every day, such as
smart phones or TVs [6]. In the process of deep learn-
ing, a computer model learns classification, directly
from data, in the form of images, sound or text. A well
constructed model can even exceed human ability.

KNN, or k nearest neighbors is a much simple algo-
rithm, that classifies new data based on a similarity
measure, usually a distance function, to the already
stored available cases [7]. The assumptions made by
these algorithm ,is that similar things exist close to
each other and it is most useful when that assumption
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is true.
The idea behind it, is that it can calculate straight-

line distance, also known as Euclidean distance, be-
tween the input data and all that data that is available
and which represents all the possible classes, that the
input can be classified as. It therefore relies on this
data set to be complete and would be unable to recog-
nize objects beyond what is already known to it.

There are many aproahes to classify text, by ranking
evaluation [8], convolutional features extraction [9] or
devoted benchmark [10]. This project aims to compare
these classifiers in the area of recognizing handwrit-
ten digits. This is an important area, as recognition
of handwriting is used in a variety of modern devices.
We will test different configurations of parameters for
both neural networks and KNN and hopefully see sig-
nificant differences in performances in terms of accu-
racy and speed.

1.1. Related works
These two classifiers have been compared in different
articles and areas of research. In one of them, they
have been used to monitor the conditions of machines,
by analyzing the vibration of journal-bearings. In this
research another technique, which is more commonly
used in this area, was also used for comparison. At
the end, the research has concluded that neural net-
work performed better in this particular task. Another
research, that will be mentioned is one where these
models where compared at classifying magnetic reso-
nance images (MRI). This is a very important area of
research, as MRI is not always easy to interpret by a
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Figure 1: Sigmoid function

human, and using automated analysis would increase
the probability of correct diagnosis. A special tech-
nique was used on the images, to extract most impor-
tant features, which were then fed into a feed forward
back propagation neural network and a KNN classi-
fier. In this particular research KNN came out on top
in terms of accuracy [11, 12, 13, 14, 15, 16]. As seen
by these examples of research, both neural network
and KNN can perform well in different conditions and
only by close comparison can we find out which one
performs better in a given area.

2. Mathematical model
For this project we needed various functions to modify
the data as it passed between the neurons. The func-
tion used to sum the inputs from the previous layer of
neurons looked as follows:

𝐼 𝑛𝑝𝑢𝑡 = 𝑋1 ⋅𝑊1 +𝑋2 ⋅𝑊2 +𝑋3 ⋅𝑊3 + ... +𝑋𝑛 ⋅𝑊𝑛 (1)

The ‘X’ represents the output from a given neuron
and ‘W’ is the weight attached to the synapse. After
the input has been weighted and summed, it is modi-
fied by the activation function. These functions act to
modify the input, so that the output from the model
can be interpreted and used as needed. The function,
that has been used in this project is the sigmoid func-
tion and it shown on the following graph. The graph
shows the function that is used to model the data:

𝑓 (𝑥) =

1

1 + exp(−𝑥)

(2)

The derivative, which is used later for back propa-
gation,is as follows:

𝑓
′
(𝑥) =

1

1 + exp(−𝑥)

⋅ (1 −

1

1 + exp(−𝑥)

) (3)

As seen on the graph the function only exists be-
tween 0 and 1 and it is used in models, that predict
probability as their output. This makes it ideal for this
project, as the aim is to produce a probability with
which the input resembles one of the digits. For the
back propagation algorithm we need to calculate the
error of the neurons to correctly modify the weights
of the synapses. For the last layer of neurons the fol-
lowing equation was used:

Δ𝑊 = 𝐿𝑅 ⋅ (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡) ⋅ 𝑓
′
(𝑥) ⋅ 𝑠𝑗 (4)

Here Δ𝑊
′ represents the change in weight, ‘LR’ is

the learning rate, which is chosen for the network,
𝑓
′
(𝑥) is the derivative of the activation function and

𝑠
′

𝑗
is the input from the j-th neuron from the previ-

ous layer. We have defined a gradient of error for each
neuron to help us with the above equation. For the last
layer it is calculated as follows:

𝑔𝑟𝑎𝑑 = 𝑓
′
(𝑥) ⋅ (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑜𝑢𝑡𝑝𝑢𝑡) (5)

For the other layers:

𝑔𝑟𝑎𝑑 = 𝑓
′
(𝑥) ⋅

𝑛

∑

𝑖=1

𝑤𝑖 ⋅ 𝑑𝑖 (6)

Here the sum of the weights is multiplied by the er-
ror gradient from i-th neuron, that is connected to the
current neuron. Based on the equations above we can
simplify the }Δ𝑊

′ to the following:

Δ𝑊 = 𝐿𝑅 ⋅ 𝑑 ⋅ 𝑠 (7)

For the KNN we have used the Euklidean distance
as the measure of similarity. For this we have used the
following equation:

𝐷(𝑋, 𝑌 ) =

√

(𝑋1 − 𝑌1)
2
+ ... + (𝑋𝑛 − 𝑌𝑛)

2 (8)

Here ‘X’ represents the known data and ‘Y’ repre-
sents the input. Based on the distances calculated the
algorithm, then calculates which class of objects ap-
pears the most in the ‘k’ closest neighbors. The value
of ‘k’ was decided after experimenting on different val-
ues.

3. Description of the proposed
system

The deep learning process of the neural network is
based on the idea of data being fed into the neurons
and modified, as it passes further along the different
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layers. In order to achieve this we have to create a
model, that uses various functions to modify the data
appropriately. We start with the building block of the
neural network, which is a neuron. The neuron re-
ceives information via synapses from the neurons that
are connected to it.

Each synapse has a weight attached to it, which is
initially generated randomly, when the synapse is first
created. The data, that comes into a neuron is weighted
using the previously described equation. This means
that the input depends on both the output of the pre-
vious neuron, as well as the weight of the synapse
that connects them. When all the inputs have been
summed, the data is then modified by the activation
function of the neuron. The function used in this project
in the sigmoid function, for the reasons described pre-
viously. The neurons within the network are orga-
nized through layers. The two layers,the first and the
last, are present in all neural networks. The middle
layers, known as hidden layers, are optional, but can
be added to improve the accuracy of the learning pro-
cess of the network. The optimal number of the hidden
layers and the configuration of neurons within them
was decided on through testing of the network. For
the input data we have used bitmaps, sized 28x28 bits,
that represent one the ten digits. For that we needed
enough neurons in the first layer for each individual
bit of the picture. The number of neurons in the last
layer represents the total number of classes that the in-
put can be classified as, which in this project was ten.
The experiments we conducted to choose the number
of hidden layers will be described later in the article.
To modify the weights of the synapses we have used
the back propagation algorithm, described in the pre-
vious section.

The KNN classifier was much simpler to set up. In
this algorithm the objects are classified based on their
closeness to data, that the algorithm was trained on.
When an input is presented, the Euclidean distance be-
tween it and all the available options is calculated. The
distances are then sorted and the smallest are at the
top of the list. The value of ‘k’ determines the number
of distances that are considered during the voting pro-
cess, where the algorithm checks which class appears
most frequently within these chosen distances. This
class is then given as the prediction for the input. This
means that only the value of ‘k’ has to be determined
before setting up the classifier. This has been chosen
based on tests described later.

The data used for this project has been taken from
the MINST database. It has been sorted into a test and
a training set. For this project we have trained both
classifiers using the training set and then used the test

Figure 2: Epoch number test

set to determine their accuracy. This was calculated
based on how many times the model chose the correct
digit, based on the information gained from the train-
ing data. We have used this accuracy to compare the
two models in different scenarios.

4. Experiments
For our experiments, we have decided to create an-
other set of training data, by augmenting the one we
already had. This was done by randomly modifying
the pictures with one of four functions, which were ro-
tation by 90 degrees left or right, rotation by 90 degrees
horizontally(upside down) or adding ‘noise’, which was
just changing some of the pixels to black. This was
done to see, whether there would be a significant dif-
ference for the classifiers when dealing with random
nature of the modifications of the data. The final data
sets had 60000 images for non-augmented data and
120000 for the augmented data(this one had both the
augmented and non-augmented).

For the first test, we deiced to test how the num-
ber of epochs would affect the accuracy of the neural
network, when using augmented and non-augmented
data. For this we have kept the learning rate at 0.3
and have added a singular hidden layer of 32 neurons.
This setup was chosen to decrease the learning time
and to allow us to complete further tests. We started
the experiment at 1 epoch and increased it gradually
until 10 epochs. For the augmented data we have only
increased this number to 5, because of the increased
size of data. The results are presented on the diagram
below. From the diagram we can see that the accu-
racy varied between 93.5% and almost 96% for the non-
augmented data.

The highest accuracy was reached at 9 epochs, and
the biggest difference can be observed as we increased
the number from 4 to 5. Above 5 epochs the accuracy
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Figure 3: Hidden layers test 1

doesn’t fall below 95% and it remains rather constant.
The average accuracy for the non-augmented data is
95.05% with a standard deviation of 0.0071%. When
it comes to the augmented data the accuracy is vis-
ibly decreased. Here is varied between 90% and 92%,
so there was slightly lower variation, but this might be
due to lower number of epochs tested. The biggest dif-
ference between the two sets can be seen at 5 epochs,
where it reaches 4.52%. The best accuracy can be ob-
served at 3 epochs at 91.68%, and it seems to decrease
past this number. The average accuracy for augmented
data was 90.92% with a standard deviation of 0.0059%.
The average difference between the two sets at each
number of epochs was calculated to be 3.69%. Based on
these values, we can conclude that the neural network
was better at recognizing data without augmentation,
but even with random modifications it was able to cor-
rectly guess the digit over 90% of the time. Across both
sets the average accuracy was calculated to be 93.67%
with a standard deviation of 0.0212%. Another test was
designed to check, how the number of hidden layers
influenced the accuracy. In this test we kept the learn-
ing rate at 0.3 and set the number of epochs to one.
We started with 10 neurons in the hidden layer. The
results can be seen below. Here was can see, that as
we increased the number of neurons the accuracy in-
creased. Here it ranged between 86.5% and went up
to almost 95% for 200 neurons. We did a test with 200
neurons to check whether a bigger increase in num-
ber led to larger increase in accuracy. The downside
to increasing this number was higher learning times,
although the increase was small.

The biggest increase can be seen between 10 and
20 neurons, where it reached 3.80%. Between 50 and
200 neurons the increase was only 0.45%. From this
we can conclude, that the number of neurons in the
hidden layer can be kept quite small and this won’t
adversely affect the accuracy and will lead to faster

Figure 4: Hidden layer test 2

learning speeds. Even with a number as small as 10
we can see, that the accuracy is still 86.86%.

In the next test we have added another hidden layer.
We have kept the same learning rate and number of
epochs as in previous test and set added 50 neurons to
the first hidden layer. The second one started with 10
neurons and we have increased this number gradually.
The results can be seen below. Here we can see the re-
sults are less conclusive. The best accuracy of 93.49%
was achieved at 30 neurons. This value is smaller, than
what was achieved with one hidden layer with 40 neu-
rons. The worst accuracy of 92.96% was achieved at 20
neurons and this value is higher, than the worst accu-
racy with one hidden layer. Adding another set of hid-
den layers leads to increased learning times, which has
to be taken under consideration. From this it can be
concluded, that adding another layer of neurons will
not necessarily lead to higher accuracies, but might be
a safer option. In our final setup we have decided to
keep a single hidden layer, mostly due to decreased
learning time.

The next test was designed to check how chang-
ing the value of ‘k’ would influence the accuracy of
the KNN classifier. This is the only parameter, that
we could modify, therefore it is the only test done for
the KNN. Here we started with k=10 and increased the
number. KNN took a very long time, when we used the
whole of test set for accuracy calculation, so we de-
cided to only use a 100 elements from the test set. The
distances were calculated for the whole of the training
set. Results of the test can be seen below. As can be
seen on the graph, we have decided to increase the val-
ues drastically as gradual increase led to unsubstantial
differences. From the graph we can see, that the accu-
racy stays the same for low values of ‘k’, namely below
30 and then decreases as this number goes up. This de-
crease is more rapid as we reach values of 1000 and
more. KNN handled non-augmented data better, as
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Figure 5: K value test

Figure 6: Combined results of previous tests

was the case with the neural network, but here the dif-
ferences varied between 1-2%, and at k=1000 the accu-
racy for augmented data was higher at 86% compared
to 84%. The highest observed accuracy was higher
for KNN at 96.00% compared to 95.65% for the neural
network. From this experiment we can conclude that
lower values of ‘k’ lead to higher accuracy of the clas-
sification process. This makes sense as higher values
of ‘k’ means higher distance values are taken into con-
sideration during the voting process. For comparison
we collected the data from the experiments described
previously and put the together on a single diagram
visible below. As can be seen on the graph, the accu-
racy for KNN, at low values of ‘k’, is higher when com-
pared with the neural network. Increasing the number
of epochs lead to higher accuracies, which cannot be
said for increased values of k. The biggest differences
can be observed with augmented data. KNN achieved
higher accuracy when compared with neural network,
with the highest difference being 5%. At 3 epochs this
difference is lower. Based on this data we can say that
KNN should, in theory be better at correctly predict-
ing the answer. We have designed one last experiment
to test this. We have drawn each digit 20 times and
tested each classifier with and without the use of aug-

Figure 7: Table of results of the drawing test

mentation. In the table below we have recorded the
most prevalent answer for each case. From the table
we can see, that both classifiers were able to recognize
digits 0,2,3,5 and 8 quite well, but digits 7 and 9 posed a
difficulty. Neural network was able to correctly guess
the digit 80% with both data sets. KNN classifier was
able to guess the digit 70% of the time with both sets.
The differences were not big enough be safely con-
clude which classifier was better. Preferentially this
test would be carried out a 100 or more times, to give
more meaningful results.

5. Conclusions
After carrying out the project and analyzing the data,
it cannot be safely concluded, that one classifier would
be better than the other one in the area of recogniz-
ing handwritten digits. Although the tests, that were
concluded did show some differences in the accuracy,
especially when the data was augmented, not enough
tests were performed to show, that the differences be-
tween the classifiers were significant. What can be
concluded from these tests is, that there is indeed a
difference in how these perform. KNN seemed to bet-
ter handle data, that was augmented, probably due to
the fact that all the training data was available to it for
comparison with the test data. Neural network on the
other hand increased in accuracy as we increased the
number of epochs, as this allowed the weights on the
synapses to be changed, according to how many errors
in judgment the network made. With the back prop-
agation algorithm the network gets better each time
we train it on the training data, where the KNN algo-
rithm only needs to be given the training data once for
it to work. Both classifiers show quite high accuracy,
when dealing with our data, but this would preferably
be increased to very close to a 100%, with correct con-
figuration. More tests would have to be done, mostly
to find the best possible setups for both these models
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and to produce more statistically significant data. Fi-
nally in the testing phase we noticed that there is a
slight improvement in accuracy if the images are pre-
filtered [17].
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