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Abstract. This paper summarizes the approach and the results of the
submission of the Media Computing group from the Chemnitz University
of Technology (TUC MC) at ImageCLEFmed Caption task, launched by
ImageCLEF 2020. In the task, contents of medical images have to be
detected, for the goal of a better diagnosis of medical diseases and condi-
tions. In the context of a master thesis by Nisnab Udas, Xception model,
which slightly outperformed InceptionV3 on the ImageNet dataset in
2017, was adapted to this caption task. Out-of-the-box, his approach
achieved an F1 score of 35.1% compared to the best contribution with
39.4%, which places our team in the top-5. Part of his strategy was to
optimize the confidence threshold, and to bring in a max pooling in the
last layer which reduced the number of parameters making the model
less prone to overfitting.

1 Introduction

Computer science challenges have been established in the last decades to advance
diverse problems in text, audio and video processing [4]. In this tradition, chal-
lenges are organized within the established ImageCLEF or LifeCLEF lab since
2003 and 2014, respectively. Since 2003, medical (retrieval) tasks have been part
of the challenge and been continuously developed into 3 subtasks, where one
is called medical concept detection since 2017 [2,13,10,6]. It contains automatic
image captioning and scene understanding to identify the presence and location
of relevant concepts in a large corpus of medical images. The latter stem from
the PubMed Open Access subset containing 1,828,575 archives. A total number
of 6,031,814 image - caption pairs were extracted. A combination of automatic
filtering with deep learning systems and manual revisions was applied to focus
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Table 1. Columns 2 to 4 show the F1 metric results in % for the best submission
run of the top 3 teams at medical caption subtask since 2017. Note, that the number
of registrations is usually considerably larger than the number of teams who submit
results (last column).

Year 1st 2nd 3rd
No. of
teams

2017 12.1 9.6 5.0 4
2018 25.0 18.0 17.3 5
2019 28.2 26.6 22.4 11
2020 39.4 39.2 38.1 7

merely on radiology images and non-compound figures. The origin of the biomed-
ical images distributed in this challenge is a subset from the extended ROCO
(Radiology Objects in COntext) dataset [11]. In ImageCLEF 2020, additional
information regarding the modalities of all 80,747 images was distributed [6].

Evaluation is conducted in terms of set coverage metrics such as precision,
recall, and combinations thereof. Leaderboards utilize the F1 metric summarized
in Table 1. The results prove that the task remains challenging even though a
continuous improvement from year to year is to be noted. The results of this
year bring the top-3 group closer together for the first time. In the caption
task of 2019 [10], Kougia et al. won the competition by combining their CNN
(Convolutional Neural Network) image encoders with an image retrieval method
or a feed-forward neural network and achieved an F1 score of 28.2% [7]. Xu et al.
applied a multilabel classification model based on ResNet [5] and achieved 26.6%
[14]. Guo et al. achieved 22.4% F1 score with a two-stage concept including the
medical image pre-classification based on body parts with AlexNet ([8]) and the
transfer learning-based multi-label classification model based on Inception V3
and Resnet152 [3].

2 Data Analysis

The amount of images has increased from 2019 to 2020. The concept detection
task this year, contains training and validation images in 7 separate folders.
In total, there are 64,753 training images, 14,970 validation images and 3,534
test images, respectively. Concept frequency was reduced from 5,528 last year to
3,047 in 2020 as low occuring concepts were removed by the organizers. Top-20
concepts in our training images are shown in Fig. 1. Concepts ’C0040405’ and
’C0040398’ both occur 25022 images in training images. The figure clearly shows
how our concepts are imbalanced in the dataset.

In Fig. 2, we show distribution of concept length in training dataset. Maxi-
mum number of images, 5,248, to be specific, have only 2 concepts. The second
and third largest group of images have 3 and 4 concepts per image, respectively.
The highest number of concepts occurring in an image is 140 which occurs one
time.
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Fig. 1. Frequency distribution of Top-20 concepts.
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Fig. 2. Frequency distribution of the concepts length.



Fig. 3. Model architecture describing the mechanism of concept detection from pre-
trained Xception model.

3 Proposed System

Our deep learning based architecture was based on Xception architecture [1] and
is shown in Fig. 3. The Xception model slightly outperforms Inception V3 on
the ImageNet dataset in 2017, and was chosen due to this performance and as
our preliminary test found it well working on our medical detection task. For
fine-tuning concerning model, we utilize transfer learning and use weights pre-
trained on ImageNet Dataset [12]. We then eliminated the top classifier layer as
is required in transfer learning. We froze the entire Xception model and made
only the last six layers trainable.

Generally, as in transfer learning, before adding classifier to a pre-trained
model, the layer is flattened. Flattening transforms a 2D matrix of features to
the vector, which can be provided to a fully-connected layer (FC layer). In our
case, we used a max pooling layer of window size (2,2) followed by the dropout
layer to reduce the number of free parameters and facilitate object-size dependent
pooling as a special trick. Afterwards, the usual flattening layer is added.

Subsequently to adding the flattening layer, we used the ReLU activation
function, followed by the dropout layer. The data contains 3,047 concepts in
total, thus our final FC layer contains 3,047 units and sigmoid as our activation
function because we are dealing with a multi-label problem. The white rings
in the FC layer represent neurons (Fig. 3). The top lambda layer extracts top-
100 highest probabilities. These probabilities are compared against a threshold



Table 2. Model summary with layers and feature maps changing shapes as it passes
through these layers.

Layer Output shape

Xception 16 × 5 × 5×2048
Max pooling 16 × 2 × 2×2048
Dropout 16 × 2 × 2×2048
Flatten 16 × 8192
Activation 16 × 8192
Dropout 16 × 8192
Dense 16 × 3047

Table 3. Influence of the high-level max-pooling.

Method Mean F1 score Free trainable parameters

Base model 0.349 29,712,871
Without max-pooling 0.345 160,758,247

value, e.g. t=0.12, which generates boolean values for these 100 probabilities. The
lower lambda layer gives the index of these individual neurons/concepts. In data
processing, these indices are used to locate only the neurons with ’True’ boolean
value. In the data processing part, results are reformatted into the competition
format. Table 2 shows how feature maps change shape after passing through
each layer.

For training our network, a proper optimization is necessary and we conduct
the following optimization methods. The major contribution to a satisfying F1
score had the optimization of the confidence threshold, along with the max-
pooling, as shown in the next sections. Besides these two methods, we deploy
other minor approaches to raise the performance. These include the tuning of
the drop-out level and the data augmentation level. Drop-out is a well-suitable
technique to avoid overfitting and the values were optimized for both neuronal
layers of drop-out (Table 2) via conducting a cross-test of 25 different combi-
nations. The best configuration has a drop-out value of 0.2 for the first layer
and 0.5 for the second layer. Additionally, data augmentation was tuned, also
increasing the F1 score value by 0.01−0.02 depending on the configuration. Each
of the methods raise the F1 score by 0.01 − 0.02 only, but in total, these effects
add up to an elevate of the F1 score by a level of 0.03 − 0.05.

4 Results

One of the ideas for improving the original Xception model [1] was the intro-
duction of an additional max-pooling operation before the highest layer. It is
shown in Table 2 in the second entry. This particular max-pooling operation
reduces, on the application set, the spatial resolution, inducing a reduction of
the free parameters in the next layer. In our dataset, the layer before the max-
pooling operation had a 5×5 resolution, which is reduced by a 2×2 pooling to a
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Fig. 4. Variation in F1 score and accuracy with respect to the threshold.

2×2 layer resolution. This operation reduces the free trainable parameters from
160, 758, 247 parameters to 29, 712, 871 parameters in total, which fabricates a
more robust and stable model. As a second argument, the operation allows the
recognition of concepts in the image more independently from the position. In
the original ImageNet data set, objects are larger on average than in our medical
image data set. To compensate for this difference in size, we increase the pooling
as the objects in the original dataset cover large portions of the image, while
our concepts are typically appearing in a smaller region. The pooling operation
allows both, a recognition independent of the concept’s place, and smaller object
sensitive filters facilitating the recognition of smaller objects. The difference in
F1 score and performance, i.e. free trainable parameters, is shown in Table 3.

4.1 Confidence threshold optimization

Fig. 4 shows the threshold variation against accuracy and F1. A classical accu-
racy metric is not optimal for training a model in this challenge as we have a
large class imbalance. Therefore, the F1 score metric is used.

Confidence threshold selection plays a crucial role in the multi-label problem.
The threshold determines over which predicted probability a concept is mapped
to our image or not. When a class is predicted, the network outputs a probability
and only probabilities exceeding a certain threshold are counted as that this
concept is in that image. Given that our model is well trained, an unoptimized
threshold may still have a substantial effect on our result. And determining the
optimum threshold can often be tricky.



Therefore, we varied the threshold systematically and tuned the value of the
threshold on the validation set, shown in Fig. 4. The maximum performance
with respect to the confidence threshold is identified to range around 0.1 to
0.25. Hence, we submitted several runs with different threshold values between
θ = 0.12 and θ = 0.25 (see Table 4). As expected from the Fig. 4, improvements
of F1 are within a large amount.

4.2 Optimization techniques

There are plenty of ways of managing limited data volume and imbalanced
datasets such as eliminating outliers, expanding the data set, augmentation,
etc. In the medical image domain, few type of disease or conditions occurs less
frequently to humans resulting in less sample numbers. Thus, to tackle these
problems, we decided to use image data augmentation. Available methods are
for example in Keras the following, which we employ as parameterized below:

– Rotation is performed by randomly rotating an image around its center of
up to 5◦.

– Vertical and horizontal flip. Flipping images is one of the most widely im-
plemented techniques popularized by [8].

– Height and width shift range: The images are randomly shifted horizontally
or vertically up to 5% of the total height and width respectively.

– Zoom: Objects in images are randomly zoomed in a range of ±5%.
– Brightness shift: The image is randomly darkening or brightening in range

of 80 − 120% of the initial brightness.
– Samplewise center: To eliminate the problem of vanishing gradients or sat-

urating values, data are normalized in such a way that the mean value of
each data sample becomes 0.

– Samplewise standard normalization: This pre-processing method approaches
the same concept as sample-wise centering, but rather it fixes the standard
deviation to 1.

The enabling of data augmentation increases the F1 score and contributes to
a more robust working of the system.

The competition requires only 100 concepts per image. Therefore, to ensure
that, probabilities were sorted in descending order and Top-100 probabilities
were selected.

4.3 Run description

We submitted ten runs (Table 4). The runs often utilize the same base-structure,
an Xception model, and all use transfer learning from ImageNet. The runs vary in
meta-parameters as we tested different ones. We vary primarily: (i) the threshold
in the last layer, (ii) slightly different base-models, and (iii) with and without
max-pooling in the highest layers.



Table 4. Test results of our 10 submitted runs. For details see text.

Run id Method Name Mean F1 score Rank

68077 Early stopping model thr0 18.csv 0.351 20
68078 CNN2, θ = 0.25 streamlined1 thr0 25.csv 0.349 21
68034 CNN2, θ = 0.20 streamlined1 thr0 20.csv 0.349 22
68074 CNN2, θ = 0.15 streamlined1.csv 0.349 23
68029 CNN1, θ = 0.20 basemodel thr0 20.csv 0.347 24
68045 Slow learning model low lr thr0 20.csv 0.345 25
68067 No max-pooling streamlined1 nomax.csv 0.345 27
68024 CNN1, θ = 0.15 basemodel.csv 0.343 28
68073 CNN2, θ = 0.12 streamlined1 thr0 12.csv 0.342 29
68076 Exp. Normalizing model weighting.csv 0.332 32

Run ID 1/68024 We deploy an Xception model and utilize transfer learning
from ImageNet. We ran our model for N=100 epochs and set the learning
rate to 1e-3. The model uses the confidence threshold theta in the last layer
to map concepts probabilities to true/false for the concepts. We tuned the
threshold to 0.15 from the validation set, selected the top 100 concepts and
submitted our results.

Run ID 2/68029 This run again uses the Xception model and generally the
configuration of Run ID 1. It optimizes the threshold further, setting it to
0.20.

Run ID 3/68034 We again deploy an Xception model and utilize transfer
learning from ImageNet. This submission has a more streamed-lined source
code structure and explores different meta-parameters: We ran our model
for N=30 epochs and set the learning rate to 1e-2. We tuned the threshold
to 0.15 from the validation set.

Run ID 4/68045 We again deploy an Xception model and utilize the configu-
ration of run 1. This submission explores different meta-parameters: We ran
our model for N=50 epochs and set the learning rate to 1e-4. We tuned the
threshold to 0.20 from the validation set.

Run ID 5/68067 This run again uses the Xception model and generally the
configuration of Run ID 3, while exploring which effect has the max-pooling
layer before the highest layer. The max-pooling was removed here to show
the effect.

Run ID 6/68073 This run uses the more streamed-lined source code structure
and explores again different meta-parameters: We ran our model for N=30
epochs and set the learning rate to 1e-2. We tuned the threshold to 0.12
from the validation set.

Run ID 7/68074 This run again uses the Xception model and general the
configuration of Run ID 6, while tuning the threshold to 0.25.

Run ID 8/68076 We again deploy the standard configuration of Run ID 1.
This submission focuses on an experimental normalizing of the dataset, but
was not very successfully.



Run ID 9/68077 We again deploy an Xception model and utilize transfer
learning from ImageNet. This submission explores an early stop strategy:
the best, i.e. lowest loss, was used over a run period of N=30 epochs. The
learning rate was 1e-3 and the threshold was tuned to 0.18.

Run ID 10/68078 This run deploys the more streamed-lined source code struc-
ture and explores a different threshold: 0.20.

In Table 5, we listed the top teams with their best F1 score in percent. Our
team, TUC MC occupied 5th position in terms of team ranking with F1 score
of 0.3512.

Table 5. Top-7 team performance in concept detection problem 2020. F1 metrics are
given in percent. [9]

Group Name F1 score

AUEB NLP Group 39.4
PwC MedCaption 2020 39.2
essexgp2020 38.1
iml 37.5
TUC MC 35.1
Morgan CS 16.7
saradadevi 13.5

5 Conclusion and Outlook

Our approach of adapting an Xception model for the medical caption task 2020
achieves an F1 score of 35.1% which is better than the 2019 results and close
to the best contributions of 2020 which achieved 39.4%. Our strategies to rely
on a modern Xception neural network proved to be successful. It also shows
that transfer learning, with weights pre-learned on ImageNet, is very usable on
an indeed different image material such as medical images. The introduction of
a max pooling in the last layer, and to optimize the confidence threshold, have
boosted the performance of our Xception model. Further investigation could lead
in the direction of optimization learning through entropy-based analysis concepts
of neural networks. Moreover, a more in-depth analysis of certain concept classes
might be carried out in order to better understand the errors in the present
classification task.
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