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Abstract. This paper presents the participation of Macquarie Univer-
sity and the Australian National University for Task B Phase B of the
2020 BioASQ Challenge (BioASQ8b). Our overall framework implements
Query focused multi-document extractive summarisation by applying
either a classification or a regression layer to the candidate sentence
embeddings and to the comparison between the question and sentence
embeddings. We experiment with variants using BERT and BioBERT,
Siamese architectures, and reinforcement learning. We observe the best
results when BERT is used to obtain the word embeddings, followed by
an LSTM layer to obtain sentence embeddings. Variants using Siamese
architectures or BioBERT did not improve the results.

1 Introduction

Query focused multi-document summarisation aims to generate the answer to
a question by combining information from multiple documents [1]. This task,
therefore, is related to both question answering and text summarisation. There
is substantial research in both question answering and text summarisation. In
the case of text summarisation, most research focuses on single-document sum-
marisation, and there is also substantial research on multi-document summarisa-
tion. However, there is relatively little research on query focused multi-document
text summarisation. There are multiple applications where query focused multi-
document text summarisation can be useful. A clear example of a useful appli-
cation is in the domain of biomedicine and clinical medicine, where a doctor or a
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patient wants to obtain a concise summary of the most relevant evidence related
to a particular diagnosis or intervention.

The BioASQ Challenge3 organises shared tasks centered on biomedical texts.
The focus of this paper is on the 2020 participation of Macquarie University and
the Australian National University in Task B Phase B (BioASQ8b), where the
aim is to find the “ideal answer” to a question, given a collection of relevant
PubMed abstracts.4 We approach this task as an instance of query focused
multi-document extractive summarisation by scoring each candidate sentence
and selecting the top-scoring ones to produce the final summary. Macquarie
University and the Australian National University submitted independent runs
to BioASQ8b, but we both used the starting code of Macquarie University’s
BioASQ7b participation [10]. Novel contributions of this paper, compared with
previous participation at BioASQ, include:

1. The incorporation of BERT and BioBERT in the general architecture of [10].
2. The use of Siamese architectures in two main setups: 1) sharing weights in

the architecture of [10], and 2) using Sentence-BERT [11].
3. The use of Proximal Policy Optimisation (PPO) and BERT in a Reinforce-

ment Learning approach.

This paper is structured as follows. Section 2 describes the general framework
and baselines based on previous participation at BioASQ. Section 3 explains the
incorporation of BERT and BioBERT. Section 4 introduces the incorporation
of Siamese architectures. Section 5 describes the use of Reinforcement Learning.
Section 6 presents and discusses the results of cross-validation evaluations using
the BioASQ8b training data. Section 7 presents and discusses the runs submitted
to BioASQ. Finally, Section 8 concludes this paper.

2 General Framework and Baselines

The overall architecture of our systems is based on that of Macquarie Univer-
sity’s participation to BioASQ7b [10]. This architecture is described in Fig. 1.
The baseline systems re-use the following options from [10] to generate the em-
beddings of the words and sentences.

– The embedding generator to obtain word embeddings is a matrix of
pre-trained embeddings generated by word2vec. We trained word2vec using
PubMed documents provided by the organisers of BioASQ. The embeddings
had a vector size of 100.

– The embedding reductor to obtain sentence embeddings is a pair of for-
ward and backward LSTM chains. The weights of the embedding reductor
for the candidate sentence and the question were not shared.

– The activation function of the final layer is a linear function for the regres-
sion setup and a sigmoid function for the classification setup.

3 http://www.bioasq.org
4 http://www.ncbi.nlm.nih.gov/pubmed
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Fig. 1. Base architecture. An embedding generator calculates the embeddings of each
of the words of the candidate sentence and the question. These are then passed to
an embedding reductor that obtains the overall sentence embeddings of the candidate
sentence and the question. A Siamese variant enforced shared weights of the embedding
reductors. Then, the sentence position is concatenated with the sentence embedding
and the similarity of sentence and question embeddings, implemented as a product. A
final layer predicts the label of the sentence.

– The similarity between the embeddings of the candidate sentence and the
question is the element-wise product.

As in [10], we tried a classification setup and a regression setup. In the re-
gression setup (“NNR” in Fig. 1 Table 3), the training data is labelled with
the ROUGE-SU4 F1 value of the candidate sentence and the objective function
to optimise is the Mean Squared Error. In the classification setup (“NNC” in
Fig. 1 Table 3), the 5 candidate sentences with the highest ROUGE-SU4 F1 are
labelled as 1, and the rest are labelled as 0. The objective function to optimise
in the classification setup is binary cross-entropy.

In both the classification and the regression setup, the summary is produced
by scoring each candidate sentence and extracting the top n sentences to generate
the summary, where n depended on the question type and was the same as
reported in [10] (Table 1).

Table 1. Number of sentences selected, for each question type

Summary Factoid Yesno List

n 6 2 2 3



3 Experiments with BERT and BioBERT

BERT [2] has been used in a wide range of NLP tasks, including text classifica-
tion [9], and extractive [8] and abstractive [7] summarisation. We have integrated
BERT into our general architecture of Fig. 1 as described below.

In a first experiment (“BERT untrained” in Table 3), we replaced the embed-
ding generator with BERT using the pre-trained model provided by Hugging-
face.5 The resulting word embeddings are now affected by context. The BERT
weights were not updated during the training stage. Following the recommen-
dation of the Huggingface library, the embedding reductor of each candidate
sentence and the question are the average of the word embeddings.

In a subsequent experiment (“BERT trained” in Table 3), the embedding
generator and reductors are as in BERT untrained, but we allowed the BERT
weights to be fine-tuned during the training process.

We also tried a variant (“BERT LSTM” in Table 3) that uses BERT in
the embedding generator as in BERT untrained, but the embedding reductor is
a bidirectional LSTM chain as in the NNC baseline. This variant is therefore
comparable with the NNC baseline, and the only difference being the use of
BERT for the embedding generator.

In a final series of experiments (“BioBERT untrained” and “BioBERT LSTM”
in Table 3), the embedding generator and reductors are as in BERT untrained
and BERT LSTM, but the pre-trained model was as provided by the developers
of BioBERT6 [6], who used biomedical documents to pre-train BERT.

In all of the experiments in this section, the final layer was a classification
layer with a sigmoid activation and the objective function to optimise was binary
cross-entropy.

4 Experiments with Siamese Networks

Siamese networks have been used in applications that include a comparison be-
tween documents, for example to determine semantic similarity [11]. The general
idea is to use the same processing module for each of the two documents by shar-
ing the weights of the encoding component that generates the embeddings of the
documents. We have used this idea in two main kinds of experiments described
below.

4.1 Siamese LSTM

A straightforward implementation of Siamese Networks (“Siamese LSTM” in
Table 3) using the overall architecture of Fig. 1 shares the weights of the em-
bedding reductors of the candidate sentence and the question. This ensures that
the sentence embeddings are generated using exactly the same process.

5 https://huggingface.co/
6 https://github.com/dmis-lab/biobert



4.2 Sentence-BERT

The second implementation of Siamese Networks uses Sentence-BERT (SBERT) [11]
to determine whether a candidate sentence is similar to the question. In partic-
ular, the system uses BERT [2] in a Siamese setup as described in Fig. 2.
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Fig. 2. Architecture for the experiments with SBERT. SBERT is used to generate
the embeddings of the candidate sentence and the question. The embeddings are then
processed in either a regression setup or a classification setup.

Depending on the settings, the system uses regression, classification or both
(multi-task), for prediction.

– In the regression setup, the cosine similarity between candidate sentence
and question embeddings is computed, and the objective function to optimise
is the Mean Squared Error (MSE).

– In the classification setup, the candidate sentence and question embeddings
are concatenated with the element-wise absolute difference between the sen-
tence and question, and a softmax layer is added. The objective function to
optimise is binary cross-entropy.

– In the multi-task setup, the classification and regression setups are jointly
optimised during training. At prediction time, we use either the classification
head or the regression head.

In both the regression and the classification setups, the training data was
labelled with the classification labels mentioned in Section 2.

We also experimented with a BERT and a BioBERT variation7 of a Sentence
Transformer [11] to ensure that the sentence embeddings reflect a biomedical
word-space.

Table 2 shows all the combinations we tried.

7 https://huggingface.co/gsarti/biobert-nli



Table 2. Variants of SBERT used in our experiments

System Name Model Training Prediction
Classification Regression Classification Regression

SBERT R BERT Y Y
SBERT C BERT Y Y
SBERT M R BERT Y Y Y
SBERT M C BERT Y Y Y

SBioBERT R BioBERT Y Y
SBioBERT C BioBERT Y Y
SBioBERT M R BioBERT Y Y Y
SBioBERT M C BioBERT Y Y Y

5 Experiments with Reinforcement Learning

Reinforcement learning allows the training process to optimise the target eval-
uation metric (ROUGE-SU4 F1) directly. Whereas [10] used the REINFORCE
algorithm [13], in our participation to BioASQ8b we used the Proximal Pol-
icy Optimisation (PPO) approach. We choose PPO for our summarisation task
because past research shows that it penalises changes to the policy [12], and be-
cause we observe a more consistent learning curve using this approach compared
to REINFORCE [5].

5.1 Approach

As in past submissions, our reinforcement learning system classifies sentences to
be either (0) not included in the summary or (1) included in the summary based
on a policy, using the ROUGE-SU4 F1 score directly as the reward. We use
the stable baselines library8 [3] to implement the PPO reinforcement learning
approach, and apply this to our BioASQ summarisation task environment.

We perform some hyperparameter tuning, while leaving the PPO code un-
modified as much as possible. We use a horizon (n steps) of 1000 with 4 mini-
batches each, and run for a total of 500,000 timesteps. When training our model,
we choose any action from the probability distribution of the policy function,
but when testing we choose the action out of 100 samples.

The neural network architecture for PPO is shown in Figure 3. As in [10],
the inputs of the neural network consist of:

1. Candidate sentence
2. Question
3. Summary generated so far
4. Sentences after the candidate sentence
5. Entire document

8 https://stable-baselines.readthedocs.io/



6. Length of summary generated so far

For each of the first five inputs, we take the mean of the word2vec word
embeddings (each of size 100) to generate the sentence embeddings. The sentence
embeddings and the length of the summary are concatenated to form a single
layer of size 501. We then feed the combined layer into a simple Multi-Layer
Perceptron with two hidden layers each of size 200. The outputs of this neural
network become the value function and stochastic policy function for our PPO
approach, each of size 2 with linear activations, representing the predicted future
rewards and action probabilities respectively for the two actions (classify 0 or 1).
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Fig. 3. Architecture for our PPO neural network. An embedding generator calculates
the embeddings for each word, and the mean of all word embeddings is used as the
sentence embedding. The 6 coloured inputs are combined into a single layer of size 501
and then fed into 2 hidden layers of size 200 each. The outputs are used as the policy
function and value function for PPO.

5.2 With BERT

We also apply pre-trained BERT embeddings to our reinforcement learning ap-
proach for batches 4 and 5 of BioASQ8b. Our network architecture is the same as
in Figure 3, but we change the embedding generator to generate BERT embed-
dings instead of word2vec embeddings. We use the PyTorch BERT embedding
generator provided by Huggingface5 and the TensorFlow Multi-Layer Percep-
tron policy provided by stable baselines8.We observe a minor improvement in
ROUGE-SU4 F1 score as shown in Section 7 (PPO BERT).



6 Results and Discussion

6.1 Cross-Validation Results

All experiments except those described in Sections 5 were evaluated using 10-fold
cross-validation using the training data provided by the organisers of BioASQ8b.
These results are shown in Table 3. As described in Section 6.2, cross-validation
evaluation was not practical for the experiments with reinforcement learning.

Table 3. Results of experiments using ROUGE SU4 F-score under 10-fold cross-
validation. The table shows the mean and standard deviation across the folds. “firstn”
is a baseline that selects the first n sentences. NNR and NNC are described in Sec-
tion 2. BERT and BioBERT are described in Section 3. Siamese LSTM is described in
Section 4.1. The SBERT and SBioBERT runs are described in Section 4.2.

Method ROUGE-SU4 F1
Mean ± 1 stdev

firstn 0.261 ± 0.011

NNR 0.264 ± 0.008

NNC 0.271 ± 0.013

BERT untrained 0.270 ± 0.014

BERT trained 0.261 ± 0.012

BERT LSTM 0.274 ± 0.010

BioBERT untrained 0.262 ± 0.010

BioBERT LSTM 0.264 ± 0.012

Siamese LSTM 0.263 ± 0.010

0.23 0.24 0.25 0.26 0.27 0.28

The baseline runs “firstn”, “NNR” and “NNC” confirm [10]’s observation
that the classification setup produces better results than the regression setup.
The untrained BERT system did not better the classification system, and the
trained BERT system produced worse results.

We observed no changes in the evaluation results of the BERT trained system
as we changed the number of epochs from 1 to 20 epochs. A detailed look at
the changes in the loss during training revealed a very small improvement of the
loss as we increase the number of epochs, but not enough to reflect a difference
in the final ROUGE-SU4 F1 metric. This suggests that a more elaborate fine-
tuning regime with gradual unfreezing as described by [4] might lead to improved
results.

Given the poor results of the trained BERT system, we kept BERT frozen
when we tested the variants using LSTM and using BioBERT.



BERT and BioBERT followed by an LSTM-based sentence reductor did im-
prove results over the version with a mean of embeddings. Unfortunately, the
experiments using the LSTM-based reductor were made after the deadlines for
submission of results to BioASQ8b.

It was surprising to observe that the BioBERT variants performed worse
than the BERT variants. This is not in line with the improvement in the per-
formance of BioBERT for the “exact answers” section of BioASQ7b reported in
literature [14].

The Siamese LSTM variant did not improve over the classification system.
The reason for this might be, as mentioned in Section 7, that questions and
candidate sentences are different in nature. We also conducted cross-validation
experiments with the SBERT variants but they are not included in Table 3
as the results are very different from those of the runs submitted to BioASQ
(Section 6) and we suspect that there might have been an error when running
these evaluations.

Table 4 shows and explains the hyperparameters of all systems of Table 4.

Table 4. Hyperparameters for the experiments of Table 3. The choice of dropout
and epochs is the result of grid search. A dropout of 0 means that no dropout was
applied. The choice of batch size is determined by the GPU capabilities. In all cases,
the dimensions of the word and sentence embeddings is 100. The size of the LSTM states
and intermediate layers is also 100. The number of candidate sentences is limited to
50. The BERT version is bert-base-uncased provided by https://huggingface.co/.
The BioBERT version is v1.1-pubmed available at https://github.com/dmis-lab/

biobert

Method Batch size Dropout Epochs Sentence length

NNR 1024 0.3 10 300
NNC 1024 0.3 10 300

BERT untrained 32 0 50 250
BERT trained 8 0 1 250
BERT LSTM 1024 0.6 10 250

BioBERT untrained 1024 0 10 250
BioBERT LSTM 1024 0.6 10 250

Siamese LSTM 1024 0.2 10 300

6.2 Reinforcement Learning Results

The evaluation setup for reinforcement learning did not use cross-validation due
to the long time it took to train the system (several days). We therefore used a
partition of the training data for the train and test sets.



Table 5 shows the evaluation results of the PPO [12] reinforcement learn-
ing approaches discussed in Section 5, compared with the REINFORCE [13]
approach, using the BioASQ7b and BioASQ8b training datasets.

Table 5. Reinforcement Learning Preliminary Results. The results using the
BioASQ7b dataset show the mean and standard deviation of 3 runs. The results using
the BioASQ8b dataset show the result of a single run. The PPO BERT system was
only run with the BioASQ8b dataset and was only submitted to batches 4 and 5 of
BioASQ8b. All results use the ROUGE-SU4 F1 metric.

System BioASQ7b BioASQ8b
Mean ± stdev

REINFORCE word2vec 0.253 ± 0.001 0.265
PPO word2vec 0.251 ± 0.001 0.269
PPO BERT - 0.274

The BioASQ7b data set consists of 2,747 questions which we divide into a
training set (2,289 questions) and a testing set (458 questions) partitioned 5:1
using a random seed to shuffle the data. The PPO word2vec and REINFORCE
word2vec systems were run 3 times each for 500,000 timesteps on the BioASQ7b
data set, and the maximum ROUGE-SU4 F1 score reached in each learning
curve was averaged across the 3 runs.

The BioASQ8b data set consists of 3,243 questions which we divide into a
training set (2,702 questions) and a testing set (541 questions) partitioned 5:1
using a random seed to shuffle the data. The PPO word2vec, PPO BERT, and
REINFORCE word2vec systems were each run once only for 500,000 timesteps
on the BioASQ8b data set, and the maximum ROUGE-SU4 F1 score for each run
is shown in Table 5. The models which produced the maximum ROUGE-SU4 F1
score for each system were saved and re-used to generate our PPO submissions
to the BioASQ competition in 2020, except for the REINFORCE system which
was not included in this year’s submission.

Whereas our evaluation results did not show any clear difference between
REINFORCE and PPO on word2vec embeddings, the version using PPO and
BERT features showed an improvement.

The reinforcement learning experiments of Table 5, however, do not outper-
form the results of the experiments of Table 3.

7 Submissions to BioASQ8b

Table 6 shows the results of Macquarie University’s submissions to BioASQ8b.
We only report ROUGE-SU4 F1 for comparison with our experiments. Also, as
observed by [10], F1 scores have a higher correlation with human judgements
than recall scores, and similar correlation with human judgements as precision
scores.



Table 6. MQ runs submitted to BioASQ8b

Batch Run Name Description ROUGE-SU4 F1

1 MQ1 First n 0.3302
MQ2 NNR batchsize=4096 0.3508
MQ3 NNC batchsize=4096 0.3556
MQ4 BERT untrained 0.3359
MQ5 PPO word2vec 0.3386

2 MQ1 First nb 0.2897
MQ2 NNR batchsize=4096 0.3360
MQ3 NNC batchsize=4096 0.3376
MQ4 BERT untrained 0.3030
MQ5 PPO word2vec 0.2662

3 MQ1 First n 0.3506
MQ2 NNR batchsize=4096 0.3729
MQ3 NNC batchsize=4096 0.3651
MQ4 BERT untrained 0.3506
MQ5 PPO word2vec 0.3018

4 MQ1 PPO BERT 0.2975
MQ2 NNR batchsize=4096 0.2973
MQ3 NNC batchsize=4096 0.2987
MQ4 BERT untrained 0.2954
MQ5 PPO word2vec 0.2585

5 MQ1 PPO BERT 0.3135
MQ2 NNR batchsize=4096 0.3237
MQ3 NNC batchsize=4096 0.3276
MQ4 BERT untrained 0.3316
MQ5 PPO word2vec 0.3096



All runs in Table 6 have been described except for First nb in batch 2. This
is the same as First n in all other batches but the data has been pre-processed
differently.

The classifier system (NNC) produces the best results in most runs, and this
is consistent with our cross-validation results (Table 3). However, in contrast with
Table 3, in most runs the second best is the regression system (NNR) instead of
the untrained BERT system. All systems were re-trained for the BioASQ runs,
keeping the same hyperparameters, so that we could use the entire training data,
and it is possible that bad luck played a part here, and the BERT system was
not trained to its best.

The reinforcement learning experiments show the lowest evaluation results.
We should note, however, that the RL runs submitted to BioASQ7b also had
lower results than the other runs, but the human evaluation results ranked them
higher than our other runs. Also, the reinforcement learning submissions were
not re-trained using the entire training data, which may be worth exploring
because PPO had a more consistent learning curve for us than REINFORCE.
We are waiting for the human evaluation results of BioASQ8b with anticipation.

Table 7 shows the results of the Australian National University’s submissions
to BioASQ8b.

Table 7. SBERT runs submitted to BioASQ8b

Batch Run Name Description ROUGE-SU4 F1

2 sbert reg SBERT R 1 epoch 0.2856
sbert cls SBERT C 1 epoch 0.2958
multitask sbert reg SBERT M R 1 epoch 0.2857
multitask sbert cls SBERT M C 1 epoch 0.2910

3 sbert reg SBERT R 20 epochs 0.3241
sbert cls SBERT C 20 epochs 0.3349
multitask sbert reg SBERT M R 20 epochs 0.3342
multitask sbert cls SBERT M C 20 epochs 0.3506
sbert 1 epoch cls SBERT C 1 epoch 0.3395

4 sbert reg SBioBERT R 20 epochs 0.2601
sbert cls SBioBERT C 20 epochs 0.2601
multitask sbert reg SBioBERT M R 20 epochs 0.2572
multitask sbert cls SBioBERT M C 20 epochs 0.2527
sbert cls 1 epoch SBioBERT C 1 epoch 0.2580

5 sbert reg SBioBERT R 20 epochs 0.3201
sbert cls SBioBERT C 20 epochs 0.3235
multitask sbert reg SBioBERT M R 20 epochs 0.3152
multitask sbert cls SBioBERT M C 20 epochs 0.3245
sbert cls 1 epoch SBioBERT C 1 epoch 0.3231



We observe that the SBERT runs perform worse or on par with the BERT
untrained model of Table 6. This might be because questions and answers may
not appear closely in an embedding space, and therefore an identical processing
of each of them might not be advantageous. For example, a question includes
question words whereas the candidate sentences are not normally questions. We
also observe that the BioBERT models seem to produce lower results when
compared with the BERT untrained model of Table 6. In general, the multitask
learning approach performed better than just classification or regression.

8 Conclusions

This paper presents our approaches to query focused multi-document extractive
summarisation for BioASQ8b. Our experiments include the use of BERT and
BioBERT, Siamese architectures and SBERT, and Reinforcement Learning with
PPO.

We observed that an approach that uses BERT to obtain the word embed-
dings, followed by LSTM to map these word embeddings to sentence embeddings,
had the most promising results. The variant with BioBERT did not present
an improvement, and this conflicts with the overall improvement of the use
of BioBERT for question answering on biomedical texts. The approaches with
Siamese architectures did not present an improvement over the base versions,
presumably because questions and candidate sentences have different sentence
styles.

As further research we plan to explore fine-tuning techniques for the BERT
and BioBERT variants.
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