

Copyright c 2020 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 September 2020,

Thessaloniki, Greece.

UAICS at CheckThat! 2020: Fact-checking claim

prioritization

Ciprian-Gabriel Cusmuliuc, Lucia-Georgiana Coca, Adrian Iftene

“Alexandru Ioan Cuza” University, Faculty of Computer Science, Iasi, Romania

{cusmuliuc.ciprian.gabriel, coca.lucia.georgiana,

adiftene}@info.uaic.ro

Abstract. Claim proving can be an incredibly challenging task considering the

amount of information in the world increases day by day. Journalists and people

alike spend a lot of time investigating claims and fact-checking different state-

ments. In order to address this problem CLEF 2020 CheckThat! proposes 5 tasks

that each present a different side of the problem. Our team participated in Task 1

and Task 5 which aim to rank statements by check-worthiness. For Task 5, we

proposed 3 methods, each based on a different machine learning algorithms, Na-

ïve Bayes, Logistic Regression, and Decision Tree. For Task 1, we created a sys-

tem based on BERT. For Task 5, the best result we achieved using the official

measure MAP was with the Naive Bayes. This paper presents the details and

results of our approaches.

Keywords: Naive Bayes, BERT, Logistic Regression, Decision Tree

1 Introduction

Increase in social network popularity has led users to conduct multiple activities on

them, such as message exchanging, posting, news reading, commenting, and so on. In-

stant sharing and broadcasting have enabled users fast and a vast access to information,

but all with a cost. The problem arises that news propagation in these platforms is be-

coming uncontrollable, users frequently read and share information without checking

the veracity of a certain claim, leading to misinformation.

The problem of needing to check the news and claims in these networks is slowly

becoming of extremely high interest to major players, such as Facebook and Twitter,

as recently they are having talks of integrating such tools in their systems, one such

example is Twitter fact checking Donald Trump and labeling his tweets as ‘manipulated

media’1 sparking outrage amongst its supporters. This problem is not entirely present

1 https://www.bbc.com/news/technology-53106029

in social media, we can see an effort to spread misinformation and propaganda on the

entire internet.

CLEF 2020 CheckThat! [1][19] is an evaluation campaign that is being organized as

part of CLEF 2020 [2] and contains 5 tasks, each related to fact-checking. Our team

participated in two tasks, Tasks 1 and 5.

Task 1 requires the development of a system capable of ranking a stream of poten-

tially-related tweets according to their check-worthiness; this task ran in English and

Arabic, we participated only in the English version by developing a model based on

BERT [3], a bidirectional transformer developed by Google with exceptional perfor-

mance.

Task 5 has the objective of identifying which sentences from a political debate

should be prioritized for fact-checking. In this task, we submitted 3 models based on

Naive Bayes, Logistic Regression and Decision Tree.

This paper describes the participation of team UAICS, from the Faculty of Computer

Science, “Alexandru Ioan Cuza” University of Iasi, in Task 1 and 5 at CLEF 2020. The

remaining of this paper was organized as follows: Section 2 describes the state of the

art, Section 3 gives a description of the tasks. Section 4 details the model we developed

and the submitted runs and then Section 5 details the results we obtained, finally Section

5 concludes this paper and presents future work.

2 State of the art

Previous editions of CheckThat! i.e. 2019 and 2018 had fewer tasks; Task 1 was based

on the same claim prioritization as task 5 whilst task 2 required to assess which web

pages can be useful in human fact-checking and consisted of multiple subtasks. We will

only be referring to task 1 as this task is also present in 2020.

 In 2019 approaches for task 1 were very various, the best team “Copenhagen” [4]

had a MAP score of .1660 and the system was based on learning dual token embeddings

in conjunction with an LSTM [5]. The network has been pre-trained using previous

Trump and Clinton debates while supervising it with ClaimBuster2. Other approaches

are the following (in order of the ranking): team TheEarthIsFlat [6] used a feed-forward

neural network with two hidden layers, team IPIPAN [7] used an L1-regularized lo-

gistic regression, team Terrier [8] used SVM [9] in conjunction with bag-of-words and

named entities and team UAICS [10] used a Naïve Bayes classifier with bag-of-words

features.

In 2018 the best team was still “Copenhagen” [11] with the lowest MAE of .7050,

they used a similar approach as in 2019 being a convolutional neural network [12] and

support vector machine. Other approaches range from random forests, logistic regres-

sion, and LSTM.

2 https://idir.uta.edu/claimbuster/

https://idir.uta.edu/claimbuster/

3 Tasks description

In 2020 there have been 5 tasks that ran in English and Arabic, we only participated in

2 of them, Tasks 1 and 5. In this section, we will shortly present the two tasks we took

part in.

Task 1 requires “given a topic and a stream of potentially-related tweets, rank the

tweets according to their check-worthiness for the topic”. This task runs in English and

Arabic.

Task 5 requires “given a political debate or a transcribed speech, segmented into

sentences, with speakers annotated, identify which sentence should be prioritized for

fact-checking”. This task is only in English.

3.1 Evaluation metric

Both tasks use MAP [13] as the official metric which calculates the usual mean of the

average precision. Other measures used are the Mean Reciprocal Rank [14] which al-

lows obtaining reciprocals of the rank of the first relevant document, as well as Mean

Precision at k, which performs the average of k best candidates. Details on the measures

used can be found in the task overview [1].

Evaluations are carried out on primary and contrastive runs. Each participant has the

right to three models, one primary and two secondary (contrastive). We tried to take

advantage of this by submitting 3 models in Task 5.

In previous years at CheckThat! the evaluation metric was MAE, as it could have

been seen in Section 2.

4 Methods and runs

4.1 For Task 1

4.1.1 Training and test data

The data provided for this task contained tweets that were split into 2 main categories,

train, and dev. The data was provided in both TSV3 and JSON4 files. We decided to

only use the TSV files as we felt it was easier.

The datasets used were: “train” for the training of our model and “dev” to fine-tune

the hyperparameters after evaluation. A training example can be seen in Table 1.

3 https://www.imf.org/external/help/tsv.htm
4 https://www.json.org/json-en.html

https://www.imf.org/external/help/tsv.htm
https://www.json.org/json-en.html

Table 1. Training example.

Topic id Tweet id Tweet URL Tweet Text Claim Check wor-

thiness

covid-19 1234964

https://twit-

ter.com/Eric-

Trump/sta-

tus/12349646530143

84644

Since this will

never get reported

by the media […]

1 1

We considered that the tweet URL and tweet id were irrelevant, so we did not include

it in the data sent to our algorithm.

4.1.2 Preprocessing and feature extraction

Before feeding the data to the model, we had to preprocess the text. Csv5 library was

used to read from the files provided by the organizer after which we put the data in a

list that contained in order the topic id, tweet id, tweet URL, tweet text, claim and label.

The data would then be sent to a tokenizer, we decided to use BertTokenizer6 as this

was the official method from Huggingface7. We would then pad the sentence to a max-

imum phrase limit that in our case was 121. Example tokenization is the following:

Fig. 1. Tokenization example.

After tokenization we loaded each individual field in a torch tensor8 and inserted

them in a TensorDataset9 that contained: all the sentence ids, each individual tokenized

sentence and the labels. A code snippet for this operation is the following:

all_topic_id_id = torch.tensor([f.topic_id_id for f in features],

dtype=torch.long)

all_tweet_text_id = torch.tensor([f.tweet_text_id for f in features],

dtype=torch.long)

all_claim_id = torch.tensor([f.claim_id for f in features],

dtype=torch.long)

dataset = TensorDataset(all_topic_id_id,all_tweet_text_id, all_claim_id)

return dataset

5 https://docs.python.org/3/library/csv.html
6 https://huggingface.co/transformers/model doc/bert.html#berttokenizer
7 https://huggingface.co/
8 https://pytorch.org/docs/stable/tensors.html
9 https://pytorch.org/docs/stable/data.html#torch.utils.data.TensorDataset

https://docs.python.org/3/library/csv.html
https://huggingface.co/
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.TensorDataset

4.1.3 Models

In designing the model, we decided to use BERT as a possible solution to the problem

at hand. This model was chosen over other language models such as ULMFiT [15] as

multiple papers demonstrate the performance benefits BERT has. For example, [16]

trained an RNN on a very large text collection resulting in a 63.7% accuracy in the

Winograd Schema Challenge [17] while [18] using a BERT model was able to achieve

an accuracy of 72.5% on the same challenge. These results led us to choose the latter

model as we feel it best fits our purpose.

The system consists of a pre-trained model called “bert-large-uncased”10, it is a bi-

directional transformer that contains 24 layers, 1,024 hidden layers, 16 heads, and 340

million parameters. The training has been done on lower-cased English text.

We used a combination of BertModel11 and Adam12 optimizer in order to get the best

results. The hyperparameters are more or less standard, we tuned them empirically and

arrived at the following best configuration: batch size 8, 5 epochs, and the Adam learn-

ing rate of 5e-5.

The pipeline of the algorithm implies first preprocessing (tokenize and pad the sen-

tence in order to satisfy the condition of the model). Then, we shuffle the data in order

to avoid overfitting, and we start the training with each epoch and we feed the data

through the network. Then with backpropagation, we simply update the learning rate

and tell the optimizer to update the parameters.

Evaluation of the trained network is done with the dev dataset, using the saved model

in the previous step we feed the data through the network and compute loss on our trial

data.

The experimental setup was done both locally and on the cloud. In the development

stage, we trained the model locally using a computer with a 12 core CPU and 32 Gb of

Ram which proved very inefficient, the training time took about two days which made

us switch to a cloud setup. Using PyTorch13 we made the switch to training the model

on GPU using the Google Collaboratory14 platform which lowered the training time to

about an hour, this made a big difference as now we could make decisions regarding

the model much faster, without waiting a long time for it to finish.

4.2 For Task 5

4.2.1 Training and test data

The data provided contained presidential elections debates and speeches from the

United States in 2016. The data was of two main categories, training and test. The train-

ing had 50 files while the test had 20 files. The main difference from 2019 is that the

organizers provided more training files but also more test scenarios. This can be seen

10 https://huggingface.co/transformers/pretrained_models.html
11 https://huggingface.co/transformers/model doc/bert.html#bertmodel
12 https://huggingface.co/transformers/main classes/optimizer schedules.html#adamw
13 https://pytorch.org/
14 https://colab.research.google.com/

https://pytorch.org/
https://colab.research.google.com/

in the result of the candidates that now have a lower MAP compared to 2019 as the test

file number has increased dramatically from last year.

We tried to further augment the models by taking files from 2019 that have not been

included in 2020; we took training files but also test files with gold labels.

One training example with the available columns would be the following:

Table 2. Training example.

Line no. Speaker Text Label

1 Trump So Ford is leaving. 1

In the training of the model we ignored the Speaker and line number, we only fed

the preprocessed text and label.

4.2.2 Preprocessing and feature extraction

Before sending the debate text to the machine learning algorithm we performed several

preprocessing operations in a pipeline.

For all the models we first tokenized the text in order to break the phrase into indi-

vidual terms. After tokenization, for the contrastive 2 submissions, Logistic Regression

we used TF-IDF in order to extract the features in the form of a term frequency matrix.

The implementation for TF-IDF was taken from Pyspark15 and is a combination of 2

steps: HashingTF16 and IDF17. The minimum document frequency for IDF was set to

10.

For the next two submissions, primary (Naïve Bayes) and contrastive 2 (Decision

Tree) we decided to also use a term frequency matrix but with a different implementa-

tion; instead of using HashingTF we used CountVectorizer18 which has a lower infor-

mation loss and empirically it was observed these two algorithms perform better with

this feature extractor. The settings of the CountVectorizer are the following: minimum

term frequency is 1 and so is the minimum definition frequency, the maximum defini-

tion frequency is 263 − 1 and the vocabulary size is 218 and for IDF we set a minimum

term frequency of 3.

4.2.3 Models

After preprocessing the data and extracting the features they are sent to the machine

learning models. We decided not to use any exterior resources for these models.

We trained the algorithms and tested them using the test data from 2019 where we

attached the gold labels and used the provided organizers script to calculate MAP, RR,

15 https://spark.apache.org/docs/latest/api/python/index.html
16 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/HashingTF.html
17 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/IDF.html
18 https://spark.apache.org/docs/2.1.0/ml-features.html#countvectorizer

https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/HashingTF.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/IDF.html
https://spark.apache.org/docs/2.1.0/ml-features.html#countvectorizer

R-P and P@k. This gave us a rough estimation of the performance of the model but

also a way to compare with other teams from last year [10].

The first and best model was based on Naïve Bayes which uses the default imple-

mentation from Pyspark, we fine-tuned it after multiple sessions of testing and used a

multinomial model and set the smoothing to 1. Even though the model is quite simple

it is very powerful. It can be seen from the results in Table 4 sometimes it is twice as

accurate as other algorithms.

The second-best algorithm was Logistic Regression, initially this model performed

poorly however we figured out that by increasing the minimum document frequency

on IDF to 10 would increase its performance. The parameters of this model are the

following: maximum iteration is set to 100, the regression parameter is 0, the tolerance

value was 1e-6 and the aggregation depth was set to 2.

The third best was Decision Tree; this model uses a minimum document frequency

in IDF of 3. We tried making it as best as we could and in order not to overfit the model

we arrived at the following parameters: maximum depth was 30, we increased the max-

imum bins to 128 which allows the algorithm to consider more split candidates and

make fine-grained split decisions, there were a minimum 5 instances per node and in-

creased the maximum memory limit of the model to 4096Mb.

We trained the models locally, on CPU, the training time was rather fast, Decision

Tree was the slowest.

5 Results

In this section, the results of the two task submissions will be discussed. Table 3 illus-

trates the results for Task 1, there were 12 teams and we ranked 11th with a MAP of

0.4950 while the best result had a MAP of 0.8064 (team Accenture). It should be noted

here that contrastive 1 is better than our primary, we trained the primary with more

epochs and wrongly evaluated as an increase in performance.

Table 4 presents the result in Task 5 where we ranked 2nd out of 3 teams with a MAP

of 0.0515, the best being 0.0867 (team NLPIR01), and the worst 0.0183, almost 5 times

worse than our submission.

Table 3. Task 1 Results

Sub. MAP RR R-P P@1 P@3 P@5 P@10 P@20 P@30

Ac-

cen-

ture

0.8064 1.00 0.7167 1.0000 1.0000 1.00 1.0000 0.9500 0.7400

prim. 0.4950 1.0 0.4667 1.0 0.3333 0.4 0.6 0.6 0.46

con-1 0.5333 0.5 0.5167 0.0 0.3333 0.4 0.6 0.6 0.52

Table 4. Task 5 Results

Sub. MAP RR R-P P@1 P@3 P@5 P@10 P@20 P@30

NLPI

R01

0.0867 0.27 0.0930 0.15 0.11 0.13 0.0950 0.0725 0.0390

prim. 0.0515 0.2247 0.0527 0.15 0.10 0.07 0.050 0.0375 0.0270

con-1 0.0431 0.1735 0.0578 0.10 0.05 0.05 0.055 0.0450 0.0250

con-2 0.0328 0.1138 0.0282 0.05 0.05 0.03 0.035 0.0175 0.0190

For Task 5 the best result and the primary submission was of the Naïve Bayes model,

contrastive 1 is 2nd place and it is the Logistic Regression algorithm, and finally con-

trastive 2 is based on a Decision Tree. The results are in accordance with what we have

tested locally, we feel that the performance is good and that the models performed well

in the evaluation stage.

5.1 Error analysis

The performance of both tasks is good; for Task 1 the main drawback of the model is

the fact that we did not arrive at a finished product, we feel that the design of the model

needs improvement, we do not believe it is able to extract relevant information thus an

augmentation with a general knowledge ontology such as WikiData19 would be a great

addition.

For Task 5, the models are in a much more mature state as the performance show,

we feel that they have reached their limit, the error stems from the lack of understanding

of the sentence thus needing a much more complex system, probably based on a lan-

guage model such as BERT.

6 Conclusion

In this paper, we proposed solutions for two of CLEF CheckThat! 2020 tasks, one ap-

proach is based on a bidirectional transformer and the others are based on machine

learning. We achieved good results with all the submission and for future we would

like to fine-tune our models in order to have a much better MAP, there is much room

for improvement in Task 1 and for task 5 a language model approach would be inter-

esting to see in action.

Acknowledgements

This work was supported by project REVERT (taRgeted thErapy for adVanced colo-

rEctal canceR paTients), Grant Agreement number: 848098, H2020-SC1-BHC-2018-

2020/H2020-SC1-2019-Two-Stage-RTD.

19 https://www.wikidata.org/

References

1. Barrón-Cedeño, A., Elsayed, T., Nakov, P., Da San Martino, G., Hasanain, M., Suwaileh,

R., Haouari, F., Babulkov, N., Hamdan, B., Nikolov, A., Shaar, S., Sheikh Ali, Z. (2020)

Overview of CheckThat! 2020: Automatic Identification and Verification of Claims in So-

cial Media. In Working Notes of CLEF 2020.

2. Arampatzis, A., Kanoulas, E., Tsikrika, T., Vrochidis, S., Joho, H., Lioma, C., Eickhoff, K.,

Névéol, A., Cappellato, L., Ferro, N. (2020). Experimental IR Meets Multilinguality, Mul-

timodality, and Interaction. In Proceedings of the Eleventh International Conference of the

CLEF Association (CLEF 2020). Lecture Notes in Computer Science (LNCS) 12260,

Springer, Heidelberg, Germany.

3. Devlin, J., Chang, M. W., Lee, K., Toutanova, K. (2018) BERT: pre-training of deep bidi-

rectional transformers for language understanding. CoRR, abs/1810.04805.

4. Hansen, C., Hansen, C., Simonsen, J. G., Lioma, C. (2019) Neural Weakly Supervised Fact

Check-Worthiness Detection with Contrastive Sampling-Based Ranking Loss. In Working

Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, Lugano, Switzerland,

September 9-12, 2019 http://ceur-ws.org/Vol-2380/paper_56.pdf .

5. Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. In Neural Computation. 9

(8): 1735–1780. doi:10.1162/neco.1997.9.8.1735. PMID 9377276.

6. Favano, L., Carman, M., Lanzi, P. (2019) TheEarthIsFlat’s submission to CLEF’19 Check-

That! challenge. In CLEF 2019 Working Notes. Working Notes of CLEF 2019 - Conference

and Labs of the Evaluation Forum. CEUR Workshop Proceedings, CEUR-WS.org, Lugano,

Switzerland.

7. Gasior, J., Przyby la, P. (2019) The IPIPAN team participation in the check-worthiness task

of the CLEF2019 CheckThat! lab. In CLEF 2019 Working Notes. Working Notes of CLEF

2019 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceedings,

CEUR-WS.org, Lugano, Switzerland.

8. Su, T., Macdonald, C., Ounis, I. (2019) Entity detection for check-worthiness prediction:

Glasgow Terrier at CLEF CheckThat! 2019. In CLEF 2019 Working Notes. Working Notes

of CLEF 2019 - Conference and Labs of the Evaluation Forum. CEUR Workshop Proceed-

ings, CEUR-WS.org, Lugano, Switzerland.

9. Cortes, C., Vapnik, V. N. (1995) Support-vector networks. In Machine Learning. 20 (3):

273–297. CiteSeerX 10.1.1.15.9362. doi:10.1007/BF00994018

10. Coca, L., Cusmuliuc, C.G., Iftene, A. (2019) 2019 UAICS. In CLEF 2019 Working Notes.

Working Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum. CEUR

Workshop Proceedings, CEUR-WS.org, Lugano, Switzerland.

11. Wang, D., Simonsen, J., Larseny, B., Lioma, C. (2018) The Copenhagen Team Participation

in the Factuality Task of the Competition of Automatic Identification and Verification of

Claims in Political Debates of the CLEF-2018 Fact Checking Lab. CLEF 2018 Working

Notes.

12. Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., Chervyakov, N. I. (2020)

Application of the residue number system to reduce hardware costs of the con-volutional

neural network implementation. In Mathematics and Computers in Simula-tion. Elsevier

BV. 177: 232–243. doi:10.1016/j.matcom.2020.04.031. ISSN 0378-4754. Convolutional

neural networks are a promising tool for solving the problem of pattern recognition

13. Beitzel, S.M., Jensen E.C., Frieder O. (2009) MAP. In LIU L., ÖZSU M.T. (eds) Encyclo-

pedia of Database Systems. Springer, Boston, MA

14. Craswell, N. (2009) Mean Reciprocal Rank. In LIU L., ÖZSU M.T. (eds) Encyclopedia of

Database Systems. Springer, Boston, MA

http://ceur-ws.org/Vol-2380/paper_56.pdf

15. Howard, J., Ruder, S. (2018) Fine-tuned language models for text classification. CoRR,

abs/1801.06146.

16. Trinh, T. H., Le, O. V. (2018) A simple method for commonsense reasoning. CoRR,

abs/1806.02847.

17. Levesque, H. J., Davis, E., Morgenstern, L. (2012) The winograd schema challenge. In Pro-

ceedings of the Thirteenth International Conference on Principles of Knowledge Represen-

tation and Reasoning, KR’12, 552–561. AAAI Press.

18. Kocijan, V., Cretu, A. M., Camburu, O. M., Yordanov, Y., Lukasiewicz, T. (2019) A sur-

prisingly robust trick for winograd schema challenge. CoRR, abs/1905.06290

19. Shaar, A., Babulkov, N., Alam, F., Barrón-Cedeño, A., Elsayed, T., Hasanain, M., Suwaileh,

R., Haouari, F., Da San Martino, G., and Nakov, P. (2020). Overview of CheckThat! 2020

English: Automatic Identification and Verification of Claims in Social Media. In Working

Notes of CLEF 2020.

