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Abstract. Claim proving can be an incredibly challenging task considering the 

amount of information in the world increases day by day. Journalists and people 

alike spend a lot of time investigating claims and fact-checking different state-

ments. In order to address this problem CLEF 2020 CheckThat! proposes 5 tasks 

that each present a different side of the problem. Our team participated in Task 1 

and Task 5 which aim to rank statements by check-worthiness. For Task 5, we 

proposed 3 methods, each based on a different machine learning algorithms, Na-

ïve Bayes, Logistic Regression, and Decision Tree. For Task 1, we created a sys-

tem based on BERT. For Task 5, the best result we achieved using the official 

measure MAP was with the Naive Bayes. This paper presents the details and 

results of our approaches. 
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1 Introduction 

Increase in social network popularity has led users to conduct multiple activities on 

them, such as message exchanging, posting, news reading, commenting, and so on. In-

stant sharing and broadcasting have enabled users fast and a vast access to information, 

but all with a cost. The problem arises that news propagation in these platforms is be-

coming uncontrollable, users frequently read and share information without checking 

the veracity of a certain claim, leading to misinformation. 

The problem of needing to check the news and claims in these networks is slowly 

becoming of extremely high interest to major players, such as Facebook and Twitter, 

as recently they are having talks of integrating such tools in their systems, one such 

example is Twitter fact checking Donald Trump and labeling his tweets as ‘manipulated 

media’1 sparking outrage amongst its supporters. This problem is not entirely present 

 
1 https://www.bbc.com/news/technology-53106029 



in social media, we can see an effort to spread misinformation and propaganda on the 

entire internet.   

CLEF 2020 CheckThat! [1][19] is an evaluation campaign that is being organized as 

part of CLEF 2020 [2] and contains 5 tasks, each related to fact-checking. Our team 

participated in two tasks, Tasks 1 and 5. 

Task 1 requires the development of a system capable of ranking a stream of poten-

tially-related tweets according to their check-worthiness; this task ran in English and 

Arabic, we participated only in the English version by developing a model based on 

BERT [3], a bidirectional transformer developed by Google with exceptional perfor-

mance. 

Task 5 has the objective of identifying which sentences from a political debate 

should be prioritized for fact-checking. In this task, we submitted 3 models based on 

Naive Bayes, Logistic Regression and Decision Tree. 

This paper describes the participation of team UAICS, from the Faculty of Computer 

Science, “Alexandru Ioan Cuza” University of Iasi, in Task 1 and 5 at CLEF 2020. The 

remaining of this paper was organized as follows: Section 2 describes the state of the 

art, Section 3 gives a description of the tasks. Section 4 details the model we developed 

and the submitted runs and then Section 5 details the results we obtained, finally Section 

5 concludes this paper and presents future work. 

2 State of the art 

Previous editions of CheckThat! i.e. 2019 and 2018 had fewer tasks; Task 1 was based 

on the same claim prioritization as task 5 whilst task 2 required to assess which web 

pages can be useful in human fact-checking and consisted of multiple subtasks. We will 

only be referring to task 1 as this task is also present in 2020. 

 In 2019 approaches for task 1 were very various, the best team “Copenhagen” [4] 

had a MAP score of .1660 and the system was based on learning dual token embeddings 

in conjunction with an LSTM [5]. The network has been pre-trained using previous 

Trump and Clinton debates while supervising it with ClaimBuster2. Other approaches 

are the following (in order of the ranking): team TheEarthIsFlat [6] used a feed-forward 

neural network with two hidden layers, team IPIPAN [7] used an L1-regularized lo-

gistic regression, team Terrier [8] used SVM [9] in conjunction with bag-of-words and 

named entities and team UAICS [10] used a Naïve Bayes classifier with bag-of-words 

features. 

In 2018 the best team was still “Copenhagen” [11] with the lowest MAE of .7050, 

they used a similar approach as in 2019 being a convolutional neural network [12] and 

support vector machine. Other approaches range from random forests, logistic regres-

sion, and LSTM. 

 
2 https://idir.uta.edu/claimbuster/ 

https://idir.uta.edu/claimbuster/


 

3 Tasks description 

In 2020 there have been 5 tasks that ran in English and Arabic, we only participated in 

2 of them, Tasks 1 and 5. In this section, we will shortly present the two tasks we took 

part in. 

Task 1 requires “given a topic and a stream of potentially-related tweets, rank the 

tweets according to their check-worthiness for the topic”. This task runs in English and 

Arabic. 

Task 5 requires “given a political debate or a transcribed speech, segmented into 

sentences, with speakers annotated, identify which sentence should be prioritized for 

fact-checking”. This task is only in English. 

3.1 Evaluation metric 

Both tasks use MAP [13] as the official metric which calculates the usual mean of the 

average precision. Other measures used are the Mean Reciprocal Rank [14] which al-

lows obtaining reciprocals of the rank of the first relevant document, as well as Mean 

Precision at k, which performs the average of k best candidates. Details on the measures 

used can be found in the task overview [1].  

Evaluations are carried out on primary and contrastive runs. Each participant has the 

right to three models, one primary and two secondary (contrastive). We tried to take 

advantage of this by submitting 3 models in Task 5. 

In previous years at CheckThat! the evaluation metric was MAE, as it could have 

been seen in Section 2. 

4 Methods and runs 

4.1 For Task 1 

4.1.1 Training and test data  

 

The data provided for this task contained tweets that were split into 2 main categories, 

train, and dev. The data was provided in both TSV3 and JSON4 files. We decided to 

only use the TSV files as we felt it was easier. 

The datasets used were: “train” for the training of our model and “dev” to fine-tune 

the hyperparameters after evaluation. A training example can be seen in Table 1. 

 

 

 

 

 

 
3 https://www.imf.org/external/help/tsv.htm 
4 https://www.json.org/json-en.html 

https://www.imf.org/external/help/tsv.htm
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Table 1. Training example. 

Topic id Tweet id Tweet URL Tweet Text  Claim Check wor-

thiness 

covid-19 1234964 

https://twit-

ter.com/Eric-

Trump/sta-

tus/12349646530143

84644 

Since this will 

never get reported 

by the media […] 

1 1 

 

We considered that the tweet URL and tweet id were irrelevant, so we did not include 

it in the data sent to our algorithm.  

4.1.2 Preprocessing and feature extraction 

Before feeding the data to the model, we had to preprocess the text. Csv5 library was 

used to read from the files provided by the organizer after which we put the data in a 

list that contained in order the topic id, tweet id, tweet URL, tweet text, claim and label. 

The data would then be sent to a tokenizer, we decided to use BertTokenizer6 as this 

was the official method from Huggingface7. We would then pad the sentence to a max-

imum phrase limit that in our case was 121. Example tokenization is the following: 

 

 

Fig. 1. Tokenization example. 

After tokenization we loaded each individual field in a torch tensor8 and inserted 

them in a TensorDataset9 that contained: all the sentence ids, each individual tokenized 

sentence and the labels. A code snippet for this operation is the following: 

all_topic_id_id = torch.tensor([f.topic_id_id for f in features], 

dtype=torch.long) 

all_tweet_text_id = torch.tensor([f.tweet_text_id for f in features], 

dtype=torch.long) 

all_claim_id = torch.tensor([f.claim_id for f in features], 

dtype=torch.long) 

dataset = TensorDataset(all_topic_id_id,all_tweet_text_id, all_claim_id) 

return dataset 

 
5 https://docs.python.org/3/library/csv.html 
6 https://huggingface.co/transformers/model doc/bert.html#berttokenizer 
7 https://huggingface.co/ 
8 https://pytorch.org/docs/stable/tensors.html 
9 https://pytorch.org/docs/stable/data.html#torch.utils.data.TensorDataset 

https://docs.python.org/3/library/csv.html
https://huggingface.co/
https://pytorch.org/docs/stable/tensors.html
https://pytorch.org/docs/stable/data.html#torch.utils.data.TensorDataset


 

4.1.3 Models 

In designing the model, we decided to use BERT as a possible solution to the problem 

at hand. This model was chosen over other language models such as ULMFiT [15] as 

multiple papers demonstrate the performance benefits BERT has. For example, [16] 

trained an RNN on a very large text collection resulting in a 63.7% accuracy in the 

Winograd Schema Challenge [17] while [18] using a BERT model was able to achieve 

an accuracy of 72.5% on the same challenge. These results led us to choose the latter 

model as we feel it best fits our purpose. 

The system consists of a pre-trained model called “bert-large-uncased”10, it is a bi-

directional transformer that contains 24 layers, 1,024 hidden layers, 16 heads, and 340 

million parameters. The training has been done on lower-cased English text. 

We used a combination of BertModel11 and Adam12 optimizer in order to get the best 

results. The hyperparameters are more or less standard, we tuned them empirically and 

arrived at the following best configuration: batch size 8, 5 epochs, and the Adam learn-

ing rate of 5e-5. 

The pipeline of the algorithm implies first preprocessing (tokenize and pad the sen-

tence in order to satisfy the condition of the model). Then, we shuffle the data in order 

to avoid overfitting, and we start the training with each epoch and we feed the data 

through the network. Then with backpropagation, we simply update the learning rate 

and tell the optimizer to update the parameters. 

Evaluation of the trained network is done with the dev dataset, using the saved model 

in the previous step we feed the data through the network and compute loss on our trial 

data. 

The experimental setup was done both locally and on the cloud. In the development 

stage, we trained the model locally using a computer with a 12 core CPU and 32 Gb of 

Ram which proved very inefficient, the training time took about two days which made 

us switch to a cloud setup. Using PyTorch13 we made the switch to training the model 

on GPU using the Google Collaboratory14 platform which lowered the training time to 

about an hour, this made a big difference as now we could make decisions regarding 

the model much faster, without waiting a long time for it to finish. 

 

4.2 For Task 5 

4.2.1 Training and test data  

 

The data provided contained presidential elections debates and speeches from the 

United States in 2016. The data was of two main categories, training and test. The train-

ing had 50 files while the test had 20 files. The main difference from 2019 is that the 

organizers provided more training files but also more test scenarios. This can be seen 

 
10 https://huggingface.co/transformers/pretrained_models.html 
11 https://huggingface.co/transformers/model doc/bert.html#bertmodel  
12 https://huggingface.co/transformers/main classes/optimizer schedules.html#adamw 
13 https://pytorch.org/ 
14 https://colab.research.google.com/ 

https://pytorch.org/
https://colab.research.google.com/


in the result of the candidates that now have a lower MAP compared to 2019 as the test 

file number has increased dramatically from last year. 

We tried to further augment the models by taking files from 2019 that have not been 

included in 2020; we took training files but also test files with gold labels. 

One training example with the available columns would be the following:  

Table 2. Training example. 

Line no. Speaker Text Label 

1 Trump So Ford is leaving. 1 

 

In the training of the model we ignored the Speaker and line number, we only fed 

the preprocessed text and label. 

4.2.2 Preprocessing and feature extraction 

Before sending the debate text to the machine learning algorithm we performed several 

preprocessing operations in a pipeline. 

For all the models we first tokenized the text in order to break the phrase into indi-

vidual terms. After tokenization, for the contrastive 2 submissions, Logistic Regression 

we used TF-IDF in order to extract the features in the form of a term frequency matrix. 

The implementation for TF-IDF was taken from Pyspark15 and is a combination of 2 

steps: HashingTF16 and IDF17. The minimum document frequency for IDF was set to 

10. 

For the next two submissions, primary (Naïve Bayes) and contrastive 2 (Decision 

Tree) we decided to also use a term frequency matrix but with a different implementa-

tion; instead of using HashingTF we used CountVectorizer18 which has a lower infor-

mation loss and empirically it was observed these two algorithms perform better with 

this feature extractor. The settings of the CountVectorizer are the following: minimum 

term frequency is 1 and so is the minimum definition frequency, the maximum defini-

tion frequency is 263 − 1 and the vocabulary size is 218 and for IDF we set a minimum 

term frequency of 3. 

4.2.3 Models 

After preprocessing the data and extracting the features they are sent to the machine 

learning models. We decided not to use any exterior resources for these models. 

We trained the algorithms and tested them using the test data from 2019 where we 

attached the gold labels and used the provided organizers script to calculate MAP, RR, 

 
15 https://spark.apache.org/docs/latest/api/python/index.html 
16 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/HashingTF.html 
17 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/IDF.html 
18 https://spark.apache.org/docs/2.1.0/ml-features.html#countvectorizer 

https://spark.apache.org/docs/latest/api/python/index.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/HashingTF.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/mllib/feature/IDF.html
https://spark.apache.org/docs/2.1.0/ml-features.html#countvectorizer


 

R-P and P@k. This gave us a rough estimation of the performance of the model but 

also a way to compare with other teams from last year [10]. 

The first and best model was based on Naïve Bayes which uses the default imple-

mentation from Pyspark, we fine-tuned it after multiple sessions of testing and used a 

multinomial model and set the smoothing to 1. Even though the model is quite simple 

it is very powerful. It can be seen from the results in Table 4 sometimes it is twice as 

accurate as other algorithms. 

The second-best algorithm was Logistic Regression, initially this model performed 

poorly however we figured out that by increasing the minimum document frequency 

on IDF to 10 would increase its performance. The parameters of this model are the 

following: maximum iteration is set to 100, the regression parameter is 0, the tolerance 

value was 1e-6 and the aggregation depth was set to 2. 

The third best was Decision Tree; this model uses a minimum document frequency 

in IDF of 3. We tried making it as best as we could and in order not to overfit the model 

we arrived at the following parameters: maximum depth was 30, we increased the  max-

imum bins to 128 which allows the algorithm to consider more split candidates and 

make fine-grained split decisions, there were a minimum 5 instances per node and in-

creased the maximum memory limit of the model to 4096Mb. 

We trained the models locally, on CPU, the training time was rather fast, Decision 

Tree was the slowest. 

5 Results 

In this section, the results of the two task submissions will be discussed. Table 3 illus-

trates the results for Task 1, there were 12 teams and we ranked 11th with a MAP of 

0.4950 while the best result had a MAP of 0.8064 (team Accenture). It should be noted 

here that contrastive 1 is better than our primary, we trained the primary with more 

epochs and wrongly evaluated as an increase in performance. 

Table 4 presents the result in Task 5 where we ranked 2nd out of 3 teams with a MAP 

of 0.0515, the best being 0.0867 (team NLPIR01), and the worst 0.0183, almost 5 times 

worse than our submission. 

Table 3. Task 1 Results 

Sub. MAP RR R-P P@1 P@3 P@5 P@10 P@20 P@30 

Ac-

cen-

ture 

0.8064 1.00 0.7167 1.0000 1.0000 1.00 1.0000 0.9500 0.7400 

prim. 0.4950 1.0 0.4667 1.0 0.3333 0.4 0.6 0.6 0.46 

con-1 0.5333 0.5 0.5167 0.0 0.3333 0.4 0.6 0.6 0.52 

 

  



Table 4. Task 5 Results 

Sub. MAP RR R-P P@1 P@3   P@5 P@10 P@20 P@30 

NLPI

R01 

0.0867 0.27 0.0930 0.15 0.11 0.13 0.0950 0.0725 0.0390 

prim. 0.0515 0.2247 0.0527 0.15 0.10 0.07 0.050 0.0375 0.0270 

con-1 0.0431 0.1735 0.0578 0.10 0.05 0.05 0.055 0.0450 0.0250 

con-2 0.0328 0.1138 0.0282 0.05 0.05 0.03 0.035 0.0175 0.0190 

 

For Task 5 the best result and the primary submission was of the Naïve Bayes model, 

contrastive 1 is 2nd place and it is the Logistic Regression algorithm, and finally con-

trastive 2 is based on a Decision Tree. The results are in accordance with what we have 

tested locally, we feel that the performance is good and that the models performed well 

in the evaluation stage. 

5.1 Error analysis 

The performance of both tasks is good; for Task 1 the main drawback of the model is 

the fact that we did not arrive at a finished product, we feel that the design of the model 

needs improvement, we do not believe it is able to extract relevant information thus an 

augmentation with a general knowledge ontology such as WikiData19 would be a great 

addition. 

For Task 5, the models are in a much more mature state as the performance show, 

we feel that they have reached their limit, the error stems from the lack of understanding 

of the sentence thus needing a much more complex system, probably based on a lan-

guage model such as BERT. 

6 Conclusion 

In this paper, we proposed solutions for two of CLEF CheckThat! 2020 tasks, one ap-

proach is based on a bidirectional transformer and the others are based on machine 

learning. We achieved good results with all the submission and for future we would 

like to fine-tune our models in order to have a much better MAP, there is much room 

for improvement in Task 1 and for task 5 a language model approach would be inter-

esting to see in action. 
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