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Abstract Conversational argument retrieval is the problem of ranking argumen-
tative texts in a collection of focused arguments in order of their relevance to a
textual query on different topics. In this notebook-paper for Touché by taking a
distant supervision approach for constructing the query relevance information,
we investigate seven different deep neural ranking models proposed in the lit-
erature with respect to their suitability to this task. In order to incorporate the
insights from multiple models into an argument ranking, we further investigate a
simple linear aggregation strategy. By retrieving relevant arguments using deep
neural ranking models, it will be inspected to what extent the systems whose
main concentration is on relevant documents, would be able to retrieve arguments
which meet various quality dimensions of the arguments. Our test results suggest
that the interaction-focused networks provide better performance compared to the
representation-focused networks.

1 Introduction

Arguments may have existed since humans first started communicating [4]. People use
arguments in order to prove or contradict an opinion, in particular on controversial top-
ics where opinions diverge widely. Rieke et al. define an argument as a unit composed
of a claim (conclusion) and its supporting premises [10]. Generally, premises can sup-
port or attack a claim: the premises of one claim can be used to support or attack other
claims. A conclusion could be a word, phrase or even a sentence. Typically the premises
are texts composed of multiple sentences or paragraphs.

Due to the variety of opinion towards controversial topics, a corresponding query
typically does not have a single correct answer, and getting an exhaustive overview
can take considerable time [14]. In this situation, a ranking model which can neutrally
retrieve the arguments on all sides of a controversial topic can provide users with a
reasonable approach toward difficult questions. Such argument retrieval systems can
benefit debate support and writing assistance systems, as well as automated decision
making and opinion summarization.

This paper describes our contribution to the Touché 2020 shared task on conversa-
tional argument retrieval. By taking a distant supervision approach, our primary focus
of investigation is on a variety of neural ranking models that have been proposed in
the literature in recent years [3,8,15,16], and how they can apply to the conversational
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argument retrieval setting. In our experiments, a basis retrieval model such as BM25
produces an initial ranking which is then re-ranked by the deep neural model (except in
the case of end-to-end models, which operate without an initial retrieval). We compare
seven different neural ranking models overall. In addition to tackling this problem with
individual neural rankers, we also explore a simple rank aggregation scheme based on a
linear combination of the models’ scores. Based on the test results, interaction-focused
networks outperform significantly the representation-focused networks. Using the con-
textualized embedding representation, the convergence in the training phase happens
faster and a certain level of performance could be achieved.

In what follows, we first review a selection of relevant related works on argu-
mentation and argument retrieval, as well as the shared task setting. In Section 3, we
briefly introduce the ranking models that comprise our study; we include recurrent
siamese networks, kernel-based neural ranking models, different variants of contex-
tualized embedding-based models, as well as stand-alone neural rankers. Section 4 ex-
plains our experimental setting including data preprocessing, training the various rank-
ing models, as well as our aggregation setup, and Section 5 showcases our results. We
conclude with a summary and discussion of our results in Section 6. . . .

2 Background and Related Work

Args.me, one of the first prototypes of an argument search engine [14] ranks argu-
ments crawled from debate websites using the classical BM25F retrieval model. AR-
GUMENTEX retrieves topic-related arguments from a large collection of web docu-
ments [11] in a three-stage approach: (1) retrieving relevant documents using BM25,
(2) identifying arguments in those documents, and (3) classifying the arguments into
pro and con. To evaluate an argument’s convincingness, Habernal and Gurevych pro-
posed the use neural networks [6]: using on annotator judgments on how convincing
the arguments are, a bidirectional LSTM is trained to predict which of a given pair of
arguments is more convincing.

Dumani proposed a two-stage system for argument retrieval [4], which first retrieves
the conclusions related to a given query, and then returns the premises associated with
those conclusions. He suggested different similarity measures to semantically match
conclusions to the query, such as plain language models with additional smoothing,
and taking the textual context of the claim into account; these would be used to search
through clusters of premises in the second stage.

The criteria for ranking arguments can be categorized into three main groups related
to different argument quality aspects [13]: Logical aspects focus on the soundness of
the arguments; logical arguments will have acceptable premises relevant to their con-
clusions. Rhetorical aspects pertain to the ability to persuade [7], and evaluate how
successful an argument is in persuading its target audience [1]. Dialectical aspects as-
sess the degree to which an argument helps its recipients formulate their own stance on
the topic—this may also be considered as the utility of the argument [13]. Our study
focuses especially on retrieving arguments relevant to a given query, and as such we are
mainly concerned with retrieving logical arguments.



2.1 Touché task and Dataset

The Touché @ CLEF shared task on Conversational Argument Retrieval (Task 1) tar-
gets a retrieval scenario in a focused argument collection to support argumentative con-
versations [2]. The focused argument collection in this case is the args.me corpus,'
which forms the setting for our study in combination with a collection of argumentative
queries. While the arguments in this dataset are annotated with a stance, our models do
not consider this for the purpose of evaluating their relevance to the given queries.

3 Models

Four categories of deep neural ranking models have been used in this study. Each cat-
egory may include one or multiple network variations. For the all networks the hinge
loss function (a pairwise loss function) which is typical for ranking tasks is used to
train the models. Optimizing this loss function will contribute the models to put related
documents over the unrelated ones. Note that except SNRM which is trained using Ten-
sorFlow 1.3, the rest of networks have been trained and validated in PyTorch 1.2. The
models were trained on 7 different GPUs in parallel and took a day to get all models
trained. The inference phase of all models can reproduced in the TIRA platform [9]
and takes half an hour and 4 to 5 hours for the case of classical and contextualized em-
bedding respectively. Due to the lack of GPU, reproducing the training results in TIRA
would take a long time.

3.1 Recurrent Based Siamese Model

For the purpose of investigating the representation-based networks in the task of argu-
ment retrieval we have used Siamese network which are typically used for producing
similarity score. Gated Recurrent Units (GRU) are used to produce representation of
query and documents. The concatenation of the query and the document representa-
tions are then fed to a linear layer to produce a similarity score [12]. Bidirectional units
with a hidden size of 512 have been used for GRU units and the linear layer is a fully
connected network with an input size of 4 x 512 to 1 (the concatenation of two bidirec-
tional units produces an output with the dimensionality of 4 times of the hidden state).

3.2 Kernel Based Neural Ranking Models

The Kernel based Neural Ranking Models (KNRM) aims to produce a similarity score
for a given query and document pair by focusing on modeling the interaction that they
have using RBF kernels. This model is composed of three important parts: translation
model, kernel pooling, and learning to rank model [15]. The similarity score is pro-
duced by a fully connected learning-to-rank layer. The input of this layer is the result of
applying RBF kernels to each row of a translation matrix whose elements are the cosine
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similarities of the query and the document terms. The original implementation of the
kernel based models and Siamese network is available 2.

Another variation of the kernel based neural ranking model used in this study is
convolutional KNRM (Conv-KNRM). The most important difference between this net-
work and KNRM is the use of a set of convolutional filters to form different n-gram
embeddings. In the cross-matching layer, the similarity of the query and the document
n-grams is calculated using cosine similarity [3]. Kernel pooling, the learning-to-rank
layer, and the cost function are the same as for the previous network.

3.3 Contextualized Embedding for Ranking

The Contextualized Embeddings for Document Ranking (CEDR) model aims to im-
prove ranking performance with the help of a deeper understanding of text seman-
tics [8]. Unlike the traditional word embeddings such as word2vec or GloVe, contex-
tualized language models consider the contexts of each word occurrence in order to
assign it an embedding. For instance, the word bank may have different representations
in different sentences depending on the context it occurs in.

Among the contextualized embedding techniques, BERT has proven to be one of
the best performing in different NLP tasks. Through its ability to encode multiple text
segments, BERT allows us to make informed judgments about the similarity of text
pairs [8]. In this study we have used the BERT-base uncased model which produces a
vector of 768 dimensions for the tokens. The original implementation of the networks
which have used contextualized embedding can be found in GitHub *.

Vanilla BERT Compared to the other deep neural ranking models using contextual-
ized embedding, a relatively simple ranking model is obtained by the fine-tuning of the
BERT model with a linear layer stacked at top [8]. During training, this linear layer
requires a relatively larger learning rate than the pretrained BERT weights, which we
only want to adjust slightly.

BERT and DRMM The language model knowledge encoded in the contextualized
embeddings can be combined with any existing neural ranking model simply by stack-
ing it on top of the BERT model [8]. One of the deep ranking models that we have used
in this role is the DRMM model to see how the performance will change [5]. As the
DRMM on its own did not represent a convincing performance on the validation set,
we have excluded its result from reporting.

BERT and KNRM As an alternative to DRMM, we also combine the aforementioned
KNRM model with the contextualized embedding. In our study, we use KNRM with
static embedding, i.e. the BERT weights are not adjusted at all during training in this
case. As we have already trained KNRM with static embedding, this setting will give
us a good illustration of how the pretrained contextualized embedding will effect the
performance of the model.

2 https://github.com/thunlp/Kernel-Based-Neural-Ranking-Models/tree/master/src
3 https://github.com/Georgetown-IR-Lab/cedr



3.4 Stand Alone Neural Ranking Models

All the networks that have been discussed up to now require a small set of candidate
documents for re-ranking, which must be provided by a traditional retrieval model. As
such, the performance of the model is limited by what the first-stage ranker (in our case
BM25) can provide. By contrast, the stand-alone neural ranking model (SNRM) builds
an inverted index from a latent sparse representation of the input document collection,
which is searched directly with a corresponding representation of the query. This repre-
sentation is achieved by an hour-glass shaped fully-connected network, and captures the
semantic relationships between the query and documents [16]. During retrieval, SNRM
finds those documents whose representations have non-zero in the same positions as the
query; hence, the sparser the query representation, the faster the retrieval will be [16].
For this reason, the SNRM training procedure optimizes a traditional hinge loss term in
combination with a sparsity objective. The original implementation of the network in
TensorFlow can be found in GitHub *.

4 Experiments

This section discusses the experiments of this study. In order to do an ad-hoc retrieval
task we require the relevance information of the query and document pairs known as
grel file which can be derived from the click-through or query log information. In the
provided dataset in Touché task however, we have just the annotation of the argument
components. Thanks to the distant supervision that we have taken, we consider the
annotated premise of each argument as a related document to the conclusion of the
argument, which is considered as a query in the collection. For a typical ranking task, we
still require unrelated documents to the queries. By using fuzzy similarity between the
queries (conclusions), we assign the corresponding premise of the unrelated conclusions
(conclusions with less fuzzy similarity score) to each argument. This way we form a
binary version of grel information for the dataset and prepare it to train ranking models
for the task of ad-hoc retrieval argument task on it.

4.1 Training and Validation Data

We believe that the arguments whose premise lengths are less than 15 tokens could
not be considered as convincing and good arguments. As a result we set aside such
arguments. We have split the dataset into training and validations set. After the prepro-
cessing step we are left with 312248 training and 4885 validation arguments. We tried
to keep the validation set small in order to incorporate more information in the train-
ing phase while still allowing a meaningful assessment of model performance during
validation. Note that we have selected the arguments with exactly 5 premises to be in
validation set. According to the distant super vision approach, these premises would
be the related documents to the conclusion of the argument. For each argument we
assigned 100 unrelated premises.

4 https://github.com/hamed-zamani/snrm



As the preprocessing phase of the contextualized embedding networks is a bit dif-
ferent (in contrast to the static embedding, in contextualized embedding the punctuation
do not require to be tokenized) we formed two separate training and validation set for
these networks. Note that the training and validation arguments are the same for these
sets so that the results could be comparable.

4.2 Model Training

We keep the batch size to 32 for different networks. For all the networks, in order to have
8 evaluations per epoch, after 1239 training batches we run the validation to evaluate
the performance of the network and if the MAP@20 measure was better than the best
result obtained so far, the saved model is replaced correspondingly. As the query rele-
vance information that we have formed for the dataset is in a binary format, we believe
that MAP@20 would be a better evaluation measure compared to nDCG@20 as it is
designed mostly for the soft similarity score of relevance. We run the different networks
for 10 epochs. For the models with contextualized embedding, as the curves suggest,
there is no need to train for this many epochs. We have trained them for 5 epochs. This
saves the time and avoids complex computations out of which we do not get notice-
able improvement. The average error and validation curves for different networks are
displayed for every evaluation that we have done on the validation set. Note that the
validation points are displayed in percentage and the coordinates of the best MAP @20
achieved in the corresponding run (the step number and the MAP @20 value) have been
written displayed on the MAP curve with a blue dot.

Recurrent Network We keep the dimensionality for the input tokens to 100 and the
learning rate to 0.001. The hidden size for the GRUs have been selected to be 512. For
the linear layer we have the dropout layer with the rate of 0.5.

KNRM We decided to have 21 bins for this network as it was suggested by Xiong et
al. [15]. Learning rate and word embedding dimensionality are as the same as recurrent
network.

CKNRM The parameters for the network are the same as for KNRM model. Con-
volutional layers are 2D filters whose input is of dimension 1 and the output has the
dimensionality of 128. The window sizes of the convolution layers are 1, 2, and 3 as
suggested by Dai et al. [3]. The ReLu activation function has been applied on the output
of the convolutional layers.

Vanilla BERT The learning rate for the BERT layers are much smaller than for the
linear layer as we do not intend to make large changes to the pretrained contextualized
embedding. We keep the learning rate of the BERT layers to be 2 * 10~° and for the
linear layer the learning rate is 10~3. For the purpose of generalization we add a dropout
layer with the probability of 0.1. The linear layer has the input size of 768 to 1. 768 is
the embedding dimensionality for a token in BERT model.



Table 1: Best achieved evaluation scores of the models
Metrics @20
Model  ||[MRR|MAP|nDCG

GRU 28.4|24.1|38.05
KNRM 84.35|72.64| 80.24
Conv-KNRM ||86.72|73.32| 82.08
SNRM 82.41|70.14|78.97
Vanilla BERT [|95.12| 88.5 | 91.00
KNRM BERT |[94.57|90.18| 89.80
DRMM BERT||95.97(88.09| 91.34

BERT and DRMM The learning rates for the BERT and non-BERT layers are the
same as the Vanilla BERT. The number of bins is 11. For the feed-forward network we
exploited 2 hidden layers of 256 and 5 units.

BERT and KNRM The Learning rate for the fine tuning of the BERT layers and
training the KNRM layers are kept the same as for the Vanilla BERT model. The number
of bins is 11 and the parameters for RBF functions are kept as what was suggested by
the authors as the results on the sample data were acceptable.

SNRM For this model we did not use any hidden layer and it showed reasonable de-
crease of cost function on the training set. Learning rate is selected to be 10~ and no
drop out was used.

We have trained all the models in parallel on 8 GPUs. Table 1 shows the best eval-
uation scores achieved by different models.

Aggregation Now that we have the retrieved documents from each model, we can ag-
gregate the results by producing a score which is the result of linear aggregation of the
model scores. As the first step of aggregation, we analyze how diverse the result of the
networks are. This would give a hint how reliable the network results are. Figure 1 il-
lustrates two measures of ranking diversity namely Jaccard and Spearman. Considering
the network results for the retrieved documents as vectors with the dimensionality of
the retrieved documents and values of ranking score, we took the mean of the Jaccard
and Searman measures over the 50 test queries for illustrating how diverse the result of
the networks from each other are. We decided to exclude SNRM in the aggregation as
its results are diverse from the rest of the models.

The linear regression is trained on the model results for the validation set. The
trained model is then applied on the document scores for the test queries achieved from
different models. All the model scores have been normalized to be in the same range.



GRU - 012 014 0.091 011 0.1 0.11
QR 0.12 024 016 021 018 022 0.0069 N
ckNRM A ESET 013 021 018 0.22
BRIV 0.091 0.16 0.13 022 02 021 00059 0.6
DI 0.11 021 021 022 0.56 0.54 :. 0.4
Woa3@ 01 018 018 0.2 | 0.56 0.49 0.0
PGl 0.11 022 022 021 054 049 059 0.2
SEINE 0.005 0.0 008 0.0f ]
GRU KNRM CKNRM DRMM DBERT VBERT KBERT SNRM

GRU - 0.055 0.075 0.092 ) 1.0
(Y 0.055 ] 010 o019 o2 ] - 0.8
e GCLIVE 0.055 0.19 0.15 0.14 0037 0.16
DRMM YRR E] 0.13 005 0.16 0.6
D=3 0.092 02 014 0.13 039 045 0.4
iz 0.068 0.07 0.037 0.05 | 0.39 0.29
G1@80.0095 0.19 0.16 0.16 0.45 0.29 0.2

SNRM - 1
I i I i I i I I
GRU KNRM CKNRM DRMM DBERT VBERT KBERT SNRM

Figure 1: The heat map of the Jaccard (upper) and Spearman (lower) correlation coeffi-
cient for the 50 test queries

4.3 Test Queries

After training the models and getting the best one from the validation phase, it is time to
give the models the test queries and see what documents would be ranked top. Except
the SNRM model which has generated inverted index and can retrieve the documents
on its own, other networks require to be provided with candidate documents (premises).
To this end we make use of BM25.

We first group all the arguments based on the normalized conclusion column. Us-
ing BM25 we retrieve the most relevant normalized conclusions. We select the top 100
normalized conclusions. The premises corresponding to retrieved normalized conclu-
sions are the candidate documents to be ranked by the neural networks. Note that each
of the normalized conclusion may have a different number of premises. Consequently,
the number of documents to be ranked may vary for different test queries. Figure 2
shows how we provide the trained networks with the document-query pairs to rank in
the test phase. After getting the document scores, we sort them based on the score in a
descending way. We introduce the top 100 premises as the retrieved arguments for each
test query. There are 50 test queries which results in 5000 retrieved arguments by each
model.
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Figure 2: Candidate documents to be re-ranked in the test phase

5 Results

Training and validation results Figure 3 showcases the training progress for a selec-
tion of the models in our study. Each subplot comprises a learning curve in the top half,
which shows the development of the training loss over the epochs shown along the x-
axis. Note that the mean of the error over 1239 batches are represented. The bottom half
of each plot shows the development of the retrieval performance on the validation set
performed for every 1239 training batch—as measured in terms of mean reciprocal rank
(MRR), mean average precision (MAP), and normalized discounted cumulative gain
(nDCG)—over the same time steps. The plots highlight that the contextual-embedding
based retrieval models (Figures 3d, 3e, and 3f) converge faster, and achieve better vali-
dation performance than the other models (Figure 3a, 3b, and 3c) that don’t incorporate
contextual-embedding information.

Test Results Table 2 shows the performance of the different models in the test phase
provided by Touché committee. We assume that the models whose test results are not
provided did not achieve better score than the displayed scores. The nDCG @5 has been
reported as the test results. Evaluation of the retrieved arguments is done by human
annotators based on the argument quality dimensions discussed by Wachsmus et.al in
[13]. Devising the strategies for mapping the interaction of the input pairs may result in
more promising models in the ad-hoc tasks. Represent-focused networks cannot have a
good performance in retrieving relative arguments as they overlook the interaction of the
input pairs. KNRM achieved the best score and ranked fourth among the competitors
of the shared task. Exploiting the contextualized embedding contributes to achieve a
certain level of test score which can be improved by devising more intuitive structures
on the BERT weights. The best models with the best validation scores are not the best
ones in the test phase. This may due to some facts: in the validation we focused on
the top 20 retrieved documents while in the test phase, top 5 hits are targeted for each
model. Furthermore, in the validation phase the models had to rank 105 premises. For
the re-ranking in the test phase, however, this number is much larger ranging from 150
to 1200 arguments. Consequently, it is not surprising that the test scores would be of
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a lower grade. It can be interpreted that not necessarily related arguments would meet
the other argument quality dimensions. Comparing the results of the validation and
the test phase, highlights the importance of acquiring a dataset by which, developing
the models for retrieving arguments meeting the other argument quality dimensions is
possible. Considering the fact that only a few models of the competitors outperform
the baseline method (Dirichlet LM with the score of 75.6%) reflects that retrieving the
arguments meeting the quality dimensions of the arguments is not a trivial task.

Table 2: Test scores of the models
Model  [nDCG@5 (%)

GRU X
DRMM X
KNRM 68.4

CKNRM X
SNRM X

Vanilla BERT 40.4
KNRM BERT 31.9
DRMM BERT 37.1

Aggregation 37.2

6 Discussion

In this study, thanks to taking a distant supervision technique, we used the deep neural
ranking models to retrieve the most relevant arguments to the given queries provided in
the Touché shared task. Test results suggest that focusing on the interaction of the input-
pairs would contribute to more promising results in the ad-hoc retrieval task. KNRM
achieved the best test results and ranked fourth among the competitors. Exploiting the
contextualized embedding will result in achieving a certain level of score, a more in-
tuitive structure is still required for better results. A mathematical expression of the
argument quality dimensions to be included in the cost function of the models seems to
be a primary step that should be taken for the task of argument retrieval. As the relevant
arguments are not necessarily the ones which meet the other argument quality measures,
developing a dataset including the information regarding to the different argument qual-
ity dimensions along side the relevance information is mandatory for developing the
models with good retrieved arguments. A long way for devising an end-to-end neural
ranking model for retrieving acceptable arguments exists to get a reliable results for the
task of argument retrieval.
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