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Abstract. Nosology is an important branch of Medical Science that
concerns the classification and coding of diseases, conditions, procedures,
and other medical information. This is a vital task for all stakeholders
of the health sector, from hospitals and health regulators, to insurance
companies and governments. The ICD10 system is the current revision
of a Nosology system managed by the World Health Organization, be-
ing widely used internationally. Since medical coding is based on manual
analysis of clinical textual data, it is ripe for automation, with Natural
Language Processing (NLP) techniques used to address this challenge.
This paper describes our contribution to the CLEF eHealth 2020 Task
1 Challenge, regarding Information Extraction of ICD10 codes on un-
structured Spanish clinical text. We present two approaches for ICD10
code extraction based on Conditional Random Fields (CRFs) and the
BERT Deep Learning Language Model. The BERT -based methodology
achieved a mean average precision of 0.517 and 0.445 for ICD10-CM and
ICD10-PCS codes, respectively, and a F1 score of 0.505 for the Explain-
able AI subtask. The results obtained show the flexibility and robustness
of pre-trained Deep Learning models for NLP, only requiring fine-tuning
for a particular task, leading to reduced requirements both for labelled
data and computational effort.
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1 Introduction

Medical coding, also known as Nosology, is an important area for the health
sector, with dedicated specialists manually annotating a large number of relevant
clinical documents, such as in- and outpatient clinical reports. This operation
is essential for several stakeholders, including health information management
systems, insurance companies, governments, researchers, among others [5].

The most commonly used medical coding system is the International Clas-
sification of Diseases (ICD), developed and maintained by the World Health
Organization (WHO), which aims to provide the nations of the world with a
Nosology standard for disorders, diseases, and other conditions, structured in a
hierarchical fashion. Currently it is in its tenth revision (ICD10) [35], with a new
major release (ICD11) planed for early 2022 [5].

The ICD10 code system has been further augmented by WHO member states,
including the USA, where the Centers for Medicare and Medicaid Services have
the ICD10-CM (Clinical Modification) [1] and ICD10-PCS (Procedure Coding
System) [2] systems. The ICD10-CM focuses on morbidity data (diseases, con-
ditions, etc.), whereas the ICD10-PCS is used to code medical procedures (surg-
eries, implants, among others). Other countries have translated and adapted
these Nosology systems, such as Spain with the CIE-10-ES Diagnósticos [3] and
CIE-10-ES Procedimientos [4] systems, respectively.

The annotation process is based on the manual analysis of clinical reports,
leading to significant costs and time spent by specialists. Therefore, the intro-
duction of (semi-)automatic processes of annotation is an important challenge.
This is where Natural Language Processing (NLP) comes into play. Recently,
the paradigm of NLP has shifted to the application of large, deep models, pre-
trained on extensive corpora, and fine-tuned on a particular task at hand [37].
This allows highly accurate models for a plethora of applications with low fine-
tuning effort, when compared to tailor-made systems that require high amounts
of annotated data, with high computational costs and training time.

In this paper we describe our contributions to CLEF eHealth 2020 Task 1,
which have their basis on the application of Conditional Random Fields (CRF),
and the BERT language model [12], pre-trained on Spanish corpora [10], and
fine-tuned on NER of ICD10 codes.

2 Task and Data

The CLEF eHealth 2020 challenges researchers with real-world datasets, foster-
ing the application of state of the art NLP methodologies on the medical and
clinical domains [14]. In particular, the proposed Task 1 in this series concerns
Information Extraction (IE), focusing on the extraction of ICD10 codes from
clinical textual data in Spanish [19].

The dataset is composed of Spanish text data from clinical reports, parti-
tioned into train (500 reports), dev (250), and test (250) subsets. In addition,
2751 reports are provided with the test set as a background set, to discourage



manual corrections and promote scalable solutions. In total, 2172 ICD10-CM
and 696 ICD10-PCS unique codes are referenced in the train and dev set.

Task 1 is subdivided into 3 subtasks:

1 — ICD10-CM codes assignment predict ICD10-CM codes present in a
given clinical report, ranked by confidence;

2 — ICD10-PCS codes assignment predict ICD10-PCS codes present in a
given clinical report, ranked by confidence;

3 — Explainable AI predict ICD10-CM and ICD10-PCS codes present in a
given report and provide a textual reference (character span) that justifies
said codes.

Subtasks 1 and 2 can be regarded as a multi-label classification problem on a
report level, whereas subtask 3 is related to multiclass classification on a word-
by-word level, i.e., a Named Entity Recognition (NER) problem, where each
word present in a given text has 1 label associated with it (ICD10 codes in this
case).

3 Related Work

Medical coding has been a task mainly reserved to specialized personnel, al-
though there are some recent efforts to automate this process.

Early attempts for automatic medical coding were mainly rule-based sys-
tems for ICD9 [34] code assignment [11,13]. These systems automatically find
relations between ICD9 codes, their descriptions, and medical text, creating a
list of associations that allows medical text labelling. Another approach is de-
scribed in [16], where the authors created an ICD10 coding system by applying
Support Vector Machine classifiers in a cascaded architecture to automatically
assign cancer related medical codes to death certificates. Although all these sys-
tems achieve good results, their reach is reduced, with each only encompassing
a small subset of the full ICD code list. Nevertheless, these systems have high
interpretability, which makes them valuable and interesting to use in specific,
smaller scopes.

New methodologies developed with Deep Learning (DL) models and archi-
tectures have had a great impact in recent NLP research. Most of the tasks
and challenges of this area have benefited from deep word embedding strate-
gies, from global and context-free embeddings such as word2vec [18], GloVe [22],
and fasttext [8], to context-aware embeddings, such as ELMo [23], OpenAI GPT
[25,26,9], and BERT [12]. Contextual embedding models such as the aforemen-
tioned have led to an evolution of the NLP paradigm, allowing the use of Transfer
Learning techniques, with models pre-trained on huge corpora and fine-tuned to
achieve state-of-the-art results in specific tasks for which much smaller data is
available [37].

More and more of these DL methods are being applied in the field of clinical
NLP, including in the extraction of ICD codes from text data [36]. For this task,
the annual CLEF eHealth IE challenges have had significant contributions with



the application of state of the art models on multilingual clinical text corpora
[20,21].

The contributions of Amin et al. [6] and Sanger et al. [27] for the CLEF
eHealth 2019 IE challenge [21] illustrate the capabilities of deep NLP language
models such as BERT to extract ICD10 codes from clinical text. For this particu-
lar challenge, the goal was to extract ICD10 codes from non-technical summaries
of animal experiments, written in German.

Amin et al. [6] applied an English version of BioBERT (BERT model trained
on biomedical text data) [17] on machine-translated versions of the German sum-
maries for multi-label classification. The best results were achieved by performing
an ensemble of the predictions using the BioBERT model and a Code Attentive
LSTM network [6] with pre-trained PubMed word2vec embeddings,1 reaching
an F1 score of 0.78 on the test set of the challenge.

Sanger et al. [27] adapted the multilingual version of BERT, adding a linear
output layer to the sequence embedding generated by the model, behaving as a
one-vs-rest classification task for each of the ICD10 codes present in the training
set. The ensemble of different instances of the trained model (using different
random seeds) was also studied, but the single BERT multi-label model achieved
the best results of the challenge (F1 metric of 0.80 on the test set).

Both of these contributions show the versatility of deep language models for
ICD10 code extraction, and in particular of the BERT architecture, achieving
the top results for this challenge.

4 Methodologies

Two runs were submitted for subtasks 1 and 2, comprising two distinct method-
ologies to tackle this challenge: Conditional Random Fields (CRF) and the BERT
Deep Learning Model. For subtask 3, we submitted a single run using the BERT -
based model.

Both methodologies tackle all subtasks at once, by considering the challenge
as a NER problem, similar to what is described in Subtask 3. In this case, each
token present in a given clinical report is classified using the available ICD10
codes (including an O tag for tokens that do not have a code associated with
them). The predictions for Subtask 1 and 2 are derived from this NER schema
by identifying all predicted ICD10-CM and ICD10-PCS codes (respectively) in
a given clinical report, and associating them to the clinical report identifier, in
a descending order of confidence. Thus, the only changing factor across method-
ologies is how token classification is performed: using CRF, or using BERT.

Each of the tested methodologies was implemented in Python and is described
below in more detail.

1 https://archive.org/details/pubmed2018 w2v 400D.tar

https://archive.org/details/pubmed2018_w2v_400D.tar


4.1 Conditional Random Fields

CRFs are a commonly used technique for NER, since they take into account
context around neighbouring words to create a statistical model that can infer
their type [29].

For text pre-processing, namely tokenization, lemmatisation, Part-of-Speech
tagging, among other morphological token characteristics extraction, the Stan-
fordNLP toolbox stanza2 [24] is used, taking advantage of the available Univer-
sal Dependencies and NER Spanish models.

The methodologies applied for ICD10 code extraction are similar to those
described by Tawara et al. [32], namely the calculation of features and score.
In addition to these, other features are considered relating to string search and
matching with a dictionary of ICD10 code descriptions. These features are then
considered alongside the extracted n-grams and are used as input for the CRF
model [15,30].

This approach is used to produce two distinct models:

CRF CM CRF model trained exclusively on ICD10-CM codes;
CRF PCS CRF model trained exclusively on ICD10-PCS codes.

Each of these models used to create predictions for subtasks 1 and 2, re-
spectively, identifying all codes present in a given report and ranking them by
confidence.

4.2 BERT

A schema of the steps followed for the BERT methodology is shown in Figure
1.

The BERT model was employed as a means of performing NER on the clinical
reports of the dataset. Since the reports are written in Spanish, it is adequate to
use models pre-trained on Spanish corpora; thus we use the BETObase,uncased

pre-trained model [10], available3 on the transformers4 Python package [33].
This model was pre-trained on text that was first pre-processed to lowercase.
BETObase,cased,5 where words can remain capitalised, was also considered, but
since they provided similar results, the uncased version was chosen for simplicity.

Since BETObase,uncased (henceforth BETO) is a pre-trained model, most
of the computational effort has already been performed, with the model only
requiring fine-tuning for the NER task. This is performed by addition of a linear
classification layer for the token embedding outputs of the model, and training
all model parameters with this new task [12].

However, since the type of text present in clinical reports can vastly differ
from commonly used corpora for model pre-training, a first Language Modelling

2 https://stanfordnlp.github.io/stanza/
3 https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
4 https://github.com/huggingface/transformers
5 https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased

https://stanfordnlp.github.io/stanza/
https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased
https://github.com/huggingface/transformers
https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased
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Fig. 1. BERT -based methodology steps, illustrating the pre-training, language mod-
elling, and NER fine-tuning steps and their relations to the evaluated models (in blue).

(LM) step was considered, where the BETO model is first tuned on the train set
of the challenge’s dataset, by performing Masked Language Modelling and Next
Sentence Prediction (both unsupervised tasks) [12]. This is expected to further
improve results by modelling the particular architecture, choice of words, and
medical jargon used in clinical reports.

Furthermore, since ICD10-CM and ICD10-PCS codes differ in application,
it is reasonable to separate the classification of each into two distinct models.
Therefore, each pre-trained BETO model is fine-tuned on two distinct NER
tasks for each type of ICD code, generating two classifiers: BETO CM and
BETO PCS. Each of these is used to predict exclusively ICD10-CM or ICD10-
PCS codes, respectively, with their predictions combined to identify all relevant
codes in a given text.

Consequently, four different BERT -based models are developed and tested
for NER:

BETO CM Pre-trained on Spanish corpora, fine-tuned on ICD10-CM NER;
LM-BETO CM Pre-trained on Spanish corpora, further LM tuning on the

challenge’s dataset, fine-tuned on ICD10-CM NER;
BETO PCS Pre-trained on Spanish corpora, fine-tuned on ICD10-PCS NER;
LM-BETO PCS Pre-trained on Spanish corpora, further LM tuning on the

challenge’s dataset, fine-tuned on ICD10-PCS NER.

Model Training The dataset was first pre-processed and converted to a NER
dataset, with segmented sentences. Tokenization is performed by the BERT
WordPiece tokenizer [12].

The BETO model was trained for LM for 50 epochs, using a linearly de-
creasing learning rate, starting at 5× 10−5. Training was done with a batch size



of 16 and a block size of 256 (maximum number of tokens per input sequence).
This block size was found to be sufficient, since most sentences have a much
smaller number of tokens present. According to the results of this training step,
a suitable number of epochs was chosen as a basis for the LM-BETO models, to
avoid overfitting.

All models are trained for NER for 15 epochs, with a batch size of 8, and
block size of 256. The learning rate is determined by a cosine scheduler with
warmup (2 epochs) and hard restarts (2 cycles), with a maximum of 5 × 10−5.

5 Results

Two main sets of results are here reported, based on the evaluation on the dev
(Subsection 5.1) and the test (Subsection 5.2) set.

Analysing the results on the dev set, two runs were submitted for evaluation:
one using the CRF methodology, and another based on the LM-BETO CM
and LM-BETO PCS models. The test set results were provided by the task
evaluators6 after run submission.

5.1 Dev Set Results

Language Modelling Results The evolution of LM training of BETO on the
train set can be seen on Figure 2, with both training loss and dev set perplexity
shown for each training epoch. Perplexity is a commonly used metric for LM,
which measures how good a language model is at predicting an unknown sample,
and is described in Equation 1, with H(m) being the cross-entropy loss of a given
model m. Lower perplexity values indicate a better predicting language model.

PP (m) = 2H(m) (1)

As seen of Figure 2, the perplexity decreases with more training time, al-
though it somewhat stabilizes after approximately 10 epochs. To avoid overfit-
ted LM-BETO models, their 10 epoch weights are used henceforth. This model
is then used as a basis for fine-tuning LM-BETO CM and LM-BETO PCS on
NER of ICD codes.

NER Results The results obtained for NER on the dev set for all considered
trained models are shown in Table 1. The considered metrics are the micro-
averaged precision (P ), recall (R), and F1-score (F1).

Note that this evaluation was performed considering the NER task, i.e., all
presented metrics are on a token by token basis. Furthermore, although mod-
els were only trained on the codes present in the train set, metrics are shown
considering all unique train and dev ICD10 codes.

6 https://github.com/TeMU-BSC/CodiEsp-Evaluation-Script

https://github.com/TeMU-BSC/CodiEsp-Evaluation-Script
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Fig. 2. Evolution of perplexity and training loss during language model training of
BETO.

Table 1. NER results on the dev set.

P R F1

CRF CM 0.693 0.304 0.513
BETO CM 0.498 0.477 0.487
LM-BETO CM 0.498 0.480 0.489

CRF PCS 0.335 0.582 0.439
BETO PCS 0.440 0.341 0.384
LM-BETO PCS 0.443 0.344 0.388



5.2 Test Set Results

The submitted runs were evaluated by the task organizers, with reported results
shown in Tables 2, 3, and 4, for subtasks 1, 2, and 3, respectively. Bold metrics
indicate the official metric used for model evaluation. Bold values indicate the
model that achieved the best value for a particular metric.

For the subtasks, three distinct evaluation modes were considered:

All codes Considers all unique ICD10 codes present in the train, dev, and test
sets;

Train + Dev codes Considers only codes present in the train and dev sets,
codes that are unique to the test set are ignored;

Category Only consider as labels the first 3 digits of ICD10-CM codes, and
the first 4 digits of ICD10-PCS codes.

For Tables 2 and 3, the metrics used are the Mean Average Precision (MAP)
and the Mean Average Precision at K (MAP@K) (K = 30 for ICD10-CM codes,
and K = 10 for ICD10-PCS codes) [28]. Micro averaged precision (P), recall (R)
and F1-score (F1) are also reported.

Table 2. Subtask 1 (ICD10-CM codes assignment) test set results.

All codes Train + Dev codes Category

M
A
P

M
A

P
@

3
0

P R F1 M
A

P

M
A

P
@

3
0

P R F1 P R F1

CRF CM 0.239 0.239 0.759 0.198 0.314 0.286 0.286 0.759 0.230 0.354 0.835 0.238 0.370

LM-BETO CM 0.517 0.517 0.551 0.638 0.591 0.604 0.603 0.551 0.743 0.633 0.624 0.736 0.676

Table 3. Subtask 2 (ICD10-PCS codes assignment) test set results.

All codes Train + Dev codes Category

M
A
P

M
A

P
@

1
0

P R F1 M
A

P

M
A

P
@

1
0

P R F1 P R F1

CRF PCS 0.407 0.407 0.537 0.432 0.479 0.468 0.468 0.537 0.524 0.530 0.591 0.476 0.527

LM-BETO PCS 0.445 0.444 0.454 0.527 0.488 0.509 0.508 0.454 0.639 0.531 0.509 0.579 0.541

For Table 4, the used metrics are the micro-averaged precision, recall, and
F1-score. For this particular subtask, correct predictions are only considered
when the correct code is predicted and its reference position is also correct, with
an error tolerance of 10 characters.



Table 4. Subtask 3 (Explainable AI) test set results.

All codes Train + Dev codes

P R F1 P R F1

LM-BETO CM+PCS 0.534 0.478 0.505 0.534 0.562 0.548

6 Discussion

Tables 2 and 3 show the positive results obtained using the BERT methodology,
with an achieved MAP of 0.517 and 0.445 for ICD10-CM and ICD10-PCS codes,
respectively. Furthermore, a F1 score of 0.505 was obtained for subtask 3, which
considering the large amount of possible codes (2172 ICD10-CM and 696 ICD10-
PCS), shows DL models can effectively perform NER on unconstrained clinical
texts and extract clinically relevant information from them.

Interestingly, CRF methodologies achieved the best NER results on the dev
set evaluations, as seen on Table 1. Nevertheless, precision and recall are con-
siderably unbalanced, when compared with the BERT -based classifiers, which
may indicate the tendency of CRF models to over- or under-estimate ICD10
codes. This possibility is further corroborated by the results obtained in the test
set, with high precision scores, but low recall, resulting in lower F1 scores. This
methodology appears to be more conservative on its labelling, returning a low
number of codes that are mostly correct, but many instances of ICD10 codes are
ignored. This can be an indication of an increased difficulty in labelling rarer
codes, with the model only confidently labelling a token as a code if it has a
particular high frequency in the training data. A more in-depth analysis of the
models’ behaviours is required, namely threshold analysis, and precision-recall
trade-off.

Although the models have similar results for the identification of ICD10-PCS
codes (only differing in 0.04 on MAP), they are worse than the best results for
the first subtask, even when there is a considerable less amount of ICD10-PCS
codes to consider. A possible reason for this may be how medical procedures
are referenced in clinical text, which differs from how medical conditions are
mentioned: many procedures are often encompassed in one or two words of text,
with much of its underlying information (such as location of the procedure,
method, etc) implicit or scattered along the report. This makes human coding
trivial, since humans can detect this implicit information across long texts, but
severely hampers performance of both employed methodologies.

7 Conclusions

In this paper we present two methods for ICD10 code extraction from non-
structured clinical text in Spanish, achieving a MAP of 0.517 and 0.445 for
ICD10-CM and ICD10-PCS codes, respectively, and a F1 score of 0.505 for



NER. This is achieved by employing two BERT -based models, both LM tuned
to the dataset, and fine-tuned on NER of ICD10-CM and ICD10-PCS codes.

It is important to note that this BERT -based methodology was applied for
Spanish clinical texts, but could have easily been applied to different languages,
simply by using a model that is pre-trained on that specific language, or using
a multilingual model, and performing fine-tuning as described here.

The achieved results show the flexibility of novel DL based NLP models for
the execution of a number of tasks on several different fields of application, taking
advantage of pre-trained models to fine-tune classifiers with little computational
effort and small amount of data, bringing Transfer Learning to NLP.

7.1 Future Work

The aforementioned methodologies can be significantly improved in the future
to create an even more robust system that can tackle a larger number of ICD10
codes.

A clear gap in the DL methodology is the lack of input provided by the
ICD10 code descriptions, which often contain very relevant information regard-
ing certain aspects of a given condition, disease or procedure. Moreover, there
exists vast data online regarding these same codes and the underlying concepts
they represent, which can be taken advantage to build a more robust system,
employing techniques similar to those by Bai et al. [7].

BERT models can also be improved for NER with several different tech-
niques. For instance, Souza et al. [31] add a CRF layer to BERT to improve
Portuguese NER, allying the transfer capabilities of BERT with the structure
predictions of CRF. This can also be considered for this challenge, since the
designations of conditions or procedures follow a given structure, which can be
captured more effectively by CRFs.

Finally, the scope of the solution here presented was limited to the ICD10
codes present in the training set, which are a very small percentage of the total
number of codes in this Nosology system (98288 ICD10-CM and 87170 ICD10-
PCS codes). A truly robust ICD IE system would have the possibility to predict
any code, as well as have an inherent representation of their hierarchical struc-
ture, being able to predict the most accurate code for a given sequence when
possible, or a more general but suitable code when not.
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