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Abstract. This paper describes our contribution to the CLEF eHealth
2020 Task 1, consisting of the CIE-10-ES annotation of Spanish Elec-
tronic Health Records (EHRs). CIE-10-ES coding is the extended ver-
sion of the ICD-10 in Spain. One of the sub-tasks is aimed at the in-
terpretability of proposals, which is in line with the latest demands in
Natural Language Processing (NLP). Moreover, ICD-10 entries gener-
ated by hospitals usually follow an extreme distribution, involving com-
plex annotation challenges. For that reason, an unsupervised semantic
similarity-based method has been explored using a representation based
on SNOMED-CT clinical terminology. Since example-based learning is
able to capture complex patterns, the proposal has been combined with
Gradient Boosting methods to model the codes with more instances.
mAP scores of 0.517 are achieved for CIE-10-ES codes associated with
diagnoses and 0.398 for CIE-10-ES procedure codes. The mixed approach
improves the strict supervised proposals by more than 38% and 13% re-
spectively. Finally, the unsupervised component is used to provide code
evidences in EHRs exploiting a greater interpretability.

Keywords: Semantic similarity · ICD-10 coding · CIE-10-ES coding ·
Ensemble method

? Supported by the Spanish Ministry of Science and Innovation through the
MAMTRA-MED Project, AEI/FEDER, UE, under Grant TIN2016-77820-C3-2-
R, and the INDICA-MED Project, AEI/FEDER, UE, under Grant PID2019-
106942RB-C32.
Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2020, 22-25 Septem-
ber 2020, Thessaloniki, Greece.



1 Introduction

Health services produce vast amounts of data every day. A significant proportion
of this information is captured by clinicians in EHRs. Although EHRs may
contain structured information such as medical test results, both the patient’s
history and the clinician’s judgment are often described in natural language,
requiring more flexibility and higher level of customization to capture all the
details.

The clinical domain is characterized by a very diverse language, full of acronyms,
misspellings, large specialized vocabularies, unstructured phrases, and a substan-
tial richness of granularities. While there is a wide range of general NLP tools,
the reduced accessibility of biomedical texts hinders the implementation of do-
main techniques to deal with all these complexities. In turn, the non-domain
tools do not seem to fit properly into the requested tasks because clinical lan-
guage involves a lack of lexical standardization. Therefore, syntactic rules are
often relaxed with respect to texts in the general domain.

One of the tasks with the greatest impact on hospital funding is the ICD-
10 coding, which aims to translate causes of morbidity and mortality written
in natural language into structured data that can be quantified for statistical
analysis. ICD-10 coding is a high-level task, which requires dealing with strong
lexical variability, language understanding for document-level decision making,
and extremely unbalanced data distributions. These restrictions are accompa-
nied by the General Data Protection Regulation (GDPR) applied by Europe,
which greatly reduces private access to patient data in order to preserve privacy.
Limited access to clinical data and frequent associated biases often result in the
scarcity of data and the absence of numerous codes within available data sets.
These challenge raise questions about the viability of some data-driven models.
Thus data augmentation, transfer learning, and unsupervised techniques become
particularly relevant.

In this paper we present our contribution to the CLEF eHealth 2020 Task
1 [17], which aims at CIE-10-ES coding of EHRs. An unsupervised similarity-
based method that can suggest codes not present in the training data is proposed.
In addition, a boosting method is analysed to reveal the limitations of data-
driven systems. Finally, both methods are combined to exploit the provided
data but mitigating the scarcity of instances.

2 Related Work

This is not the first time that the Conference and Labs of the Evaluation Forum
(CLEF) encourages the proposal of methods to solve ICD coding task. Between
2016 and 2018, tasks have been organized for the classification of death notes.
The documents used consist of a couple of short lines of text describing the di-
agnoses. The correspondence per sentence is ‘zero-to-many’ codes per sentence.
Although some sentences do not contain diagnoses, the tendency is for the rele-
vant information to be highly condensed.



Unsupervised approaches have been explored in these conditions. For exam-
ple, Van Mulligen et al. [25] and Ho-Dac et al. [13] focus on applying Information
Retrieval (IR) techniques to search for similar instances, Cabot et al. deal with
coding as a Name Entity Recognition (NER) task [5] and Cossin et al. use lexical
similarity based on Levenshtein distance to assign codes [7]. Multiple feature-
based approaches have also been proposed, such as linear regression [16], Naive
Bayes (NB) [4], and random forests [15]. In addition, sequence-to-sequence ap-
proaches have been explored [23, 10, 3], in which an encoder-decoder structure is
used to transform a sequence of words into a sequence of codes.

In 2019, the codification of summaries of animal experiments into ICD-10 sub-
chapters was proposed [19]. The summaries provided include paragraphs where
the relevant information is more sparse. In contrast, the number of classes is
severely reduced to a few categories, significantly simplifying the problem. Two
models based on BERT [8] are proposed exploiting fewer and more frequent la-
bels. Amin et al. use the multilingual BERT-Base model directly on the German
reports [2], and Sänger et al. fine-tune the BioBERT model [14] on the reports
translated into English [22]. The latter reaches the best results. In line with
the unsupervised proposals, Ahmed et al. explore the application of k-Nearest
Neighbor (kNN) [1].

The current proposed task is more in line with the need of hospitals. It con-
sists of coding complete EHRs, which are longer than the documents of previous
years, using all the official codes. In this paper we have followed proposals for
semantic similarity between terms and codes such as those proposed by Ning et
al. [20] and Chen et al. [6], but at the document level, with all the difficulties
that this entails.

3 Proposed Approach

We explore a semantic similarity-based method for CIE-10-ES coding to deal
with the abundance of biases in the data.

We start by using an NER method by associating SNOMED-CT concepts
to official CIE-10-ES descriptions and EHRs text. Subsequently, the method
estimates the similarity between concepts using the hierarchical structure of
SNOMED-CT. Once the similarities between concepts are known, code affinity to
text is computed as the similarity between sets: the concepts defining a code and
those concepts within a piece of EHRs text. Finally, the code ranking associated
to a document is established by ordering code relatedness to all pieces of EHRs
text. In addition, the combination of the resulting ranking with a supervised
learning method has been explored. An overview of our approach and the overall
pipeline is shown in Figure 1. More details of each process are given below.

3.1 SNOMED-CT association

As early mentioned, access to Spanish clinical data is very restricted, which
complicates modeling Spanish representations based on distributional semantics



Fig. 1: Diagram of the pipeline. The red block NER assigns SNOMED-CT con-
cepts to both ICD descriptions and EHRs; the grey blocks Conceptual similarity,
Code similarity and Sorting compute the similarities between the SNOMED-CT
concept sets, and sort the codes according to their affinity; the yellow blocks
Gradient Boosting and Sorting predict and rank codes based on Bags of Words
(BoW) features; and finally the green block Fusion combines both rankings in
the final output.

with a sufficiently diverse vocabulary. Accordingly, domain knowledge bases are
used to provide an overall representation of all the different concepts.

One of the most widely used standardized clinical terminology is SNOMED-
CT [9], which hierarchically encompasses more than 300,000 unique clinical con-
cepts and 70,000 unique clinical terms. SNOMED-CT is designed as a low-level
terminology to deal with lexical diversity rather than abstract concepts, cover-
ing a broad scope. The assignment of SNOMED concepts to descriptions and
EHRs has been done through a partial lexical matching. For this purpose, a
pre-processing step has been firstly carried out by stripping accents and punctu-
ation marks, converting text to lowercase, lemmatizing and stemming, removing
stop words, grouping pertainym words (terms ”pertaining to” others, such as
pulmonary and lung), and handling term exclusions.

A Spanish lemmatizer built from WordNet [11] and ConceptNet [24] has been
used to standardize the text with a greater coverage. Lexical disambiguation does
not seem to be particularly relevant to the task, so the use of this knowledge-
based lemmatizer has been preferred to other tool based on supervised models,
such as spaCy4 for general domain and IxaMed [12] for clinical domain. All the
words not found by the lemmatizer are subsequently stemmed. In addition, a

4 https://spacy.io



list of pertainyms has also been generated using WordNet in conjunction with
machine translation techniques and human supervision.

3.2 Similarity computation

SNOMED-CT organizes concepts using hierarchical ‘is-a’ relationships, so it is
relatively easy to estimate similarities between nodes according to some of the
well-known semantic similarity measures in graphs. Multiple similarity measures
based on path or Information Content (IC) are described in [21]. Although path-
based measures are simpler, linearity in the hierarchy is assumed, i.e. ‘is-a’ rela-
tionships are equally relevant in general and specific concepts. For this reason,
IC-based measures seem to better fit this task, suggesting greater similarity for
specific nearby concepts than for general close concepts. In particular, the Lin
measure (Equation 1) has been applied in this proposal.

Slin(c1, c2) =
2 ∗ IC(lcs(c1, c2))

IC(c1) + IC(c2)
(1)

where c1 and c2 are the couple of concepts, lcs is the lowest common subsumer,
and IC is the Information Content, which is usually computed with the frequency
of concepts in large corpus. A fixed IC value is assumed based on the depth of
the node in the branch in order to avoid corpus dependency and accessibility
constraints.

The similarity between code sets (SG in Equation 2) can be seen as a problem
of maximizing pair arguments. Pair assignments can be defined as a bipartite
graph G = (V,E), with the vertices V being the two sets of codes and the edges
E being the similarities between codes. We use the Kuhn–Munkres algorithm [18]
to solve the optimization problem.

SG =
max

∑Ncode

i=1

∑Nehr

j=1 Mlin(i, j)B(i, j)

Ncode
(2)

where Nehr is the number of SNOMED-CT concepts in the piece of document,
Ncode is the number of SNOMED-CT concepts in the code description, Mlin(i, j)
is a matrix with the Lin similarity values, and B(i, j) is a binary value which
is only active if concept i has been paired with concept j. There is only one
positive value of B for each i.

Once the similarity values between all codes and each of the pieces of a
given document (SG) are calculated, a first ranking is created by sorting the
codes by SG at the document level. The final ranking is subsequently produced
by recalculating all code similarity values through an iterative exclusion of the
SNOMED-CT concepts already used by the codes at the top of the first ranking.
With this second computation, the number of codes associated with a single
SNOMED-CT concept subset is limited to only one.



3.3 Supervised learning

A priori, one would expect worse accuracy values for sub-tasks 1 and 2 due to lack
of learning for complex patterns and better recall values by accessing all possible
codes and a wide variety of vocabulary. We have explored such complex decisions
by implementing a Gradient Boosting multi-label algorithm, based on binary
classifiers using a ‘one-vs-the-rest’ (OvR) strategy. These classifiers chain a series
of consecutive learning models, iteratively emphasizing the mistakes made by the
previous model. Boosting techniques seem to produce better results for these
types of problems where significant imbalance is the main factor. Finally, we
rank the codes by prioritizing the predictions of the Gradient Boosting classifiers,
which have been ordered according to the confidence values. The predictions are
followed by the codes suggested by the similarity-based approach.

4 Experiments

The following subsections describe the used data, the proposal setup and the
achieved results.

(Spanish)
Describimos varón de 37 años con vida previa activa que refiere
dolores osteoarticulares.

Durante el ingreso para estudio del sı́ndrome febril con antece-
dentes epidemiológicos de posible exposición a Brucella presen-
ta un cuadro de orquiepididimitis derecha.

La exploración fı́sica revela: Ta 40,2 C; T.A: 109/68 mmHg; Fc:
105 lpm.

(English)
We describe the case of a 37-year-old man with a previous acti-
ve life who complained of osteoarticular pain.

During admission for study of the febrile syndrome with epide-
miological history of possible exposure to Brucella presents a
picture of right orchiepididymitis.

Physical examination revealed: Ta 40.2 C; T.A: 109/68 mmHg; Fc:
105 bpm.

Fig. 2: Examples of Spanish and English sentences in the CodiEsp-SPACCC
corpus – expressions associated with CIE-ES-10 codes are shown in bold.



4.1 Data sets

CIE-10-ES coding challenge has been evaluated in the CodiEsp-SPACCC cor-
pus5. It consists of 1000 EHRs, with an average of 16.5 long sentences per doc-
ument, and split into training, development, and test data sets. Each document
usually contains a wide range of information, including medical history, medi-
cal examinations, test results, and clinical judgments, all without a predefined
structure. A piece of document is shown in Figure 2.

The examples illustrate a series of evidences distributed along the text. The
CIE-ES-10 associated with the expressions found in the example are collected
in Table 1. The terms used by clinicians in EHRs differ in granularity from
those defining code descriptions. ICD descriptions tend to be more abstract in
order to capture multiple cases, which gives the coding task a high degree of
complexity. Fortunately, SNOMED-CT handles these granularities, extending
the more general concepts in the hierarchical structure.

Table 1: English evidences from the example in Figure 2.

CIE-ES-10 code Description Evidence

m25.50 Pain in unspecified joint osteoarticular pain

r50.9 Fever, unspecified febrile syndrome

z20.818 Contact with and (suspected) exposure to
other bacterial communicable diseases

exposure to Brucella

n45.3 Epididymo-orchitis orchiepididymitis

In terms of data distribution, ICD-10 codes tend to follow extreme distribu-
tions, characterized by a large imbalance, a scarcity of instances for most codes,

5 https://zenodo.org/record/3837305#.XwMHiBHtZH5

Table 2: Code group statistics.

Diagnoses Procedures

Groups
Freq.
range

# labels # instances
Freq.
range

# labels # instances

G1 1 704 704 1 193 193

G2 2 499 704 2 186 192

G3 3-4 254 704 3 84 192

G4 5-7 144 701 4-6 45 192

G5 8-11 82 704 7-9 26 193

G6 12-20 46 688 11-19 13 186

G7 21-45 22 675 20-33 7 182

G8 >45 9 666 >33 2 125



and the presence of hospital biases. In this case, such a power-law distribution
can be seen in Table 2. The training codes are ordered according to frequency
and clustered in 8 groups, trying to gather a similar number of instances.

Table 2 shows that the nine most frequent diagnoses in group G8 appear
about the same number of times as the 704 least frequent diagnoses in group
G1. In the case of procedures, those 13 codes that appear between 11 and 19
times (group G6) are equivalent in volume of entries to the 84 codes of group
G3, which appear 3 times each.

Figure 3 plots a normalized histogram of these groups for the training (in
grey) and development (in black) data sets. A ninth group (G0) has been in-
cluded to represent all unseen codes in the training data set. The training and
development distributions for both diagnoses and procedures are different, with
the unseen codes reaching almost 20% and 30% of instance volume, respectively.
The lack of information on labels implies a huge problem for data-driven ap-
proaches as a considerable percentage of the codes are left out of the model. For
this reason, we have proposed a method that directly uses CIE-10-ES descrip-
tions and does not require training data.

(a) Diagnosis Code Frequency Histogram (b) Procedure Code Frequency Histogram

Fig. 3: Comparison of code relative frequency histograms for the training and
development data. The codes have been grouped by frequency ranges so that
similar numbers of training instances are held (except for the first group where
unseen codes are shown).

4.2 Experimental Setting

The CLEF eHealth 2020 Task 1 [17] is structured into 3 sub-tasks related but
with different objectives: the suggestion of CIE-10-ES codes corresponding to
diagnoses (CodiEsp-D), the recommendation of CIE-10-ES codes associated with
procedures (CodiEsp-P), and the prediction of both codes facilitating evidences
within the report (CodiEsp-X). The first two sub-tasks consist of generating a
ranking of codes ordered by their affinity to a given EHR, while the objective
of the last task is to retrieve only those codes that are most probable, together
with the evidence. Based on these objectives, we propose different settings for
each sub-task.



We explore a similarity-based method including the specifications described
in Section 3. The evidences of the codes in the training data set has been used
as part of the descriptions to feed the method with more specific information
about the codes. Furthermore, we exploit a digitized version of the CIE-10-
ES tabular list, including additional code descriptions in combination with the
official entries provided by the organizers. Finally, we propose two approaches
in the first two sub-tasks, one method without grouping pertainym words (SIM-
BASIC) and another using these related words (SIM-EXT). As for the third
sub-task, we implement the approach that does not group related words, using
different similarity thresholds to choose the retrieved codes per document. The
thresholds 0.7 (SIM-BASIC-7), 0.8 (SIM-BASIC-8), and 0.9 (SIM-BASIC-9)
have been applied.

As for the supervised learning method, we explore a Gradient Boosting algo-
rithm for sub-tasks 1 and 2. The model is also trained on Spanish abstracts from
Lilacs and Ibecs annotated with CIE-10-ES codes in addition to the training data
set. These data sets are also provided by the organizers and reach the amount
of 355,840 abstracts, with an average of 2.5 codes per abstract. The distribution
of these codes is also extreme unbalanced, so a subsampling is performed during
the training to avoid excessively increasing the negative instances per code. Re-
garding the representation, classic BoW features are applied due to the presence
of a large volume of codes with less than 20 instances. In particular, label-specific
features (GB-BNS) are used in order to focus learning and prediction on code-
relevant patterns. For this purpose, we extract the term frequency weighed by
Bi-normal separation (TF-BNS). Global features such as TF-IDF (GB-IDF) are
also used for procedures as this data set has few labels and less statistical in-
formation. None of these approaches are proposed in the last sub-task because
those lack sufficient interpretability.

We implement a final approach (GB-SIM) for the first two sub-tasks by com-
bining the Gradient Boosting method that uses TF-BNS features (GB-BNS) and
the similarity-based method that groups related words together (SIM-EXT). As
a result, the codes predicted by the classifiers are ranked according to the con-
fidence value and merged with the ranking generated by the similarity method.
Codes suggested by classifiers are placed at the top of the new ranking assuming
that supervised learning methods generally lead to higher precision values.

4.3 Evaluation

Two different evaluation metrics have been defined for the CLEF eHealth 2020
Task 1 according to the objectives of each sub-task: mAP and F1.

The first two sub-tasks aim to generate a list of codes per EHR ranked by
relevance and are evaluated with mAP in order to quantify how many significant
codes are in the top positions. mAP is specified below.

AP =

∑n
k Precision@k × rel@k

TP + FN
(3)



mAP =

∑N
i APi

N
(4)

where n and N are the total number of retrieved codes, Precision@k is the
precision considering the top k codes, rel@k is a relevance function, and APi is
the Average Precision for the i top codes.

In contrast, the last sub-task is designed to associate CIE-10-ES codes to
EHRs in an explainable way, providing the text fragment containing the key-
words. In this case, the number of retrieved and successful codes is assessed
computing F1.

4.4 Results

Metrics are calculated using all the codes described in the CIE-10-ES coding and
only those that appear in the training data set. The results of sub-tasks 1 and
2 are shown in Table 3. Approaches based on semantic similarity obtain better
results than the supervised method, considering both all codes and only those
seen during training. SIM-BASIC achieves an mAP score of 0.51, significantly
higher than the 0.37 mAP score for GB-BNS, with a difference of 0.14. This seems
to support the ability of SIM-BASIC to predict unseen or rare codes as opposed
to the need for higher volumes of instances in GB-BNS. Indeed, the difference
between scores when evaluating only seen codes is slightly reduced, reaching
the mAP scores of 0.596 and 0.475 respectively. Apparently, Gradient Boosting
method fails to model rare codes. Moreover, better results are generally obtained
with the GB-SIM approach, which combines the characterization of codes with
little information from SIM-BASIC and the learning of more complex patterns
from SIM-BNS.

Table 3: Results of the approaches for CodiEsp-D and CodiEsp-P sub-tasks.

Approach

CodiEsp-D CodiEsp-P

(All codes)
mAP

(Only seen codes)
mAP

(All codes)
mAP

(Only seen codes)
mAP

SIM-BASIC 0.517 0.596 0.366 0.421

SIM-EXT 0.493 0.571 0.376 0.440

GB-IDF - - 0.351 0.403

GB-BNS 0.372 0.475 0.310 0.345

GB-SIM 0.511 0.612 0.398 0.457

Precision, Recall and F1 are shown in Table 4 for third task. There are
different methods to improve the interpretability of supervised models such as
distillation into decision trees. However, exploring these lines has not been the
purpose of this paper. Thus, only similarity-based approaches have been used



to predict codes by retrieving textual evidence. In particular, the SIM-BASIC
approach is applied with different similarity thresholds. Using a threshold of 0.9,
SIM-BASIC-9 achieves an F1 score of 0.451 with all codes and 0.494 with only
those seen in the training data set. Unrelated codes are apparently associated
when choosing the less restrictive thresholds, resulting in a decrease in F1.

Table 4: Results of the approaches for CodiEsp-X sub-task. Precision (P) and
Recall (R) are shown for all and only seen codes.

Approach
All codes Only seen codes

P R F1 P R F1

SIM-BASIC-7 0.268 0.414 0.326 0.351 0.465 0.400

SIM-BASIC-8 0.397 0.413 0.405 0.443 0.464 0.453

SIM-BASIC-9 0.508 0.406 0.451 0.537 0.457 0.494

5 Conclusion and Future Work

ICD-10 coding, and in particular the Spanish extension of this task (CIE-10-ES
coding), cannot be easily automated with the existing techniques. One of the
main problems is the biased distribution of data that prevents the availability
of sufficient data for all codes, hindering the development of supervised learning
methods.

In this work, we propose an unsupervised method that improves recall by
suggesting also rare or unseen training codes. Our method achieves the charac-
terization of less frequent codes through a representation based on the clinical
terminology SNOMED-CT. Finally, we found that an ensemble that introduces
supervised learning methods is able to provide a better characterization of fre-
quent codes.

We plan to extend our work by adding other intrinsic relationships of the
SNOMED-CT concepts that provide alternative information. We also plan to
explore the generation of similarity-based features to address few-shot and zero-
shot learning.
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