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Abstract. This paper presents an overview of the ImageCLEFcoral
2020 task that was organised as part of the Conference and Labs of
the Evaluation Forum - CLEF Labs 2020. The task addresses the prob-
lem of automatically segmenting and labelling a collection of underwater
images that can be used in combination to create 3D models for the
monitoring of coral reefs. The data set comprises 440 human-annotated
training images, with 12,082 hand-annotated substrates, from a single
geographical region. The test set comprises a further 400 test images,
with 8,640 substrates annotated, from four geographical regions ranging
in geographical similarity and ecological connectedness to the training
data (100 images per subset). 15 teams registered, of which 4 teams sub-
mitted 53 runs. The majority of submissions used deep neural networks,
generally convolutional ones. Participants’ entries showed that some level
of automatically annotating corals and benthic substrates was possible,
despite this being a difficult task due to the variation of colour, texture
and morphology between and within classification types.
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1 Introduction

Coral reef systems are delicate natural environments, formed of highly complex
non-uniform structures that support the biodiversity found in tropical coral reefs.
Coral reefs also form a vital source of income and food for over 500 million
people, providing ecological goods and services such as food, coastal protection,
new biochemical compounds, and recreation with an estimated value of around
$352,000 ha-1 y-1 [1].

However, there has been a steady decline in coral reefs in recent years [2].
Coral reefs are threatened by global stressors such as climate change and sub-
sequent extreme weather events, as well as by local anthropogenic threats such
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as overfishing and destructive fishing, watershed pollution, and reef removal for
coastal development. Currently, more than 85% of the reefs within the Coral
Triangle region are at risk of disappearing [3, 4].

Coral reef community composition is an essential element for monitoring reef
health and the importance of automated data collection, 3D analysis and large-
scale data processing are increasingly being recognised [5]. In 2017, Chamberlain
et al. at the University of Essex developed a novel multi-camera system to scale
up previous data capture approaches [6] by acquiring imagery from several view-
points simultaneously. Results showed that accurate data models were created
in a fraction of the time and complex structures were more accurately recon-
structed. The increasing use of large-scale modelling of environments has driven
the need to have such models labelled, with annotated data essential for machine
learning techniques to automatically identify areas of interest, assess community
composition and monitor phase shifts within functional groups.

The composition of marine life on a coral reef varies globally. Within the
Coral Triangle, a region that encloses more than 86,500km2 of coral reef area
and includes the world’s highest marine biodiversity, there are over 76% of all
coral species and more than 3,000 fish species [3]. The Western Indian Ocean,
and more specifically the Northern Mozambique Channel (NMC), is a centre
of high diversity for hard corals and reef fauna [7] and forms an evolutionary
distinct region within the Indian Ocean, but the diversity shows high resemblance
with the diversity found in the Coral Triangle region. Coral reef fauna from the
Caribbean within the Atlantic Ocean, is strongly delineated from (and shows
low affinity with biodiversity found in) the Indian Ocean [8].

Geographically distinct regions can contain the same species or genera with
entirely different morphological features and traits. The variety in both environ-
mental conditions and competitive niche filling can lead to changes in phenotypic
expression, which makes the task of identifying them difficult without an exten-
sive training image set.

As part of ImageCLEF 2019 [9], the ImageCLEFcoral task required partic-
ipants to automatically annotate and localise a collection of images with types
of benthic substrate, such as hard coral and sponge. The training set and test
sets contained images from the same coral reef [10].

Participants’ entries showed that some level of automatically annotating
corals and benthic substrates was possible, despite this being a difficult task
due to the variation of colour, texture and morphology between and within clas-
sification types.

This year, as part of ImageCLEF 2020 [11], the volume of training data
was increased and there were four subsets of test data ranging in geographi-
cal similarity and ecological connectedness to the training data. The intention
was not only to assess how accurately the images could be annotated, but also
how transferable the algorithms were between datasets collected from different
geographical regions with different community compositions.



2 Tasks

The annotation task is different from other image classification and marine sub-
strate classification tasks [12–14]. Firstly, the images are collected using low-cost
action cameras (approx. £200 per camera) with a fixed lens and firing on time-
lapse or extracted as stills from video. The effect of this on the imagery is that
there is some blurring, the colour balance is not always correct (as the cam-
era adjusts the white balance automatically based on changing environmental
variables) and final image quality is lower than what could be achieved using
high-end action cameras or DSLRs. However, the images can be used for recon-
structing a 3D model and therefore have useful information in the pipeline. Low
cost cameras were used to show this approach could be replicated affordably for
future projects.

Following the success of the first edition of the ImageCLEFcoral task [10], in
2020 participants were again asked to devise and implement algorithms for au-
tomatically annotating regions in a collection of images containing several types
of benthic substrate, such as hard coral or sponge. The images were captured
using an underwater multi-camera system developed at the Marine Technology
Research Unit at the University of Essex (MTRU), UK3.

The ground truth annotations of the training and test sets were made by
a combination of marine biology MSc students at the University of Essex and
experienced marine researchers. All annotations were double checked by an expe-
rienced coral reef researcher. The annotations were performed using a web-based
tool, initially developed in a collaborative project with London-based company
Filament Ltd and subsequently extended by one of the organisers. This tool was
designed to be simple to learn, quick to use and allows many people to work
concurrently (full details are presented in the ImageCLEFcoral 2019 overview
[10]).

The overall task comprises two subtasks:

– Subtask 1 : Coral reef image annotation and localisation;
– Subtask 2 : Coral reef image pixel-wise parsing.

In the “coral reef image annotation and localisation” subtask, the annotation
is a bounding box, with sides parallel to the edges of the image, around identified
features. In the “coral reef image pixel-wise parsing” subtask, participants sub-
mit a series of boundary image coordinates which form a single polygon around
each identified feature (these polygons should not have self-intersections). Par-
ticipants were invited to make submissions for either or both tasks.

As in the first edition, algorithmic performance is evaluated on the unseen test
data using the popular intersection over union metric from the PASCAL VOC4

exercise. This computes the area of intersection of the output of an algorithm
and the corresponding ground truth, normalizing that by the area of their union
to ensure its maximum value is bounded.

3 https://essexnlip.uk/marine-technology-research-unit/
4 http://host.robots.ox.ac.uk/pascal/VOC/



3 Collection

The data set comprises 440 human-annotated training images, with 12,082 sub-
strates, from the Wakatobi Marine Reserve, Indonesia; this is the complete train-
ing and test sets as used in the ImageCLEFcoral 2019 task. The test set comprises
a further 400 test images (see Figure 1), with 8,640 substrates annotated, from
four geographical regions, 100 images per subset:

1. Wakatobi Marine Reserve, Indonesia – the same location as the training
images;

2. Spermonde archipelago, Indonesia – geographically similar location to the
training set;

3. Seychelles, Indian Ocean – geographically distinct but ecologically connected
coral reef;

4. Dominica, Caribbean – geographically and ecologically distinct rocky reef.

Fig. 1. Representative images from the 4 regions in the test dataset: same location
as the training set (upper left); geographically similar (upper right); geographically
distinct but ecologically connected (lower left); geographically and ecologically distinct
(lower right).

The images are part of a monitoring collection and therefore many have a
tape measure running through a portion of the image. As in 2019, the data



Table 1. Distribution of classified pixels for training data and different subsets of test
data: same location, similar location, ecologically similar, ecologically distinct, and the
four test sets combined.

Substrate Training Same Similar Eco similar Distinct Combined

algae macro or leaves 0.12 0.07 0.10 0.03 8.41 2.15
fire coral millepora 0.03 0.01 0.00 0.00 0.01 0.01
hard coral boulder 2.91 1.57 4.00 15.7 0.88 5.54
hard coral branching 1.93 2.66 14.79 4.34 0.00 5.45
hard coral encrusting 0.82 1.33 3.15 0.01 1.50 1.50
hard coral foliose 0.18 0.21 0.15 0.47 0.00 0.21
hard coral mushroom 0.10 0.05 0.00 0.00 0.00 0.01
hard coral submassive 0.40 0.40 12.54 0.11 0.01 3.26
hard coral table 0.03 0.10 5.35 0.00 0.00 1.36
soft coral 8.69 7.09 0.03 0.01 0.00 1.78
soft coral gorgonian 0.26 0.14 0.00 0.00 0.00 0.04
sponge 1.42 1.63 0.36 0.01 5.05 1.79
sponge barrel 0.30 0.10 0.00 0.00 1.95 0.53
unclassified 82.81 84.66 59.53 79.33 82.19 76.37

set comprises an area of underwater terrain. Many images contain the same
ground features captured from different viewpoints. Each image contains some
of the same thirteen types of benthic substrates as in 2019, namely hard coral —
branching, submassive, boulder, encrusting, table, foliose, mushroom; soft coral;
gorgonian sea fan (soft coral); sponge; barrel sponge; fire coral (millepora); algae
(macro or leaves).

The test set from the same area as the training set will give an indication as to
how well a submitted algorithm can localise and classify marine substrate, i.e.,
the maximum performance. We hypothesise that performance will deteriorate
with other test subsets as the composition, morphology and identifying features
of the substrate change and exhibit less similarity with the training data.

3.1 Collection Analysis

An important consideration when testing across the datasets is that the benthic
composition will be different in the different locations, in addition to different
species and morphologies being present and the total coverage of benthic fauna
(represented by the total coverage of pixels in an image).

Analysis shows that the community distribution is similar in the same loca-
tion test dataset to the training dataset, both in terms of structure and cover.
The similar location test dataset shows a much higher distribution of hard corals
and lower distribution of soft corals and sponge, with considerably higher cov-
erage, indicative of a healthy coral reef. The geographically distinct but ecolog-
ically connected test set had a high distribution of hard corals in composition
and similar coverage, indicative of a recovering coral reef. The geographically
and ecologically distinct had a higher distribution of sponge and algae, com-
monly found in Caribbean reefs that suffer human and environmental impacts,
and higher coverage indicative of a phase shift away from hard coral towards a
sponge/algae dominated reef (see Table 1).



Table 2. Participating groups in ImageCLEFcoral task in 2020. Participants marked
with a star participated also in 2019.

Team Institution # Runs T1 # Runs T2

FAV ZČU PiVa [18] University of West Bohemia, Czechia 10 10
FAV ZČU CV [19] University of West Bohemia, Czechia 2 1
HHUD* [20] Heinrich-Heine-Universität Duesseldorf,

Germany
10 0

FHD [21] University of Applied Sciences and Arts Dort-
mund, Germany

10 10

4 Evaluation Methodology

The task was evaluated using the methodology of previous ImageCLEF anno-
tation tasks [15, 16], which follows a PASCAL style metric of intersection over
union (IoU). We used the following two measures:

MAP 0.5 IoU : the localised Mean Average Precision (MAP) for each submit-
ted method using the performance measure of IoU >=0.5 of the ground
truth;

MAP 0 IoU : the image annotation average for each method in which the con-
cept is detected in the image without any localisation.

In addition, to further analyse the results per types of benthic substrate, the
measure accuracy per class was used [17], in which the segmentation accuracy
for a substrate was assessed using the number of correctly labelled pixels of that
substrate, divided by the number of pixels labelled with that class (in either the
ground truth labelling or the inferred labelling).

agreement per class =
# true positives

# false positives + # false negatives + # true positives

5 Results

In 2020, 15 teams registered for the second edition of the ImageCLEFcoral task.
Four individual teams submitted 53 runs. Table 2 gives an overview of all par-
ticipants and their runs. There was a limit of at most 10 runs per team and
subtask.

5.1 Subtask 1: Coral Reef Image Annotation and Localisation

Table 3 presents the performance of the participants on the coral reef image
annotation and localisation subtask 1.

Table 4 presents the performance (Intersection over Union) of individual
runs broken down by class. 32 runs were submitted in this subtask by 4 teams.
No individual run performed highest in all classes; however, HHU and FHD



performed well across multiple classes. The highest IoU score (0.512) was for the
soft coral class from FAV ZČU PiVa.

Table 5 presents the pixel accuracy per location, per team, across classes for
Subtask 1. No individual team performed best across all classes. The highest
pixel accuracy scores were 0.5925 in the hard coral branching class from FHD
and 0.5116 in the soft coral class by FAV ZČU PiVa. Overall performance is best
with the same location test subset; however, the accuracy of hard coral branching
in the ecologically similar region was very good.

Table 3. The run performance (MAP 0.5 IoU and MAP 0 IoU) of Subtask 1.

Run id team MAP 0.5 IoU MAP 0 IoU

68143 FAV ZČU PiVa 0.582 0.853
67863 FAV ZČU PiVa 0.565 0.851
68094 FAV ZČU PiVa 0.53 0.825
68145 FAV ZČU PiVa 0.517 0.814
67539 FAV ZČU CV 0.49 0.822
68181 FHD 0.457 0.775
68188 FHD 0.44 0.725
67862 FAV ZČU PiVa 0.439 0.774
68187 FHD 0.424 0.729
68182 FHD 0.422 0.762
68146 FAV ZČU PiVa 0.415 0.747
68186 FHD 0.41 0.73
68183 FHD 0.405 0.759
68201 HHU 0.392 0.806
67914 FHD 0.391 0.72
68184 FHD 0.388 0.707
67919 FHD 0.383 0.703
68138 FAV ZČU PiVa 0.377 0.721
68185 FHD 0.369 0.722
67858 FAV ZČU PiVa 0.357 0.712
68093 FAV ZČU PiVa 0.349 0.709
67857 FAV ZČU PiVa 0.347 0.728
68202 HHU 0.323 0.753
68198 HHU 0.313 0.702
68205 HHU 0.303 0.727
68196 HHU 0.28 0.684
68212 HHU 0.263 0.663
68197 HHU 0.245 0.628
67558 FAV ZČU CV 0.243 0.664
68213 HHU 0.233 0.644
68178 HHU 0.01 0.206
68179 HHU 0.01 0.274

5.2 Subtask 2: Coral Reef Image Pixel-wise Parsing

Table 6 presents the performance of the participants on the coral reef image
pixel-wise parsing subtask.

Table 7 presents the performance (Intersection over Union) of individual runs
broken down by class. 21 runs were submitted in this subtask by 3 teams. No
individual run performed highest in all classes; however, runs by FHD had the
highest performance in all but one class (hard coral submassive). The highest IoU



Table 4. Coral reef image annotation and localisation performance in terms of the
Intersection over Union (IoU) per benthic substrate for Subtask 1
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68213 HHU 0.016 0 0.171 0.306 0.066 0.097 0.15 0.038 0.042 0.359 0.082 0.12 0.089
68212 HHU 0.012 0 0.218 0.327 0.09 0.105 0.231 0.067 0.034 0.445 0.059 0.121 0.134
68205 HHU 0.019 0 0.093 0.091 0.023 0.056 0.081 0.024 0.017 0.185 0 0.036 0.039
68202 HHU 0.007 0 0.16 0.247 0.053 0.115 0.154 0.032 0.026 0.314 0.037 0.067 0.082
68201 HHU 0.016 0 0.052 0.142 0.005 0.003 0.155 0.002 0 0.144 0 0.019 0.023
68198 HHU 0.002 0 0.221 0.316 0.077 0.119 0.183 0.041 0.029 0.462 0.037 0.107 0.115
68182 FHD 0 0 0.199 0.35 0.005 0.012 0.187 0 0 0.484 0 0.104 0.064
68183 FHD 0 0 0.209 0.337 0 0.022 0.197 0 0 0.456 0 0.07 0.098
68197 HHU 0.008 0 0.105 0.137 0.022 0.072 0.149 0.011 0.021 0.399 0 0.045 0.028
68196 HHU 0.005 0 0.159 0.3 0.056 0.056 0.128 0.015 0.022 0.367 0.088 0.123 0.053
68188 FHD 0.006 0 0.249 0.301 0.032 0.182 0.397 0.004 0.035 0.453 0.057 0.088 0.135
68187 FHD 0.009 0 0.256 0.306 0.038 0.192 0.402 0.007 0.039 0.48 0.061 0.099 0.134
68186 FHD 0.008 0 0.257 0.322 0.03 0.195 0.42 0 0.031 0.485 0.076 0.097 0.142
68185 FHD 0 0 0.185 0.319 0.039 0.131 0.156 0 0.02 0.423 0.046 0.084 0.119
68184 FHD 0.006 0 0.246 0.323 0.052 0.122 0.25 0.003 0.041 0.467 0.067 0.109 0.102
68181 FHD 0 0 0.179 0.316 0 0 0.288 0 0 0.472 0 0.12 0.02
68179 HHU 0 0 0 0.037 0 0 0 0 0 0.146 0 0 0
68178 HHU 0 0 0.017 0.014 0.005 0.001 0 0.002 0 0.056 0 0.009 0
68146 FAV Z̊aU PiVa 0 0 0.133 0.181 0.046 0.13 0.182 0.011 0 0.452 0 0.103 0.049
68145 FAV Z̊aU PiVa 0 0 0.105 0.123 0.021 0.038 0.122 0 0 0.387 0 0.093 0.014
68143 FAV Z̊aU PiVa 0 0 0.054 0.089 0.008 0.009 0.109 0.002 0 0.29 0 0.065 0.01
68138 FAV Z̊aU PiVa 0.001 0 0.159 0.211 0.052 0.149 0.204 0.016 0 0.462 0 0.113 0.062
68094 FAV Z̊aU PiVa 0 0 0.108 0.127 0.02 0.038 0.121 0.001 0 0.393 0 0.087 0.004
68093 FAV Z̊aU PiVa 0.001 0 0.206 0.3 0.08 0.147 0.22 0.017 0.009 0.465 0.082 0.117 0.067
67919 FHD 0 0 0.222 0.243 0.049 0 0 0 0 0.45 0 0.118 0
67914 FHD 0 0 0.227 0.259 0.042 0.086 0.194 0 0 0.474 0 0.13 0.057
67863 FAV Z̊aU PiVa 0 0 0.103 0.104 0.01 0.001 0.134 0.002 0 0.338 0 0.07 0.004
67862 FAV Z̊aU PiVa 0 0 0.176 0.219 0.038 0.101 0.211 0.006 0.008 0.464 0.033 0.106 0.03
67858 FAV Z̊aU PiVa 0 0 0.22 0.297 0.057 0.1 0.315 0.032 0.012 0.508 0.047 0.11 0.089
67857 FAV Z̊aU PiVa 0 0 0.221 0.306 0.06 0.105 0.32 0.034 0.015 0.512 0.044 0.111 0.09
67558 FAV Z̊aU CV 0 0 0.216 0.228 0.048 0.031 0.139 0 0 0.413 0.026 0.097 0.064
67539 FAV Z̊aU CV 0 0 0.155 0.259 0.047 0.094 0.096 0 0.015 0.475 0.028 0.057 0.085

scores were 0.545 for the soft coral class and 0.505 for the hard coral mushroom
class from FHD.

Table 8 presents the pixel accuracy per location, per team, across classes for
Subtask 2. FHD performed highest in all classes except hard coral submassive.
The highest pixel accuracy scores were 0.718 in the hard coral branching class,
0.562 for the sponge barrel class, 0.547 for the hard coral boulder class and 0.556
for the soft coral class from FHD. Overall performance was best with the same
location test subset, with the exception of the hard coral branching class which
was identified considerably more accurately within the ecologically similar test
set. This is a good indication that transfer learning may at least be possible in
some classes of substrate.



Table 5. Pixel accuracy per location, per team, Subtask 1, selecting the highest per-
formance per class of all runs submitted by the participant.
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Same FAV ZCU PiVA 0.0606 0.0000 0.4481 0.3156 0.1457 0.3606 0.3075 0.1129 0.1458 0.5116 0.2078 0.2222 0.2718
FAV Z̊aU CV 0.0000 0.0000 0.4426 0.3802 0.1437 0.2932 0.1426 0.0000 0.1311 0.4903 0.1766 0.1457 0.1677
FHD 0.2488 0.0000 0.4293 0.3873 0.1136 0.3984 0.4056 0.0018 0.2917 0.4999 0.1491 0.2251 0.4875
HHU 0.0782 0.0000 0.4344 0.3122 0.1209 0.2098 0.2073 0.0840 0.3094 0.4527 0.1331 0.2051 0.2813

Similar FAV ZCU PiVA 0.0000 0.0000 0.1632 0.1628 0.1007 0.0119 0.0000 0.0387 0.0097 0.0001 0.0000 0.0355 0.0000
FAV Z̊aU CV 0.0000 0.0000 0.0664 0.1456 0.0112 0.0000 0.0000 0.0000 0.0051 0.0003 0.0000 0.0291 0.0000
FHD 0.0000 0.0000 0.1911 0.3124 0.0392 0.0153 0.0000 0.0098 0.0291 0.0018 0.0000 0.0805 0.0000
HHU 0.0081 0.0000 0.0886 0.2596 0.0237 0.0000 0.0000 0.0559 0.0040 0.0007 0.0000 0.0227 0.0000

Eco Similar FAV ZCU PiVA 0.0000 0.0000 0.2504 0.5147 0.0000 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0066 0.0000
FAV Z̊aU CV 0.0000 0.0000 0.2635 0.5901 0.0000 0.0330 0.0000 0.0000 0.0000 0.0011 0.0000 0.0016 0.0000
FHD 0.0000 0.0000 0.2715 0.5925 0.0000 0.0161 0.0000 0.0000 0.0000 0.0024 0.0000 0.0102 0.0000
HHU 0.0019 0.0000 0.2372 0.4885 0.0035 0.0031 0.0000 0.0000 0.0000 0.0002 0.0000 0.0004 0.0000

Distinct FAV ZCU PiVA 0.0000 0.0000 0.0560 0.0000 0.0184 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0877 0.0447
FAV Z̊aU CV 0.0000 0.0000 0.1720 0.0000 0.0350 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0727 0.0426
FHD 0.0030 0.0000 0.1899 0.0000 0.0142 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0724 0.0912
HHU 0.0415 0.0000 0.1534 0.0000 0.0471 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1678 0.0653

FHD performed well in the pixel accuracy but not as well when considering
the MAP scores and this may be indicative of their approach identifying large
polygons well but missing many of the smaller polygon objects.

6 Discussion

FAV ZČU CV [19] worked with two neural networks for the first task, SSD [22]
and a Mask R-CNN [23]; for the second task, they worked with only the latter.
Both of these used the implementation in Keras [24], pre-trained on the Pascal
VOC 2007 dataset [25].

They partitioned the training data into distinct training and validation sets
containing rough 85% and 15% of the total number of training images. As some
types of coral were relatively rare in the training set, there were as few as 16
instances for training and 3 for validation. To train neural networks, more data
are clearly needed, so they augmented the images with horizontal and vertical
flips, resizing and Gaussian blurring. They also noted that some of the image had
a blueish tint while others featured a greenish one and simulated these effects
too.

For training SSD, all training images were resized to 512 × 512, while for
Mask R-CNN they were reduced to 1024×1024. It was found that Mask R-CNN
detects many more bounding boxes than SDD, most of which are false positives:
of the regions detected, 44.7% were true positives with the former, while 71.3%
was achieved with the latter. In terms of average precision, figures as high as
62.17% were achieved (SSD for barrel sponges) but five coral classes were not
found by either.



Table 6. The run performance (MAP 0.5 IoU ; and MAP 0 IoU) of Subtask 2.

Run id team MAP 0.5 IoU MAP 0 IoU

67864 FAV ZČU PiVa 0.678 0.845
68139 FAV ZČU PiVa 0.664 0.842
68095 FAV ZČU PiVa 0.629 0.817
68142 FAV ZČU PiVa 0.624 0.813
68144 FAV ZČU PiVa 0.617 0.807
68147 FAV ZČU PiVa 0.507 0.727
68190 FHD 0.474 0.715
68137 FAV ZČU PiVa 0.47 0.701
67968 FHD 0.469 0.708
67965 FHD 0.453 0.72
67964 FHD 0.449 0.717
67856 FAV ZČU PiVa 0.441 0.694
67967 FHD 0.435 0.695
68092 FAV ZČU PiVa 0.434 0.689
67963 FHD 0.433 0.694
68192 FHD 0.424 0.668
68191 FHD 0.416 0.692
68140 FAV ZČU PiVa 0.407 0.675
67969 FHD 0.376 0.629
68189 FHD 0.371 0.632
67620 FAV ZČU CV 0.304 0.602



Table 7. Coral reef image pixel-wise parsing performance in terms of the Intersection
over Union (IoU) per benthic substrate type for Subtask 2.
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68192 FHD 0.01 0 0.305 0.387 0.092 0.223 0.505 0.009 0.075 0.545 0.023 0.13 0.175
68191 FHD 0 0 0.222 0.333 0.009 0.132 0.255 0 0.021 0.49 0 0.085 0.116
68190 FHD 0 0 0.296 0.362 0.009 0.11 0.456 0 0.051 0.52 0.018 0.086 0.147
68189 FHD 0.01 0 0.294 0.338 0.072 0.124 0.245 0.003 0.059 0.522 0.061 0.133 0.177
68147 FAV Z̊aU PiVA 0 0 0.135 0.184 0.044 0.129 0.184 0.009 0 0.453 0 0.095 0.049
68144 FAV Z̊aU PiVA 0 0 0.109 0.125 0.02 0.041 0.122 0 0 0.394 0 0.092 0.014
68142 FAV Z̊aU PiVA 0 0 0.106 0.123 0.019 0.04 0.139 0 0 0.403 0 0.087 0.014
68140 FAV Z̊aU PiVA 0.001 0 0.203 0.283 0.075 0.148 0.226 0.012 0.01 0.443 0.055 0.113 0.079
68139 FAV Z̊aU PiVA 0 0 0.057 0.091 0.007 0.007 0.108 0.001 0 0.305 0 0.06 0.01
68137 FAV Z̊aU PiVA 0.001 0 0.162 0.213 0.05 0.148 0.199 0.013 0 0.456 0 0.102 0.064
68095 FAV Z̊aU PiVA 0 0 0.113 0.128 0.019 0.041 0.121 0 0 0.403 0 0.085 0.004
68092 FAV Z̊aU PiVA 0.001 0 0.21 0.293 0.077 0.128 0.225 0.013 0.01 0.462 0.055 0.109 0.071
67969 FHD 0.008 0 0.321 0.382 0.093 0.275 0.45 0.019 0.087 0.527 0.074 0.14 0.171
67968 FHD 0.009 0 0.307 0.342 0.043 0.213 0.435 0.006 0.048 0.544 0.047 0.113 0.158
67967 FHD 0 0 0.249 0.311 0.018 0.073 0.177 0 0 0.517 0 0.111 0.104
67965 FHD 0 0 0.286 0.296 0.014 0.102 0.226 0 0 0.522 0 0.105 0.11
67964 FHD 0 0 0.297 0.398 0.011 0.073 0.318 0 0 0.533 0 0.125 0.071
67963 FHD 0 0 0.276 0.303 0.058 0.149 0.19 0 0 0.538 0.05 0.16 0.018
67864 FAV Z̊aU PiVA 0 0 0.105 0.108 0.01 0.001 0.137 0 0 0.349 0 0.067 0.004
67856 FAV Z̊aU PiVA 0 0 0.228 0.287 0.055 0.104 0.318 0.026 0.014 0.498 0.051 0.099 0.091
67620 FAV Z̊aU CV 0 0 0.212 0.222 0.046 0.033 0.138 0 0 0.434 0.023 0.094 0.064

Table 8. Pixel accuracy per location, per team, Subtask 2, selecting the highest per-
formance per class of all runs submitted by the participant.
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Same FAV ZCU PiVA 0.042 0.000 0.500 0.338 0.156 0.358 0.341 0.099 0.132 0.502 0.273 0.203 0.291
FHD 0.251 0.000 0.547 0.409 0.192 0.420 0.496 0.071 0.417 0.556 0.422 0.242 0.562
FAV ZČU CV 0.000 0.000 0.427 0.264 0.113 0.068 0.107 0.000 0.000 0.460 0.191 0.078 0.115

Similar FAV ZCU PiVA 0.000 0.000 0.228 0.202 0.096 0.013 0.000 0.024 0.010 0.000 0.000 0.048 0.000
FHD 0.000 0.000 0.319 0.440 0.145 0.014 0.000 0.023 0.087 0.003 0.000 0.119 0.000
FAV ZČU CV 0.000 0.000 0.097 0.160 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000

Eco similar FAV ZCU PiVA 0.000 0.000 0.297 0.543 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.004 0.000
FHD 0.000 0.000 0.407 0.718 0.000 0.010 0.000 0.000 0.000 0.003 0.000 0.014 0.000
FAV ZČU CV 0.000 0.000 0.267 0.192 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Distinct FAV ZCU PiVA 0.000 0.000 0.057 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.088 0.049
FHD 0.000 0.000 0.244 0.000 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.099
FAV ZČU CV 0.000 0.000 0.237 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.070 0.046



Interestingly, both trained models performed better on the unseen test im-
agery than on the images they had retained for validation, and by a fairly large
margin. The best mean average precision obtained was 49%, for localization
using SSD. This phenomenon is particularly surprising given that the test set
contains imagery from ocean regions not present in the training set: the designers
of the dataset did not anticipate that this would be the case. It is a particularly
promising result given that the ultimate aim of the research is to equip marine
biologists and ecologists with a recognition system that can be taken anywhere
in the world and expected to work.

FAV ZČU PiVa [18] also employed a Mask R-CNN but included a number
of refinements in their training; they believe it is this set of refinements that led
to the improvements in performance they achieved.

In forming their validation set, this team selected every eleventh image and
substituted some of them so that the training and validation sets had similar
distributions. As with other teams, they augmented the provided training set,
using similar transformations as [19].

The underlying approach was transfer learning, and several ‘backbone’ net-
works were examined, including ResNet-50 and Inception-ResNet-V2. One re-
finement employed was a ‘pseudo-labelling’ approach inspired by [26], using a
trained network to label untrained test data with weak labels. ‘Accumulated
gradient normalisation’ [27] is credited as providing a considerable improvement
in performance. An ensemble approach was ultimately used, in which multi-
ple networks classified the same input and their majority vote yielded the final
classification.

HHUD [20] explored two approaches. The first was a refined and improved
version of the approach the took for the 2019 exercise while the second was based
around RetinaNet [28].

The team used 80% of the identified regions for training and 20% for valida-
tion, again swapping individual regions between the two sets until they exhibited
similar distributions. The difficulties inherent in underwater photography due
to the severe attenuation of the red end of the spectrum were considered and
RD [29] was ultimately demonstrated to be the more effective.

The team used a version of Yolo [30], though they suffered from some difficul-
ties in the training data as initially released which meant that the annotations
were inconsistent; there was not enough time to re-train after these were identi-
fied and corrected. The constraints on image size with their GPU-based imple-
mentation is also thought to have an effect. RetinaNet was also used, comprising
a feature pyramid network based on ResNet [31], a regressor and a classifier.

The authors also explored more classical approaches. In 2019, a k-NN clas-
sifier was used; this year, it was enhanced with PCA was used to identify the
best features and a näıve Bayes approach for locating and classifying substrates.
It was found that the combination of PCA and näıve Bayes classifier improved
performance – though despite this, the neural approaches still out-performed
classical ones.



The authors’ best performance was achieved using a ensemble of RetinaNet
and Yolo v3, using RD-enhanced images for training. The authors’ paper [20] has
an interesting discussion on the interplay between thresholds, training epochs
and performance.

One of the key aspects the dataset creators were keen to explore was whether
the training dataset, which was acquired from a single coral reef, made it pos-
sible for trained classifiers to perform well on data sourced from geographically
distinct reefs. In this case, this ‘geographic generalization’ was not found, though
the number of test images from the different geographical regions was quite small.

FHD [21] went to some lengths to counter the attenuation of red illumination
in the images and the blurriness of some of them, achieving impressive visual
improvements in some cases. Further improvement was obtained by enhancement
in HSV space based on the notion of Rayleigh scattering.

The classification architecture was again based around Mask R-CNN, imple-
mented using Keras and TensorFlow and with Resnet 101 pre-trained on the
COCO dataset [32], with the training images reduced to 1536 × 1536 pixels.
The training data were augmented using similar transformations to the other
groups. As expected, data augmentation reduced over-fitting. Colour correction
led to poorer mean average precision values but better average accuracy. It was
observed that the models do not detect objects as well as some other groups’
submissions but those that are detected are classified very well.

Interestingly, the authors found their algorithms’ performance on subtask 1
(bounding boxes) could be improved simply by re-defining their bounding boxes.
This is really an indication that bounding boxes are a poor way of describing
the output of processing that involves both segmentation and classification, ex-
acerbated by the extended nature of some types of coral. This suggests that
bounding boxes should not form part of ImageCLEFcoral in future years.

The analysis of the results in this paper explores the interplay between the
performance measures used and the relative rankings of results. It is not known
of course whether these apparent performance differences are statistically sig-
nificant but this is an area that the designers of the imageCLEFcoral task will
explore in future releases.

The approach taken by [18] proved to be the most effective as their approach
yielded the highest scores, as measured by mean average precision, for both
tasks: their submission 8 won the annotation and localisation task, while their
submission 2 won the pixel-wise parsing task with scores of about 0.58 and
0.68 respectively, a significant improvement on the best that was achieved in
the 2019 exercise where the equivalent figures were 0.24 and 0.04 respectively
— though the above mentioned inconsistencies between image and annotation
present in the 2019 dataset will have affected these figures. The authors consider
the increased size of the training set in the 2020 exercise played an important
part in the improvements in performance that they were able to achieve.

The MAP 0.5 IoU score from FAV of 0.582 over the entire test set is excel-
lent, bearing in mind both the difficulty of the problem and that the problem
involved 13 classes, some of which are sparsely represented. There is a signifi-



cant peroformance margin before the best run from the second-placed team, FAV
ZČU CV, and the other teams’ best submissions, which are closely spaced. FAV
also made the best-ranked submission for MAP 0 IoU but the other teams’
best-scoring submissions are much closer to this. However, the best-scoring sub-
mission for R 0.5 IoU does not yield the highest accuracy of all the submissions.
Clearly then, there is some inconsistency in the evaluation measures employed
— and this is more of an indication that the performance evaluation measures
in widespread use in the vision research community are imperfect.

It is interesting to review the scores obtained from the four categories of
test data. For the geographic regions which are similar in nature performance is
generally similar. However, performance drops off for other regions, showing that
the differences present in the imagery affect the ability to classify the substrates.
This shows how difficult it will be to develop a system for marine biologists
to automatically classify substrate without significant training resources (i.e.,
labelled datasets) from that area.

For the pixel-wise parsing task, the MAP 0.5 IoU score of the best-placed
team, FAV, is actually higher than for the bounding box task, showing that
their approach is able to identify the boundaries of the image features somewhat
better than those of the other teams. This makes the performance gap between
first- and second-placed teams somewhat larger than for the first task. Again, the
best-scoring run in terms of MAP 0.5 IoU is not the best in terms of accuracy.

7 Conclusions

The results of the 2020 coral exercise demonstrate how effective modern deep
neural networks are at a range of problems: a performance approaching 70% for
a 13-class problem is excellent. The results show that the best pixel-wise pars-
ing technique out-performed the best bounding box one, suggesting that future
exercises should concentrate on pixel-wise parsing. There are always difficulties
with overlapping bounding boxes and other types of feature in the background
of bounding boxes which together reduce the value of that type of annotation.

It is clear that there are genuine performance differences between the four ge-
ographical categories of test images described above. This is an important prac-
tical problem for coral annotation, as well as for vision systems in general. We
anticipate future coral annotation tasks will explore ways to overcome this dif-
ficulty. Close examination of the ground truth annotations for the pixel-parsing
task shows that annotators tend to place the bounding polygons just outside the
boundaries of the features being annotated. We are considering producing other
annotations that lie within feature boundaries and encourage teams in a future
exercise to train the same architecture with both, then see which works best.
That would give us the opportunity to learn something about how annotations
should be produced.

The fact that different measures rank-order the different runs differently does
not come as a surprise but does show how difficult it is to devise a simple
measure that encapsulates performance well. There is clearly research to be done



in this regard. Although there are performance differences between the runs,
there is no indication as to whether they are statistically significant or not. This
analysis shall be explored in future work. Bearing in mind the point made about
performance measures in the previous paragraph, it will be especially interesting
to ascertain whether different performance measures yield statistically-significant
but inconsistent results.
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