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Abstract. In this paper, we describe our contribution to the 2020 Im-
ageCLEF Medical Domain Visual Question Answering (VQA-Med) chal-
lenge. Our submissions scored first place on the VQA challenge leader-
board, and also the first place on the associated Visual Question Gener-
ation (VQG) challenge leaderboard. Our VQA approach was developed
using a knowledge inference methodology called Skeleton-based Sentence
Mapping (SSM). Using all the questions and answers, we derived a set of
classifiable tasks and inferred the corresponding labels. As a result, we
were able to transform the VQA task into a multi-task image classifica-
tion problem which allowed us to focus on the image modelling aspect.
We further propose a class-wise and task-wise normalization facilitating
optimization of multiple tasks in a single network. This enabled us to
apply a multi-scale and multi-architecture ensemble strategy for robust
prediction. Lastly, we positioned the VQG task as a transfer learning
problem using the VGA task trained models. The VQG task was also
solved using classification.
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Knowledge Inference · Deep Neural Networks · Skeleton-based Sentence
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1 Introduction

Visual question answering (VQA) [4,20] is a challenging new task which requires
a broad knowledge of image processing, natural language processing (NLP),
and multi-modal learning. In the medical domain, VQA is an attractive topic
showing great potential in automated medical image interpretation and machine
supported diagnoses, with potential to benefit both medical practitioners and
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patients. Nevertheless, medical VQA remains an unsolved problem. The Image-
CLEF association [15] has been hosting the Medical Domain VQA (VQA-Med)
challenges for three consequent years since 2018 [2,5,10]. In the 2018 challenge,
the images were extracted from PubMed Central articles with the questions and
answers automatically generated from image captions before checked manually
by human annotators. In addition to the clarity issues of the machine generated
questions as reported by [1], it is also noticeable that both the questions and
ground-truth answers are in variable-length and free-form, both of which add dif-
ficulties to the answer generation task. The 2019 challenge [2] advanced from the
previous challenge by narrowing the task scope: 1) using only radiology images;
and 2) asking questions in four topics (i.e., image modality, imaging plane, vi-
sualized organ systems, and abnormality detectable from an image). As noticed
by many participated teams, the 2019 challenge is solvable in a classification
manner, i.e., there are 36 unique answers for the modality questions, 16 for the
plane questions, 10 for the organ questions, with an exception of over a thou-
sand possible answers for the abnormality category. A post-challenge question
category-wise accuracy analysis [2] suggests that the modality, plane, and organ
categories possess much better accuracy compared to the abnormality category.

In the 2020 VQA challenge, our AIML team participated in, the dataset [5]
was curated with only questions in abnormality category. While analyzing the
questions, we found that questions come in two major forms: 1) yes/no ques-
tions, e.g., “is this image normal/abnormal?”, and 2) wh-questions e.g., “what is
abnormal in the image?”. In comparison to the last year’s challenge, we noticed
the unique question phrasings were reduced from 253 to 52 and the unique an-
swer phrasings from 1,749 to 332, while having a 25% increase of images (from
3,200 to 4,000 in the training set; validation and test sets are equal), resulting
in a much richer data support for the VQA task.

Our initial attempt at the 2020 VQA-Med challenge was to fine-tuning of the
Pythia [27] model. However, this did not yield a desirable performance, hence
after which we conducted an analysis of the predicted answers. The analysis led
to the development of a novel knowledge inference method, namely Skeleton-
based Sentence Mapping (SSM) that helped reverse engineer a set of question
backbones. SSM helped us to determine the question categories and infer corre-
sponding labels, reducing the VQA problem to a pure multi-task image classifi-
cation problem. As a result, we were able to focus on the imaging modality. In
particular, we developed a class-wise and task-wise normalization method to give
balanced weighting to presented classes and tasks in a mini-batch. This helps to
jointly optimize multiple tasks in a single network. At last, we applied multi-scale
and multi-architecture ensemble learning. Our best submission scored 0.496 in
accuracy and 0.542 in BLEU score which won the first place at the 2020 VQA
challenge.

For the associated Medical Domain Visual Question Generation (VQG-Med)
challenge, we considered the task as a transfer learning problem, where we ap-
plied the VQA-Med data trained models as non-trainable feature extractors. The



answer generation is also formed as a classification task. Our best submission
scored 0.348 in BLEU score which won the first place at the VQG challenge.

In the rest of the paper, we give explanations on our VQA and VQG ap-
proaches. Each approach is a self-contained section to avoid cluttering.

2 VQA-Med Challenge Participation

2.1 Literature Review

We will first introduce the general domain VQA methods followed by an intro-
duction to the methods that have been applied specifically in the medical domain
VQA.

General domain VQA: the goal of a VQA method is to produce an answer
from a given image-question pair. Early VQA works [4, 9, 20, 24] used a general
CNN-RNN framework. In brief, the CNN-RNN approach is carried out using a
Convolutional Neural Network (CNN) model (e.g., VGG-Net [26]) to process the
input image and a Recurrent Neural Network (RNN) Encoder–Decoder [7] (more
specifically, LSTM [12]) to handle the language modelling. While the vision and
language information fusion component can also be handled by the RNN lan-
guage model altogether, or just by concatenation, there are also more advanced
options such as the Multi-modal Factorized Bilinear (MFB) pooling and High-
order pooling (MFH) [38] and MUTAN [6]. Attention is also a frequently visited
topic in VQA, e.g., question-guided visual attention methods [35,37] and vision-
language co-attention methods [19, 38]. Finally, semantic image representation
(e.g., attribute-based image representation [31]), pretrained language represen-
tation (e.g., BERT [8]), external knowledge and common sense knowledge [32]
could all be beneficial towards solving VQA.

Medical domain VQA: a noticeable difference between the medical domain
and general domain VQA is the size of the dataset. The general domain VQA can
accumulate a sizable dataset due to the fact that a common-sense knowledge is
sufficient for generating question and answers. On the other hand, the necessity
of clinical expertise imposes a huge difficulty in the medical domain VQA data
collection.

In the 2018 VQA-Med challenge, the leading3 three participating teams [1,
23,39] differentiate in image modelling (i.e., ResNet-152 [11], Inception-ResNet-
v2 [28], VGG-16), language modelling (i.e., LSTM, Bi-LSTM), vision-language
fusion (i.e., MFB/MFH [38], SAN [37]), attention models (i.e., question guided
attention [35], co-attention [38]), and word embeddings (i.e., word2vec [21] or

3 The 2018 VQA-Med challenge employed three measurements: BLEU [22], Word-
based Semantic Similarity (WBSS) [33], and Concept-based Semantic Similarity
(CBSS). The leading teams are referred to the BLEU and WBSS [33] score rankings.
The CBSS can result a different ranking.



medical article pretrained embedding [23]). Considering the component-wise di-
versity and minor performance gaps, it is difficult to find out which component
is favourable. However, we notice that all three teams treated the VQA task as
a classification problem whereas the rest two teams treated the problem as a
generation task [29] or still a classification task but not fine-tuning the image
model [3].

In the 2019 VQA-Med challenge, the top three teams [30, 36, 40] (with a
working notes paper) all used BERT [8] for language processing. Apart from
that, we point to some of the unique techniques from the top three teams. The
winning team Hanlin [36] has adopted Global Average Pooling (GAP) [18] short-
cuts. This differs from the conventional position of GAP which connects the last
convolution layer and the classification layer. The Hanlin team placed multiple
GAPs that each links to a low-level convolution layer and forwards the pooled
low-level features to be concatenated with the final image representation. The
second-place team minhvu [30] adopted an ensemble learning approach with a
variation of VQA components. The third-place team TUA1 [40] used a question
classifier to figure out the question category and then choose answers from a set
of modality, plane, and organ classifiers and a generative model for abnormal-
ity answers. Note that the question classification strategy was also employed by
several other participated teams; therefore we speculate the use of BERT could
have been the delimiting factor that caused a noticeable gap of 0.04 (in both
accuracy and BLEU) between the third place [30] and fourth place [25] (who
also used question classification and sub answer models).

2.2 Dataset

The VQA-Med 2020 dataset has a composition of 4,000 radiology images for
training, 500 for validation, and 500 for testing. Each image has exactly one
Question-Answer (QA) pair from the abnormality question category.

We followed the official suggestion to use the VQA-Med 2019 dataset4 as
additional training data. The VQA-Med 2019 dataset has 3,200 medical images
for training, 500 for validation, and another 500 for testing. For training and
validation sets, there are 12,792 and 2,000 QA pairs, giving most images exactly
one QA pair in each question category (i.e., imaging modality, imaging plane,
organ systems, and abnormality). For the test set, each question category has 125
images. In addition, the yes-no questions appear only in the imaging modality
and abnormality question categories.

2.3 Skeleton-based Sentence Mapping

As mentioned in Sec. 1, Pythia [27] was our initial attempt, from which we
observed a proportion of the yes-no questions answered by categorical abnor-
mality answers and vice versa. This could be a sign of insufficient question
variations. To address this issue, we tried to develop a question generator to

4 https://github.com/abachaa/VQA-Med-2019



populate training questions while keeping the meaning unchanged. The Skeleton-
based Sentence Mapping (SSM) method was developed to summarize questions
with similar sentence structures into a unified backbone. An example of the de-
rived sentence backbones are shown in Table 1. Taking the question backbone
“is ${this pronoun alts} ${ct alts} ${normal alts}? ” as an example, we call
the swap-able parts the skeleton variables and write in the Shell variable style
“${. . . }”. An example can be found in Table 2.5

Table 1. An example of the question backbones derived from the VQA-Med 2019 and
2020 datasets. The last six columns present the respective number of question instances
in each set.

Dataset Questions Question Backbones
VQA-Med 2020 VQA-Med 2019
train val test train val test

is the ct scan normal? 1 3 1
is the mri normal? is ${this alts} ${ct alts} 3 2 1 6
is the ultrasound normal? ${normal alts}? 1 1 1
is the x-ray normal? 2 4 1 3

what abnormality is seen in the image? what abnormality is ${imaged alts} 1001 105 127 776 133 20
what abnormality is seen in this x-ray? in ${this alts} ${ct alts}? 2

what is seen in the image? 1
what is seen in the x-ray? what ${is being alts} ${imaged alts} 2
what is seen in this ct scan? in ${this alts} ${ct alts}? 1
what is shown in the x-ray? 1

Table 2. Corresponding candidates for the skeleton variables appeared in Table 1.
The candidate elements were extracted from the real VQA-Med 2019 and 2020 dataset
questions and added with improvised ones.

Skeleton variables Candidates

this alts this, the

ct alts ct, ct scan, mri, pet, x-ray, image, . . .

normal alts normal, abnormal

imaged alts imaged, displayed, seen, shown, . . .

is being alts is, is being

Before applying SSM, we first removed the duplicated questions in the dataset,
resulting in 266 unique questions. After then, we applied word-level edit distance
(i.e., levenshtein distance) to pairs of questions, finding groups of questions with
1-distance and 2-distance. For example, in Table 1, the corresponding questions
of each question backbone mostly have either 1-distance or 2-distance within the
group, and the highest 4-distance is between “what is shown in the x-ray?” and

5 The naming was determined by choosing the a representative candidate from candi-
dates for each skeleton variable; by ignoring the “alts” suffix, a question backbone
becomes readable.



“what is seen in this ct scan?”. The grouped questions were manually checked
to see if the dissimilar parts can be described by a unified skeleton variable. If
so, the generated backbone would replace the group of question and enter the
next iteration of edit distance computation. The first iteration was able to detect
most of the easy question groups, leave the later iterations with a small number
of questions.

The process was ran until all questions were skeletonized, resulting in 68 ques-
tion backbones. We labeled the question backbones in the four aforementioned
question categories, partially based on the corresponding answers. In addition,
we also determined two sub categories under the imaging modality category,
namely the MR modality category and the contrast imaging type category. Next,
we compared our own question category annotation with the official question
category annotation for the VQA-Med 2019 test set (only available in this set),
which is equivalent. The SSM was able to populate dynamic question variations
(with some rule based restrictions, e.g., changing “ct scan” in “is the ct scan
normal?” to other candidates except “ct” and “image” results in a fallacious
judgement of the image modality, hence is not allowed) and the same Pythia
model trained with the augmented questions was able to rectify the yes-no and
wh-question cross answering errors. Nevertheless, we found the SSM method
rendered language modelling trivial. With its help, we can solve the VQA task
as an image classification task.

Label inference from question backbones: based on the question category
annotation, we were able to record the paired answer annotation as the label for
each mapped task. In addition, we could also extract labels from the skeleton
variables. For example, for the first question “is the ct scan normal?” in Table 1,
“ct” is capturable by ${ct alts} and “normal” is capturable by ${normal alts};
hence producing a coarse modality label “ct”, and also produce a binary abnor-
mality label “normal” if the answer is a “yes”. We found the same can also be
generalized to infer task labels from the wh-questions.

An issue with the question backbone derived modality labels is that the de-
tailed modality (e.g., ct with contrast or not) is unknown. To address this issue,
we treat the coarse modality labels as an independent task. The answer derived
modality labels were mapped back to the coarse labels following the information
provided in [2]. Next, we treated all abnormality wh-questions to have an “ab-
normal” label to add to the yes-no question derived binary abnormality labels.

At the end of the process, we were able to produce six classification tasks:
1) fine imaging modalities; 2) coarse imaging modalities; 3) imaging plane; 4)
organ systems; 5) binary abnormality, and 6) categorical abnormality.

2.4 Multi-task Image Classification

The schematic of an exemplar image classification network we used is illustrated
in Fig. 1, sketched with the knowledge inference process. The two important
tasks are the binary and categorical abnormality classification tasks while the



rest four can be thought as regularization tasks. We believe that all the tasks
should have strong correlation to each other, i.e., the correct imaging modality
and organ judgements should be strong prior knowledge for correct recognition
of abnormality.

Backbone Network

(e.g., ResNet, DenseNet, VGG)

Shared Feature Space

Fine Imaging Modality

Coarse Imaging Modality

Imaging Plane

Organ System

Binary Abnormality

Categorical Abnormality
Input Image

Q: “what is most 

alarming about this ct 

scan?”

A: “pancreatic carcinoma”

Knowledge Inference

Matched Backbone what is most alarming about ${this_alts} ${ct_alts}?

Categorical Abnormality pancreatic carcinoma

Binary Abnormality abnormal

Coarse Imaging Modality ct

Fig. 1. The schematic of an image classification network we used and the label inference
result produced by the proposed SSM method.

Class-wise and task-wise normalization: since only the 2019 challenge im-
ages have (almost) complete four QA pairs per image, a large number of images
in the joint 2019 and 2020 dataset do not have a complete label set (mainly the
2020 images). Hence when all six tasks are jointly optimized via a mini-batch
gradient method, a conventional normalization by the batch size effectively as-
signs a lower weight to a less populated task, e.g., for a batch with 12 images,
a task that has 3 labeled images effectively has 0.25 weighting. In addition to
the incomplete label problem, we also observed imbalanced class distributions
within the tasks. For example in the categorical abnormality question category,
the number of samples per abnormality class ranges from 4 to 104. We propose
to solve both issues together by a class-wise and task-wise normalization in order
to jointly optimize all six tasks together. Assume that t ∈ {coarse modality, . . .}
represents a task, for a set of images X and the label set Yt, the mini-batch
training loss L is computed as:

L =
∑
t

1∑
ct
1(ct ∈ Yt)

(∑
ct

1∑
yt∈Yt

1(yt = ct)

( ∑
x∈X,yt∈Yt

1(yt = ct)·`t(x, yt)
))

,

(1)



where x ∈ X and yt ∈ Yt represent individual image and label, 1(.) denotes an in-
dicator function, and ct denotes a candidate class of t (e.g., ct ∈ {ct, . . . , x-ray},
if t = coarse modality).

2.5 Multi-scale and multi-architecture ensemble

We adopted a multi-scale learning technique, using 128, 256, 384, and 512 as
candidate image resize options. After applying the resize operation, we randomly
crop the network input image at a ratio of 87.5% along both dimensions from a
resized image. Random affine transformations and horizontal flip were used. The
initial learning rate is set to 1e-3, linearly reduced 1e-6 after 100 epochs using
Adam optimizer.

On the other hand, ResNets [11], DenseNets [14], ResNexts [34], MobileNet [13],
and VGG nets [26] were selected as the image backbone candidates. We put the
backbone and input scale options as training script hyper-parameters, which
helped us to disperse the training over several GPU stations and gradually ex-
pand the number of ensemble members.

2.6 Experiment Results

We show the validation results from all trained models in Table 3, the corre-
sponding training volume includes 2019-{train, val, test} and 2020-train. Based
on these results, we made decisions of which models to be trained for test eval-
uation. Note that the training volume was changed to all of the 2019-{train,
val, test} and 2020-{train, val, test} sets for training the testing-use models.
We included the 2020-test set because some amount of partial coarse imaging
modality labels (i.e., from ${ct alts}) and binary abnormality labels (i.e., only
the abnormal ones from wh-question abnormality) were extractable by SSM from
only the questions, which served as a form of weak regularization for the test
images. Finally, for the categorical abnormality type questions, we only select a
top prediction from the VQA-Med 2020 subset of the abnormality classes as the
predictions.

Our submissions on the 2020 validation set are shown in Table 4. Our sec-
ond submission was purposed to determine the exact category type of the last
question backbone in Table 1 as the five instances all appear in the 2020 test
set. Although all other 2020 questions were in the abnormality question cate-
gory (aligned with the official statement), we found the five questions could also
be interpreted as asking which organ is present. We treated the 5 questions as
categorical abnormality questions in the first submission and as organ questions
in the second submission. Given the accuracy dropped, the ground truth should
be the abnormality category.

From a post-challenge point of view, our third submission secured the leading
position in the leaderboard. Our fourth submission was purposed to include
more DenseNet-121 instances in the ensemble as the DenseNet-121-only multi-
scale ensemble showed the highest 0.6 accuracy in Table 3. Our fifth submission
added the two VGG multi-scale groups, presenting the final ensemble result



Table 3. The accuracy evaluation on the VQA-Med 2020 validation set.

Architecture
Network Input Size Ensemble

128 256 384 512 Multi-scale Multi-scale & Arch.

ResNet-50 0.510 0.508 0.478 0.492 0.558
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7
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0
.5

9
6

0
.5

9
6

0
.5

9
0

0
.5

8
4

ResNet-101 0.486 0.530 0.508 0.460 0.566
ResNet-152 0.486 0.522 0.486 0.386 0.548

ResNext-50 32x4d 0.510 0.538 0.492 0.456 0.566
ResNext-101 32x8d 0.522 0.520 - - 0.538

DenseNet-121 0.548 0.562 0.536 0.504 0.600
DenseNet-161 0.526 0.520 0.518 - 0.564
MobileNet v2 0.512 0.512 0.428 - 0.538

VGG-16 with BN 0.478 0.482 0.426 0.486 0.530
VGG-19 with BN 0.444 0.474 0.442 - 0.502

of all trained models. Nevertheless, these final attempts only pushed up the
performance marginally, suggesting a performance saturation in our approach.

Table 4. The officially evaluated accuracy and BLEU scores on the VQA-Med 2020
test set. The numbers in the brackets, e.g., 256x2, indicates the use of 256 as the
network input size and repeated 2 times (with different initial seeds).

ID Ensemble Members
2020-val 2020-test

Accu. Accu. BLEU

67598 ResNet-50 (256x2, 384) + ResNet-101 (256) + ResNet-152 (256) 0.552 0.446 0.486

67737 Same as 67598 0.552 0.442 0.482

67915 All Resnets + All ResNexts + All Densenets + All Mobilenet V2 0.596 0.494 0.539

68012 67915 + extra DenseNet-121 (128x2, 256x2, 384x2, 512) - 0.496 0.540

68017 68012 + VGG-16/19 - 0.496 0.542

3 VQG-Med Challenge Participation

3.1 Challenge Overview

The VQG-Med challenge dataset is a much smaller dataset compared to the
VQA-Med datasets. The training set contains 780 radiology images with 2,156
associated QA pairs. The validation set has 141 images with 164 QA pairs. The
test set has only 80 images. The goal of the VQG challenge is to generate between
1 to 7 answers for each test image.

3.2 Methodology

The VQG challenge describes a question generation task which in concept is
close to image captioning but our proposed solution continued as a classification
approach. The main reason is that we found there were more than one ground



truth questions tied to each image. Unlike a VQA task, a question can be con-
sidered as a prior knowledge on which the corresponding answer is conditionally
dependent. Generating multiple questions while lacking such prior knowledge
could be resolved by sampling approaches, but it can be difficult to associate
a random state to a specific ground truth question. Hence, we instead treated
all observed questions for an image as its attributes and modelled the question
generation task as again an image attributes classification task. A downside of
the classification approach is not able to produce novel questions.

Our VQG approach was built upon our VQA-Med solution with the following
settings.

– Solving the question generation task as a classification task leads to a total
of 2,073 classes each as an unique observed question from the joint training
and validation sets.

– We were concerned about finetuning the entire image model by the lim-
ited amount of data and the large number of class, which may end up
over-fitting in a much faster rate, hence we did not choose to fine-tune the
backbones. However, as a compensation of non-linear capacity, we added a
2-layer batch-normalized and fully-connected (FC) (512 units each, ReLU
activation) multiple-level perceptron (MLP) model before the softmax layer.
The MLP model also avoided a direct mapping from the image features
(e.g., 2048 dimensional features) to the 2,073 classes which would result in a
computational expensive matrix multiplication and a large memory usage.

– At the training hyper-parameter level, we kept the initial learning rate as
1e-3 but adjusted the final learning rate to 1e-5. Finally, we shortened the
number of epochs to 40.

– Each training image could be associated with more than one question, re-
sulting a multi-label problem. We used the Stochastic Ground Truth method
in [16] which treats each image with multiple observed questions as multiple
one-question-for-one-image samples, converting the multi-label problem to a
single-label problem.

– The multi-scale and multi-architecture ensemble were continued in the VQG
approach.

These settings helped us to reuse most of the VQA-Med code base and models
to develop a tangible solution within a very short time frame.

Table 5. The accuracy evaluation on the VQG-Med 2020 validation set.

Architecture
Network Input Size Multi-scale

128 256 384 512 Ensemble

ResNet-50 0.067 0.091 0.098 0.067 0.091

ResNet-101 0.055 0.098 0.080 0.061 0.067

ResNet-152 0.091 0.067 0.067 0.073 0.067

DenseNet-121 - 0.085 0.079 - 0.091

DenseNet-161 - 0.079 0.079 - 0.073



3.3 Experiment Results

Similar to the VQA-Med 2020 result presentation, we show the VQG-Med 2020
validation and test results separately in Table 5 and 6, respectively. While the
official evaluation only has BLEU score, in our local evaluation, we used top-7
accuracy to evaluate the validation performance. For official testing, each of our
submission generates seven questions according to the highest probabilities for
each image.

Table 6. The VQG-Med 2020 submitted results. The number in a bracket indicates
the network input scale of the respective member model.

ID Ensemble Members
val test

Accu. BLEU

67984 ResNets-50/101/152 (no 512) 0.085 0.335

67995 ResNets-50/101/152 (all scales) 0.073 0.335

67996 67995 + ResNets-50/101/152 (no 512 + answer prediction) 0.091 0.326

68006 ResNet-50/101 (256, 384) + ResNet-152 (128) + DenseNet-121 (256, 384) 0.110 0.348

68018 68006 + DenseNet-161 (256, 384) 0.098 0.338

The first two submissions tested whether the large input size models should
be continued. Given the lower top-7 accuracy on the validation set and the
same BLEU value on the test set, we decided to not continue the 512 input size
training. In the third submission, we tried to utilize the ground truth answer
annotations by introducing the answer classification as an additional regular-
ization task, but the result dropped by 0.009. In addition, the results from the
first three submissions suggested a low correlation between the validation top-7
accuracy and the test BLEU scores. Hence in our forth submission we made
two decisions in order to push for a much larger margin on the local evaluation:
1) forgoing the low accuracy models from the ensemble (validation accuracy <
0.079); 2) including the DenseNet-121 architecture given its good performance
in the VQA-Med challenge. The fourth submission scored 0.11 for the valida-
tion accuracy and 0.348 for the test BLEU score, secured our leading position
in the VQG-Med challenge. Finally, in the fifth submission, we further added
the DenseNet-161 multi-scale models as a last-minute attempt. Given the local
evaluation dropped by 0.012, the test performance drop was expected as well.

4 Discussion and Conclusion

In this paper, we described our participation at the 2020 VQA-Med challenge and
the associated VQG-Med challenge. The center of our approach is a knowledge
inference method which we named Skeleton-based Sentence Mapping (SSM). In
the VQA-Med challenge, the SSM method was useful on multiple fronts: 1) it
mapped questions to a set of backbones which were useful to populate dynamic
question instances; 2) it replaced the need of the language modelling and was



able to provide the direct selection to the corresponding answer predictor; and
3) it was used to infer six image classification tasks and corresponding training
labels. Bypassing the development of language modelling allowed us to focus
on tweaking the image classification model so that we devoted more time and
resource on the multi-scale and multi-architecture ensemble learning. At last,
we developed a class-wise and task-wise normalization technique for balancing
the class and task populations, allowing the tasks with incomplete labels to be
jointly optimized in one network.

The main inspiration of SSM came from [17], where we back-translated the
questions via a number of foreign languages for augmentation purpose, resulting
from a group of sentences with a small wording variation; hence a sentence back-
bone could be inferred. Nevertheless, whether the augmented questions carry the
same meaning needs to be manually checked. The idea of reverse-engineering the
sentence backbone was extended during our participation at the VQA-Med chal-
lenge and led to the proposal of SSM.

We are aware of the fact that SSM is not fully automated which requires
further development. In addition, we understand SSM is a form of explicit rea-
soning model and its efficiency highly depends on the question regularity and
dataset size which may not generalize well for VQA datasets containing free-form
questions.
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