CEUR-WS.org/Vol-2698/p09.pdf

Algorithm Based On Reward And Punishment Technique

For Checker Player

Alicja Winnicka“

@Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland

Abstract

Board games always need algorithms for players to be a challenge for people. The only way to increase playability for people
is to create an algorithm that will be intelligent enough to beat a human. In our paper we decided to implement an algorithm
based on reward and punishment, which decides every turn which move is the best, considering the situation on the board.

Keywords

Game, algorithm, reward and punishment, board, checkers, artificial intelligence

1. Introduction

Game development is important due to many different
factors, and above all entertainment. It is notewor-
thy that players drive their development by placing
greater and greater requirements regarding the story
as well as the quality of the game. This means that
newer games need more computing power, so the de-
velopment of equipment that allows them to run is
driven very fast. The plot, the world surrounding the
hero are also important and quite often both elements
are generated by algorithms that must be constantly
developed and improved. In addition, the behavior of
opponents is important for the whole game, which is
commonly called as artificial intelligence. All these
elements are constantly being developed in order to
improve the quality of multimedia games production.
Improvements in network for remote gaming are also
envisaged [1].

The development of game analysis strategies and
artificial intelligence activities point to milestones in
this field. One of the biggest is the algorithm that de-
feated the world champion in the game of Go, which is
considered much more difficult than chess [2]. Other
types of games are also analyzed by the researcher
what can be seen in [3]. The authors proposed a new
strategy for solving fuzzy matrix games. In [4], the
authors described a sequential model for the predic-
tion of poker moves. Again in [5], the idea of using
eye gaze to play cards with the use of artificial neural
networks was presented. In fact the neural networks
have proved to be a very powerful tool for predictions

IVUS 2020: Information Society and University Studies, 23 April 2020,
KTU Santaka Valley, Kaunas, Lithuania
& Alicja.LidiaWinnicka@gmail.com (A. Winnicka)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

in different fields [6, 7, 8] .

Last year brought different types of reality games
like virtualcit [9] or augmented [10, 11] which are still
improved. In [12], the authors presented the results of
their analysis that games help students learn. Again
in [13], the idea of gamification is described with some
results based on conducted experiments.

In this paper, we propose a solution for playing check-
ers, where the current iteration of the game is analyzed
on the basis of the reward and punishment technique.

2. Checkers’ rules

Checkers are one of the most known classic board ga-
mes based on strategic thinking. They were invented
probably in the XII century and since then there were
created many variants of board and play. The basic
and the only one being sport discipline is International
Checkers also called Polish Checkers, where the board
is 10 x 10 tiles and each player has 20 checkers. How-
ever, the most played by people is the English variant
with 8 x 8 board and 12 checkers per player.

The board is divided into black and white tiles ar-
ranged alternately, which in our program is grey and
yellow to better recognition of checkers, which also
are black-white. We used an English variant with check-
ers set on black tiles. According to the assumption
each player has 12 checkers set on the opposite edges
of the board in three rows. This arrangement of po-
sition is shown in Fig. 1. The goal of this game is to
take off all enemy’s checkers — then the winner is the
player who has at least one checker on the board.

This game requires strategic thinking and consider-
ing possible movements of the enemy, and, which is
the most important, ability to change a plan depend-
ing on the situation on the board.

We assume that checkers can move only diagonally

mailto:Alicja.Lidia.Winnicka@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: Starting positions of the checkers.

on the black tiles and they can move one tile per turn.
The situation, when we want to take an enemy’s check-
er in the neighborhood. Then tile behind this tile must
be empty and our checker jumps over enemy’s one,
so it moves over two tiles. Changing the checker to
"King" is a second exception. King can move over the
whole board diagonally on black tiles.

One of these movements is treated as one turn, but
after taking an enemy’s checker player can move again
in the same turn. A second player’s turn starts when
the first player will move without taking his checker.

According to the description above, we had to set a
few basic assumptions:

« checkers can move backward,

« checkers can take others checkers backward,
« taking checkers is not obligatory,

« checkers can take kings,

« king can move in diagonal line through whole
board,

« boardis 8 x 8,

« checkers move on black tiles,

player with white checkers starts.

55

ECDEVFOGH
ll.l.l.l.l
2 2
e 0 6O O E
J0 B B B ¢

s -l -

“'H'H'H'H"

)
'I

Z'DEFI.JH

Figure 2: Board with marked checker.

3. Algorithm

The purpose of our algorithm is to find the best option
to move during one turn. We may divide it into a few
parts.

3.1. First Step

Let us assume that a checker is on (x, y). In this sit-
uation, depending on the position, it can have maxi-
mally four directions to move, which are checked to
classified as possible or not possible to move. It will
be classified as not possible when our checker is on
the edge of the board or a checked tile is not empty.
For example, the checker marked as red in Fig. 2 has
two options to move — left-up and right-up - because
two tiles below him are used by other white checkers.
Because our coordinates starts in top left corner, these
tilesareon (x - 1,y - 1) and (x + 1,y - 1).

3.2. Second Step

After finding all the options for a turn, we have to
calculate which of them is the best option. This cal-
culating is based on the sum of rewards and punish-
ment connected to these movements. As a reward, we
treat being close to changing into the king and tak-
ing the enemy’s checker. Alternatively, punishments
mean being possibly taken in the next enemy’s move.

Let us set s(x, m, n) as this sum for the one move-
ment. According to our function, it will be a sum of

three values:

« reward for being closer to be a king:

A basic assumption in this option is the fact, that
being closer to being a king means being closer
to the enemy’s edge of the board. Additionally, it
isimportant, how many checkers have the player.
It will be more urgent to have a king when the
number of checkers is smaller - it would be very
useful to have a king when there is only one left
checker on the board.

We needed a function, which will increase with
increasing tile counter x — a number of tiles be-
tween player’s edge of the board and a checker -
and which will have bigger values for a smaller
number of checkers m. We defined a function:

d(x. sin(x)

m) = | | (1)

« reward for taking enemy’s checker:

The second reward is the situation when a player
can take the enemy’s checker. Because it is a
goal of the game player should be focused on
this - so if the player can take enemy’s checker
it must be his priority - unless his winning is in
danger. Additionally, this move causes the pos-
sibility of the next move, so another value to the
reward — all these rewards are calculated as a
reward of this turn.

It is worth noticing that the less enemy’s check-
ers, the better is the player’s situation. Accord-
ing to this, we assumed that it is more urgent to
take enemy’s checkers’ when there are fewer of
them - to finish the game quickly. We needed
a function dependent on a number of enemy’s
checkers n and player’s checkers m and we de-
fined simple increasing function:

flmon) = —,

mn

m,n € [1,12] (2)

« being taken:

Being killed must be punished — we have a sim-
ilar situation to the taking enemy’s checker. If
the move will cause the possibility of being taken
by the enemy’s checker, a value of s has to be
smaller to avoid this. To balance the difference
between taking and being taken we used the same
function as punishment, but we will subtract it:

k(mm) = ——

m=n

m,n€[1,12] (3)

56

Algorithm 1 Proposed Player’s Movement Algorithm

1: Start,

2: for each player’s checker do
3: for each diagonal direction from the checker do
4 calculating rewards according to Eq. 4.
5: end for
6: end for
7. set best=0,

8: for each s do

9 if s > best then

10: best = s

11: end if

12: end for

13: Return best as final movement.
14: Stop.

In this situation our s will be defined with following
equation:

s(x, myn) = d(x,n) + f(n) - k(m,n) + r (4)

where x € [0,8] is number of tiles from player’s
edge, m € [1,12] and n € [1, 12] are respectively num-
ber of player’s and enemy’s checkers left on the board
and r € (0, ﬁ) is random value.

Value of s is calculated for each possible move in this
turn (so each possibility for each checker) and the next
algorithm finds the best of them, which is equivalent to
the biggest one. This value is treated as the best option
to move considering the situation on the board.

Random value r was added to make small differ-
ences between possibilities which are simple moves
towards the end of the board and where x is the same.
Then s would be the same value. Without r algorithm
became predictable, because it would choose the first
of the option with the same value. r allowed to make
small differences between them.

The whole algorithm of one turn is shown above.

4. Experiments

During experiments, we focused on the impact of a
number of enemy’s and player’s checkers and addi-
tionally on the position of checked tile. Fig. 3 shows
us the dependence of reward and position of checked
tile.

On the axis OX, we located tiles from the player’s
edge to the enemy’s edge and on the OY is calculated
to reward s. On this figure we can see two considered
options for the move:

« move towards enemy’s edge without taking or
being taken,

Reward

-
-~ Player's checkers

_
e Enemy's checkers

Figure 3: Comparison of reward depending on player’s and
enemy’s checkers.

« taking the eighth enemy’s checker.

First, one is our d(x, m, n) and is assigned to blue
functions on the Fig. 3 They are changing in the con-
nection to a number of player’s checkers. This func-
tion is a function corresponding to the need of hav-
ing a king and increases with a decreasing number of
player’s checkers. Red function means the reward for
taking the eighth enemy’s checker.

We noticed that taking the enemy’s checker is more
rewarded in any place of the board for more than five
player’s checkers. The situation is more complicated
when a player has five or fewer checkers — for five
checkers and for the fifth tile algorithm will choose to
go further to be a king.

This whole algorithm decides about priorities dur-
ing the play but is not good enough to choose always
the best option from a human’s point of view. An ex-
ample of a bad decision is shown in Fig. 4.

Here we have the same two options which are men-
tioned above, but this time after taking one enemy’s
checker, the player can take another two, decreasing
the number of enemy’s checkers to 10. It will do it if
player’s checkers are mostly above 3, but for 1, 2 or 3
checkers, it will still go to the edge of the board, ignor-
ing the opportunity to take three enemy’s checkers.

Another situation is visible on the bottom of the
Fig. 4 — when the player has even his full set of 12
and the enemy has 12 too, the player will choose to
go further instead of taking one enemy’s checker.

One of the most popular algorithms for games is the
minimax algorithm. This algorithm finds the best op-
tion for the chosen player, considering possible moves
for both players and finds the best option from every
combination of moves. It ensures that literally the best
of all moves will be found, however simultaneously re-
quires much more computing power during each turn
to check if the best option is still the best one — because

57

0
o
3

Player's checkers
Enemy's checkers

0.5 1 15

Figure 4: Example of choosing not the best option.

an enemy may do the move which was not included in
chosen series of moves.

It means, that our algorithm is more exact than for
example minimax algorithm, but is faster and better
for a quick game.

5. Conclusions

In this paper, we showed a reward and punishment
based algorithm as a possible algorithm deciding how
to move in checkers. Our algorithm turned to be good
enough to play against an intelligent person, however
with a trend to lose checkers at the beginning of the
game. It is much better in choosing how to move when
a number of player’s and enemy’s checkers changes
dynamically during the game.

In future papers, we will focus on increasing the ef-
fectiveness of the algorithm at the beginning of the
game.

References

[1] G. Ciccarella, R. Giuliano, F. Mazzenga, F. Vata-
laro, A. Vizzarri, Edge cloud computing in
telecommunications: Case studies on perfor-
mance improvement and tco saving, IEEE
Int. Conference on Fog Mobile Edge Computing
(FMEC 2019) (Rome, Italy, Jun. 2019) 113-120.
D. Silver, J. Schrittwieser, K. Simonyan,
I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., Mastering
the game of go without human knowledge, Jour-
nal of Artificial Intelligence and Soft Computing
Research 550 (2017) 354—-359.

A. Mansoori, M. Eshaghnezhad, S. Effati, Recur-
rent neural network model: a new strategy to
solve fuzzy matrix games, IEEE transactions on

2]

neural networks and learning systems 30 (2019)
2538--2547.

R. Radziukas, R. Maskelizinas, R. Damasevicius,
Prediction of poker moves using sequential
model and tensorflow, International Confer-
ence on Information and Software Technologies
(Springer, 2019) 516—-525.

Q. Hu, S. Yean, J. Liu, S. Lee, D. Rajan,
R. Phattharaphon, Using eye gaze to play mind
card-game using neural network, Proceedings
of The Fifth International Conference on Elec-
tronics and Software Science (ICESS2019) (Japan,
2019) 54.

F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli,
F. Scaglione, Rainfall estimation based on the in-
tensity of the received signal in a lte/4g mobile
terminal by using a probabilistic neural network,
IEEE Access 6 (2018) 30865-30873.

F. Bonanno, G. Capizzi, G. Sciuto, C. Napoli,
Wavelet recurrent neural network with semi-
parametric input data preprocessing for micro-
wind power forecasting in integrated generation
systems, 2015, pp. 602-609.

G. Capizzi, C. Napoli, S. Russo, M. Wozniak,
Lessening stress and anxiety-related behaviors
by means of ai-driven drones for aromatherapy,
in: CEUR Workshop Proceedings, volume 2594,

58

(10]

(11]

(12]

2020, pp. 7-12.

D. Potap, K. Kesik, M. Wozniak, Accident pre-
vention system during immersion in virtual re-
ality, in International Conference on Multime-
dia and Network Information System. (Springer,
2018) 565—-573.

D. Polap, Human-machine interaction in intel-
ligent technologies using the augmented reality,
Information Technology and Control 47 (2018)
691--703.

D. Potap, M. Wozniak, C. Napoli, E. Tramontana,
Real-time cloud-based game management sys-
tem via cuckoo search algorithm, International
Journal of Electronics and Telecommunications
61 (2015) 333-338.

J. Hamari, D.]J. Shernoff, E. Rowe, B. Coller,
J. Asbell-Clarke, T. Edwards, Challenging games
help students learn: An empirical study on en-
gagement, flow and immersion in game-based
learning, Computers in human behavior 54
(2016) 170—-179.

M. Sailer, J. U. Hense, S. K. Mayr, H. Mandl, How
gamification motivates: An experimental study
of the effects of specific game design elements
on psychological need satisfaction, Computers
in Human Behavior 69 (2017) 371—-380.

	1 Introduction
	2 Checkers' rules
	3 Algorithm
	3.1 First Step
	3.2 Second Step

	4 Experiments
	5 Conclusions

