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Abstract
Today, in the border and perimeter protection, it is very common to use RADAR technology and pan-tilt (PT) cameras to have
terrain dominance. The common solution uses both sources - while most of the threats are detected by radar, the camera
used for inspection of motion, detected by radar. This solution is very dependent on radar performance and not effective for
different scenarios when the radar is not capable to monitor the movement of all targets. Inputs from camera and radar are
used in close integration to increase detection probability and reduce false alarms. In this work two alternative methods of
radar and visual data fusion are proposed, data structures and processing algorithms are defined and results of experimental
validation for both proposed methods are shown.
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1. Introduction
Sensor fusion is a large research topic. Its goal is to
combine multiple data sources to receive joined data,
which allows to improve processes or calculations, com-
pared to single-source data usage.

Tracking solution using radar as the only source of
data suffers from unreliable detection or even absence
of detection when dealing with mostly tangential tra-
jectories of observed objects. An attempt is made to
lessen this problem by adding a camera as a second
source of data and combining radar tracking with video
motion detection (VMD) while keeping a common tar-
get state for detections from both sources. It is also
expected, that fusion can add the benefit of reduced
false detection rate since validation of tracks can be
more reliable using two sources of information redun-
dant fusion scheme [1]).

This work focuses on research related to the practi-
cal application of fusion between radar and video. Two
main methods of fusion, namely data fusion and tracks
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fusion are defined in this context, with first covering
such important parts of the system like data associa-
tion and state updates and second being more modular
and distributed alternative.

Methods based on Kalman family filters [2, 3, 4] are
common, when dealing with the data-level fusion be-
cause they enable to have process model independent
from observation structure [5] while working with un-
certain data. In the case of several sensors, such filters
allow to incorporate new data into the model as data
gets available [3], [6].

Due to the properties of Kalman filter (KF), it is re-
quired, that state update of the described dynamic pro-
cess would be linear. It is common practice to use
Cartesian coordinates to describe object state when
dealing with mostly linear movement. When trying
to fuse camera and radar data, two issues are quite ap-
parent:

1. Both radar and camera are acquiring data in Po-
lar coordinates.

2. While full 3D Cartesian representation can be
reconstructed from the radar data, it is not true
for camera without several assumptions on the
geometry of setup.

The first problem can be solved in several ways. The
usual practice is to keep the target state in Cartesian
coordinates [2], [7] while measuring in Polar and trans-
forming data before the update (converted measure-
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ments [8], [9], [10]). The covariance matrix, which
is used in update and estimation, gets biased if trans-
formed directly. There are exist many solutions for
the linearization of space near estimated point to get
proper values for the covariance matrix [3], [11] (Ex-
tended Kalman Filter, Unscented Kalman filter to name
a few). After transformation state can be updated by
normal Kalman filter formulas.

Second issue is not addressed by these solutions: if
Kalman filter would be used while keeping target state
in Cartesian coordinates, camera would change from
very precise sensor ( azand el angles) to very unprecise
( x, y, z), as distance to object is used in Polar to Carte-
sian transform for any direction and is not directly
measured by camera. There are numerous different
approaches to get at least some estimation of distance
from direct camera measurements:

1. Use radar detections as a base and map cam-
era detections to radar improving angular res-
olution [12], [13].

2. Use homography1 estimation methods for cam-
era calibration in the lab.

3. Use corner reflector or another strongly reflec-
tive object to map precisely radar and camera
detections into 3D [14], [15].

4. Use many assumptions2 on the positioning of
detections relative to the optical axis (ground is
straight plane, camera position, and orientation
is known, targets are always on the ground, etc.)
[16], [17].

5. Use machine learning (ML) techniques, in the
cases when targets are specified (e.g. like detect-
ing image size of cars the physical size of which
is known) [13, 18].

6. Use the movement of the camera and additional
features (lane lines) to acquire distance [19], [20],
[21].

For scenarios, arising in perimeter protection or home-
land security, method 6) is not applicable or too costly
in a sense of performance. Usually, there are no prede-
fined markers and the system is stationary (no trans-
lational movement). All other approaches can be ex-
plored. Ideal solution, however, would be to use cam-
era only in its strongest domain to augment informa-
tion received by radar instead of increasing inaccura-
cies in one dimension while decreasing in others. One
such potential solution is to keep the state of Kalman

1A geometrical relation between two images of the same planar
surface, described by the transformation matrix

2The camera is moving by known pattern, the terrain is flat,
camera position and angle to the surface are known, etc.

Figure 1: Coordinate systems used in experiments. Unit is
pointed in Z direction

filter in Polar coordinates. This isn’t unknown in lit-
erature, as bearing only tracking often uses Modified
Polar Coordinates (MPC) [8], [22] or Modified Spheri-
cal Coordinates (MSC) [23].

Following issues are explored before finalizing data
model for fusion:

1. The impact of the origin of the coordinates – to
use Cartesian or Polar coordinates in the linear
Kalman filter, for the different movement pat-
terns.

2. Improvement (if any) of the accuracy of state es-
timation in Polar coordinates, if the camera is
also used in Kalman filter updates.

3. Detection of distance to objects from camera mea-
surements and the effect of the addition of this
result to the Kalman filter measurement model.

As a consequence, some of the following sections
(section II, section V and section VI) are split into two
main parts - preliminary experiments (simulation) and
methods validation. It should be clear, however, that
chronologically all preliminary tests were performed
and results were analyzed before finalizing fusion mod-
els and implementing fusion methods.

2. Data Description
Coordinates, used in this research are defined as shown
in Fig.1
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Figure 2: The setup of test trajectories for experiments

2.1. Simulation Data Description
In this part of the research, the definition of custom
trajectories for any number of targets as well as radar
and video motion detection (VMD) noise models were
implemented. The following simulation parameters
can be defined for radar:

1. Range noise standard deviation
2. Velocity noise standard deviation
3. Detection angle noise standard deviation
4. False detection rate (per simulation area element)
5. Detection view angle
6. Update rate

The following simulation parameters can be defined
for the camera:

1. VMD detection box noise (in pixels)
2. Camera resolution
3. Angular field of view
4. VMD false positive rate and area

5. Update rate

Simulation of detections for VMD and radar and sub-
sequent registration without knowledge of ground truth
or noise model is performed.

Kalman filter state is defined by [𝑥 𝑣𝑥 𝑎𝑥 𝑧 𝑣𝑧 𝑎𝑧]
T in

case of Cartesian coordinates and by [𝑟𝑣𝑟𝑎𝑟𝑎𝑧𝑑𝑎𝑧𝑑𝑑𝑎𝑧]T

in Polar coordinates, where

1. 𝑣𝑥 and 𝑣𝑧 are velocities in x and z dimensions
respectively,

2. 𝑎𝑥 and 𝑎𝑧 are accelerations
3. 𝑣𝑟 - range change rate
4. 𝑎𝑧 - azimuth angle
5. 𝑑𝑎𝑧 and 𝑑𝑑𝑎𝑧 - the rate of change for azimuth

and the rate of change of 𝑑𝑎𝑧 (angle accelera-
tion)

Measurements of radar and camera are simulated
using Gaussian noise model. For camera – different
accuracies of VMD were tested ranging from 1 pixel
to 5 pixels.
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Measurements are filtered and the mean square er-
ror (MSE) is calculated for comparison of estimated
positions to actual trajectories.

In Fig.2 test trajectories Trajectory 1 – T1, Trajec-
tory 2 – T2, Trajectory 3 – T3, which were used for
evaluation (camera and radar are at the point (0,0) in
a𝑥 − 𝑧 Cartesian coordinate system) are presented.

2.2. Data for Evaluation of Fusion
Methods

In case of track fusion inputs for fusion module are

1. list of VMD outputs as bounding boxes [𝑥 𝑦 𝑤 ℎ]
and ID of VMD track

2. list of radar tracker outputs as [𝑥 𝑧 𝑣𝑥 𝑣𝑧] and ID
of radar track

In case of data fusion inputs are

1. list of bounding boxes [𝑥 𝑦𝑤ℎ] received directly
from the "blob" stage of VMD pipeline

2. list of radar targets [𝑟 𝑣𝑟 𝑎𝑧]

The main difference between sources of data for two
approaches is, that in case of data fusion there are many
false detections, which are not filtered by VMD or radar
tracker methods respectively.

3. Data Fusion Methods
Overview of different sensor fusion classifications can
be found in [1] for a further reading. Here we employ
terminology, used by Castanedo in that paper.

Possible schemes of the sensor fusion in a given ap-
plication are limited to redundant schemes (with other
possibilities being complementary and cooperative) bas-
ed on the relations of sensors used in the system. Both
types of sensors are measuring the same state of ob-
jects at the same time in the observed area.

Based on the idea of modularity of the system, it is
clear, that radar/camera fusion should not be a decision-
making module. While detections are performed by
the fusion module, the final decision is affected by ad-
ditional rule-based filters and the recognition module.
The goal of the fusion module is to minimize the false
alarm rate (FAR) of the system and provide inputs for
decision-making modules. It can be said then, that fu-
sion module approaches can be limited to two (data in
- feature out (DAI-FEO), f eature in - feature out (FEI-
FEO)), contrary to approaches, which provide data or
decisions as outputs (data in - data out (DAI-DAO),
f eature in - decision out (FEI-DEO), decision in - de-
cision out (DEI-DEO)).

Four types of fusion architectures are defined in [1]:

1. centralized architecture,
2. decentralized architecture,
3. distributed architecture,
4. hierarchical architecture.

Centralized architecture (data from all sources is pro-
cessed in single module) is expected to be theoreti-
cally optimal in case of proper synchronization of data
sources and sufficient bandwidth for data transfer. It
can suffer, however, from lack of distribution of band-
width and processing in case these resources are lim-
ited for given task. Alternatives, solving this issue,
are decentralized architecture (fusion nodes incorpo-
rate raw data in different order and composition) and
distributed architecture (fusion nodes receive single sen-
sor data and provide features to be fused). In our view,
decentralized architecture would introduce unneces-
sary complexity and implementation difficulty, so dis-
tributed architecture is considered as only another op-
tion to centralized architecture.

4. Proposed Fusion Methods
Based on the discussion in the previous section and the
results of preliminary evaluations (described in section
VI), two main fusion approaches are established:

1. data fusion
2. tracks fusion

Data fusion is a centralized mixed input (DAI-FEO
and FEI-FEO) method, accepting raw outputs of radar
and intermediate results of VMD (bounding boxes of
detected blobs).

Tracks fusion is distributed FEI-FEO method, accept-
ing features (tracks) from VMD and radar tracker mod-
ules.

Both should solve the problem defined, but the pros
and cons of approaches are different. Fusion of tracks
is performed after data from both sources is processed
and there is track detected on both sets of data. Then
both tracks are matched (track to track association) to
better reflect the behavior of the object being tracked.
In the case of one of the sources not returning track
while other is returning track, different policies can
be used to favor reduced false detection rate over ex-
tended tracking duration or vice versa. Comparing
with data fusion, tracks fusion is easier to debug and
tune, since separate modules can be tested and tuned
faster due to overall reduced complexity. Data fusion
works on a lower level than tracks fusion. It has the
benefit of incorporating updates from both sources of
data into common state update converging to a true
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state of the object being tracked faster. The role of
policies in the case of one of the sources missing de-
tections is reduced since both sources of raw data can
be treated similarly (both update Kalman filter state).
There is no need to tune policies for different cases
(no recent radar detection, no recent camera detection,
higher than an average mismatch between sources, etc.),
it is handled by common update. The downside of data
fusion compared to track fusion is longer debugging
and tuning. If conditions of experiments/use cases or
equipment changes, that could add delivery time over-
head.

4.1. Data Fusion
General strategy for data-level fusion can be summa-
rized as follows:

1. Use radar detections as a base for track valida-
tion.

2. Any VMD detection can create a persistent track,
but it will be validated without radar data only
after a relatively long track age is reached.

3. Any track with both recent VMD and Radar de-
tections has a higher probability to be validated
as a real track, as a consequence, it is validated
at the lower age of the track.

Such choices are proposed due to relative ease of
radar data validation - if the movement of a potential
target in the area under test contradicts Doppler ve-
locity, reported by radar, such target can be quickly
invalidated. There is no similar process for VMD.

Full track state representation consists of the fol-
lowing parts:

1. Track state vector at time 𝑡 (based on definitions
in Section II). 6x1 vector:

𝑋𝑡 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑥

𝑣𝑥

𝑎𝑥

𝑧

𝑣𝑧

𝑎𝑧

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (1)

or its counterpart in Polar coordinates. In case
of constant velocity model (4x1 vector):

𝑋𝑡 =

⎡

⎢

⎢

⎢

⎣

𝑥

𝑣𝑥

𝑧

𝑣𝑧

⎤

⎥

⎥

⎥

⎦

. (2)

2. The track covariance matrix 𝑃𝑡 . 6x6 matrix or
4x4 matrix (if accelerations removed), describ-
ing the amount of variance in data and interstate
dependencies (covariance).

3. The track age. Time elapsed from the moment of
track creation by VMD or radar. It is updated if
either VMD or radar detection can be associated
with the current state vector.

4. The track innovation error. Value, which is com-
pared to predefined threshold values for track
validation and removal. Track innovation er-
ror (squared Mahalanobis distance) is calculated
from state measurement residual (innovation) and
residual (innovation) covariance. It is one of the
main criteria for positive detection.

5. Track update timestamp for VMD
6. Track update timestamp for radar
7. Object size. It can be calculated if both VMD and

radar detected an object.
8. Object visual distance state. 2x1 vector (distance,

rate of distance). It is estimated from the camera
and can be used if the positioning of the device
is known. It is highly unstable due to partial ob-
structions and because of that is separated from
the track state vector. It can be used by higher-
level decision-making modules.

9. Object visual distance covariance matrix. 2x2
matrix.

10. The total duration of detection for VMD. It is one
of the main criteria for positive detection.

11. The total duration of detection for radar. It is
one of the main criteria for positive detection.

The fusion scheme consists of data association, state
update, and management of tracks. Data association
(point to track) in the first prototype is implemented
as simple Nearest Neighbour (NN) estimation in state
space, favoring simplicity and speed. Joint Probabil-
ity Data Association (JPDA) based association method
[24] is used as an alternative in later versions. In NN
based data association each measurement is compared
against the estimated state 𝑋

𝑡 |𝑡−1
at time 𝑡 by calculat-

ing Mahalanobis distance based metric (discussed fur-
ther). The prefiltering of potential associations can be
performed using some simple heuristics like 2D dis-
tance.

Linear KF is used for state estimation and update.
Estimation step:

𝑋
𝑡 |𝑡−1

= 𝐴𝑋
𝑡−1|𝑡−1

, (3)

where A is process matrix defined for a state with ac-
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celerations as:

𝐴 =

⎡

⎢

⎢

⎢
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⎣

1 𝑑𝑡 𝑑𝑡
2

0 0 0

0 1 𝑑𝑡 0 0 0

0 0 1 0 0 0
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2
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⎥

⎥
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, (4)

for state without acceleration as:

𝐴 =

⎡

⎢

⎢

⎢

⎣

1 𝑑𝑡 0 0

0 1 0 0

0 0 1 𝑑𝑡

0 0 0 1

⎤

⎥

⎥

⎥

⎦

, (5)

here 𝑋
𝑡−1|𝑡−1

means posterior state from the previous
update, 𝑑𝑡 is time passed from the last update. Further,
all the calculations will be described for state without
accelerations to shorten notations, state vector dimen-
sionality 𝑚 will be used to describe sizes of matrices.
The predicted covariance matrix is calculated as

𝑃
𝑡 |𝑡−1

= 𝐴𝑃
𝑡−1|𝑡−1

𝐴
T
+ 𝑄, (6)

where𝑄 is a square𝑚x𝑚 matrix defining process noise.
The next step of processing is mixed - state update

and data association step. Innovation is calculated for
each pair of track and a prefiltered measurement to
later allow optimal NN data association:

𝑌𝑡 = 𝑍𝑡 − 𝐻𝑋
𝑡 |𝑡−1

, (7)

here 𝐻 is 𝑘x𝑚 measurement matrix, 𝑍𝑡 is the measure-
ment vector of 𝑘x1 size. The size of the measurement
vector and the measurement matrix 𝑘 depend on the
type of sensor and coordinate systems used for mea-
surements and the state. 𝑘 can be understood as num-
ber of parameters measured by a specific sensor and 𝐻

as mapping between state and measured parameters.
If transformation from sensor coordinates to state co-
ordinates is linear, it can be performed by 𝐻 directly.
In our experiment of using Polar representation of tar-
get state space

𝑋𝑡 =

⎡

⎢

⎢

⎢

⎣

𝑟

𝑣𝑟

𝑎𝑧

𝑑𝑎𝑧

⎤

⎥

⎥

⎥

⎦

. (8)

The data vector of radar and measurement matrix:

𝑍𝑡 =

⎡

⎢

⎢

⎣

𝑟

𝑣𝑟

𝑎𝑧

⎤

⎥

⎥

⎦

, (9)

𝐻 =

⎡

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤

⎥

⎥

⎦

, (10)

which simplifies calculations. In the case of camera
(VMD) update without the knowledge of the geomet-
rical setup:

𝑍𝑡 = [𝑥𝑝] . (11)

here 𝑥𝑝 is just x position of the center of the bounding
box in screen coordinates. The measurement matrix
then

𝐻 = [0 0
𝑤

HFOV 0
𝑤

2 ]
, (12)

and the state vector needs to be augmented with addi-
tional element 1 as the last row to allow matrix multi-
plication in (7). In the above formula, 𝑤 is the width of
the video in pixels. The single element matrix 𝑌𝑡 can
also be calculated by just using 𝑎𝑧 element of the state
vector as:

𝑌𝑡 = [𝑥𝑝 −
𝑎𝑧

HFOV𝑤 +
𝑤

2 ]
. (13)

Next, innovation covariance is calculated

𝑆𝑡 = 𝐻𝑡𝑃𝑡 |𝑡−1𝐻
T
𝑡
+ 𝑅, (14)

here 𝑅 is 𝑘x𝑘 diagonal measurement error matrix. It is
defined based on the parameters of sensors used. Er-
ror ranges from the datasheet of the sensor is a good
starting point. Kalman gain

𝐾𝑡 = 𝑃
𝑡 |𝑡−1

− 𝐻
T
𝑆
−1

𝑡
, (15)

here inverse of 𝑆𝑡 is taken. Innovation error, which is
not used directly in the Kalman filter update, but is the
main criterion for data association:

𝜖 = 𝑌
T
𝑡
𝑆
−1

𝑡
𝑌𝑡 , (16)

Lastly, if it is found, that there is the best match
between the track-measurement pair, the Kalman fil-
ter update step is finished by calculating the posterior
state and covariance:

𝑋
𝑡 |𝑡

= 𝑋
𝑡 |𝑡−1

+ 𝐾𝑡𝑌𝑡 , (17)

𝑃
𝑡 |𝑡

= (𝐼 − 𝐾𝑡𝐻 )𝑃
𝑡 |𝑡−1

, (18)

here 𝐼 is 𝑚x𝑚 identity matrix. The best match be-
tween track and measurement is found by comparing
𝜖 for each prefiltered pair. It is possible to fail to find a
matching pair if all 𝜖 are larger than some predefined
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threshold 𝜏 . In such a case, a new track state for the
track without measurement:

𝑋
𝑡 |𝑡

= 𝑋
𝑡 |𝑡−1

, (19)

𝑃
𝑡 |𝑡

= 𝑃
𝑡 |𝑡−1

. (20)

Track merging is performed if (similarly to (16)):

𝐷 = (𝑋1𝑡 − 𝑋2𝑡 )
T
𝑃
−1

match(𝑋1𝑡 − 𝑋2𝑡 )) < 𝐷thresh, (21)

where 𝑋1𝑡 and 𝑋2𝑡 are states of two tracks to be com-
pared, 𝑃match is a diagonal matrix, can be treated as
typical variances of track state elements (with large
values of 𝑃match more tracks will be matched), 𝐷thresh
is a threshold for matching.

With the main parts of the data association and track
update discussed, global view of data fusion can be de-
fined (see Algorithm 1).

During the step of managing unmatched tracks, in-
novation error of track (normally calculated as (16)),
is increased. In current implementation following em-
pirically found formula is used:

𝜖 = 𝜖 ∗ max(1 +

√

𝑑𝑡/3, 1 + 6𝑑𝑡/𝑇tr), (22)

here 𝑇tr is the age of the track. The idea is to increase
𝜖 for new tracks faster, that older tracks, as the track
age usually shows, how reliable the current track is.

The age of track is increased if there is VMD or Radar
detection. If detection was from previous measure-
ment (contrary to measurements, which came from
both sources on the same processing step) it is increased
by the time difference between current and previous
measurements. If track is picked up after an absence
of matching measurements, delta time is added based
on the type of update (frame update time for VMD or
frame update time for Radar). Tracks without current
matching measurements do not update age value.

For VMD only state (no recent radar detection) pre-
vious angular movement is used along with size to
create view space gating for measurement to tracks
matching. It is part of measurement prefiltering, men-
tioned earlier. If angular velocity isn’t initialized (the
track age is low), the maximum possible rate of move-
ment based on typical size and velocity ratio is used to
create view space gate.

For a track, having recent Radar detection or over-
all high radar detection duration, the exact estimated
position is calculated and new detections of VMD and
Radar are projected on common space to use spatial
gating.

Tracks are created/initialized with every moving ob-
ject detection. For radar detection movement condi-
tion is non-zero Doppler velocity by default or can

/* merging of existing tracks */
for each track t in memory do

for each track t2 in memory except t do
apply (21);
if (21) condition met then

merge t and t2;
remove t2 from memory;

end
end

end
/* updating of tracks by

measurement */
if have a new measurement of any source then

for each track t in memory do
estimate prior state (3) and covariance
(6) prefilter list of possible
measurements;
for each measurement with eps small
enough do

if measurement was already used
then

check for more precise updates
in earlier tracks;
if no better found then

update Kalman state (17),
(18);

push updated state to stack
of potential updates;

mark measurement as used;
end

else
update Kalman state (17), (18);
push updated state to stack of
potential updates;

mark measurement as used;
end

end
end
for each track t in memory do

apply the best update from the updated
states stack;

end
end
/* manage unmatched tracks */
for each unmatched track do

increase track innovation error;
if innovation error reaches threshold then

remove a track from memory
end

end
/* create potential tracks */
for each unmatched measurement do

if satisfies movement conditions then
create a track with an initial state and
initial covariance;

end
end

Algorithm 1: Data fusion algorithm

98



Figure 3: Distance estimation from camera

be set as one of the many algorithm parameters. All
VMD detections treated as moving by definition. Af-
ter the creation track is in a non-validated state. Tracks
are considered to be validated after predefined age de-
pending on the following properties:

1. Existence or absence of recent VMD/Radar de-
tection. Radar detections (without VMD detec-
tion) having a higher impact on validation thresh-
old than another way around.

2. Track innovation error.
3. Total previous duration of detections for radar

and VMD
4. Trajectory type - mostly tangential movement

with radar only detections should be verified for
a longer duration.

5. Velocity thresholds.

Tracks to be removed from potential tracks list if:

1. Track innovation error grows too large. It is cal-
culated based on new measurements and also in-
cremented after the absence of radar detection
(22).

2. The track is created by VMD detection and visual-
only innovation error grows to large. It is calcu-
lated from angular measurements only and up-
dated similarly to (22).

4.2. Distance Estimation from a Camera
Distance from camera measurements is calculated based
on assumptions, that:

1. target is not blocked by some other objects
2. height and elevation of the camera are known
3. detection is of ground-based targets

The main features used for calculations are presented
in Fig.3. Algorithm:

1. Calculate angle to the base of target based on the
bottom edge of VMD detection and knowledge
of VFOV of the camera as:

𝛾 =

ℎVFOV
𝑛𝑣

, (23)

where ℎ is projection of position, where target
touches the ground on camera view, 𝑛𝑣 - vertical
resolution (number of pixels along the vertical
axis of image).

2. Subtract this angle from the angle formed by straight-
up direction and camera "looking" direction:

𝛽
′
= 𝛽 − 𝛾 . (24)

3. Calculate distance, by knowing one side of the
triangle (height of camera) and the angle between
this side and hypotenuse:

𝐷 = 𝐻 tan 𝛽
′
. (25)

There are other ways to estimate the distance to the
target from the camera only. For example, if the tar-
get is identified, the relative size of the target on the
image could signal distance. That requires, however,
a feedback loop between the fusion module and the
recognition module.

4.3. Tracks Fusion
A general strategy for tracks fusion can be summa-
rized as follows:

1. Both sources can create fusion tracks with an-
other component not present until the match will
be found at a later stage.

2. Input tracks are not verified against Kalman state
estimate (no data association), because this step
is already done in the tracker module.

3. VMD and radar tracker tracks can be merged if
merging requirements are met. From such mo-
ment fusion track has both components.

4. The track can be split, if it is detected, that visual
and radar data diverge too much. Track split-
ting/merging is performed at each data update
step.

Additionally to track structure discussed in the pre-
vious section following fields are defined for tracking
state:

1. Fused track ID (different from components).
2. visualSeparated- boolean value, which shows, that

track recently had a visual component but lost it
due to diverging of visual and radar.
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Figure 4: Time alignment of radar and VMD tracks for
matching

3. VMD track ID. With new data updates, the de-
gree of matching between fused tracks compo-
nents is first checked for stored best previous
matches

4. Radar tracker track ID. Same as above.

The track fusion algorithm is overviewed in Algo-
rithm 2. The operation of mismatch calculation, used
in algorithm description on many occasions can be ex-
plained looking at Fig. 4. First, measurement times-
tamps are created for all entries of both types of tracks.
Then estimations for matching are calculated by inter-
polation (or extrapolation, if on edges). Average az-
imuth mismatch is used as a matching parameter. The
early exit of the matching function is possible if mis-
match grows to a predefined value.

The age of track is updated as per data fusion with
each new radar tracker output considered as new radar
measurement with time step equal to radar update du-
ration. Track time out is increased, if no measure-
ments were added to track. This step is the same for
component tracks and the fused track. Time out for
deletion calculation, mentioned in Algorithm 2, is cal-
culated based on the current number of tracks. It is de-
fined as 3 s if the number of tracks is less than 𝑁max -
the maximum number of tracks. If, on the other hand,
the number of tracks is higher, allowed time out re-
duces:

𝑇timeout = 3

2𝑁max − 𝑁cur

𝑁max
. (26)

This assures, that all tracks are cleared if 𝑁cur reaches
2𝑁max. If a number of tracks for some reason grows
more than 2𝑁max, all tracks are cleared.

Tracks are created/initialized with every moving ob-
ject detection from radar and every VMD detection.
After creation, VMD track is in non-validated state,
but track, created from radar tracker data directly, is
in a validated state. Fused track having both compo-
nents can be split, if VMD measurements diverge from
tracker output too much. visualSeparated is set to true
in this case. It is done to prevent the reacquisition
of the same VMD track with a high mismatch factor.
VMD only part of such split inherits range data and all

/* updating tracks structures */
if have a new radar tracker frame then

for each track in frame do
if The ID of a track can be found in
already existing then

append a new measurement;
else

create a new list of track entries
with new ID;

end
end

end
if have new frame of VMD tracks then

same as for radar tracks;
end
/* matching of tracks */
for each fused track do

calculate mismatch of radar and video;
for all non-fused tracks of both types do

calculate mismatch with appropriate
(radar vs. VMD) track;
if a better match found then

assign a new component to fused;
release the previous component as
non-fused;

end
end

end
/* generation of tracks */
for each combination of radar and VMD track
do

calculate mismatch; if mismatch small
enough then

create a new fused track with matched
components

end
end
/* destruction of tracks */
calculate time out of track for deletion;
delete all tracks with higher time out than
allowed;
/* tracks state update */
for each fused track do

if any of the track components received
updates then

a full Kalman filter update
else

update the state as an estimation only
(17),(18)

end
end

Algorithm 2: The track fusion algorithm
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Figure 5: Area of testing for fusion evaluation. Position of equipment marked as 0 distance. Distance from equipment to
one of the points of trajectory is shown

data, which is relevant to durations of detections and
age of the track. It can be matched again later after vi-
sualSeparated expires. The split tracks get invalidated
for some short duration (less than second) by setting
it’s innovation error parameter to some high value and
gradually reducing it after new measurements.

5. Experimental Setup
The area, selected for experiments is shown in Fig. 5.
The selected area allows the testing performance of
tracking on big enough distance (more than 100 m)
with parts of trajectories being almost exactly tangen-
tial while moving around the edge of the stadium. A
small amount of moving background (cars, people, trees)
allows more control over experiments.

Three experiments are performed:
1. A person moving clockwise around the edge of

the stadium without stopping
2. A person moving counter-clockwise around the

edge of the stadium, stopping, then proceeding
3. A person moving clockwise around the edge of

the stadium, then changing the moving pattern
from mostly tangential to radial

An example frame of video with detection displayed
is presented in Fig. 6. Data were acquired using the
NXP iMX6 SoM based embedded system with a quad-
core 1.2 GHz processor. Video recording and radar

data acquisition was performed simultaneously. Time
synchronization was assured by knowing the starting
time of video and frame rate and storing radar raw data
or radar tracks with exact timestamps. Although the
discussed algorithms were not running at the time of
these measurements, close to real-time performance is
achieved later using the same hardware.

6. Results of Experimental
Investigation

Experimental investigation was subdivided into two
stages. First, preliminary experiments were performed
to select the state model and update strategy for fused
tracks. During the second stage, the tracks fusion and
the data fusion approaches were validated.

6.1. Comparison of Cartesian
Coordinates and Polar Coordinates
for KF State Representation

The impact of the selected system of coordinates to
performance is presented in (a) - (c) pictures in Fig.
7. KF state representation by Cartesian or Polar coor-
dinates produces very close results and a visual sep-
aration of results is hardly noticeable. In Table 1, the
results of models, in which Polar or Cartesian coor-
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Figure 6: Example frame of first sequence

Table 1
Comparison of performance of models in which Polar or
Cartesian coordinates ar used for KF state representation
using MSE

Trajectory Measured error KF error Cartesian KF error Polar
T1 2.4647 0.85995 0.87358
T2 2.2787 0.62444 0.58846
T3 2.7926 0.60758 0.63428

dinates are used for KF state representation perfor-
mances, are presented. Since results are very similar,
it can be concluded, that there is no significant differ-
ence in different KF state representations. To obtain
error for each model, 10 simulations were performed
for each and mean MSE calculated.

6.2. Accuracy of Filtering with Camera
Data added

The resulting performances of models with/without
adding camera to state update, represented through
MSE, are shown in Table 2. It can be observed, that KF
state updated using camera output represents ground
truth more accurately than updated by radar data only.
As before, mean MSE is calculated by running simula-
tion 10 times for each trajectory.

Table 2
Comparison of performance of models with/without adding
camera to state using MSE

Trajectory Measured error KF error Polar Fusion error
T1 2.4647 0.87358 0.72844
T2 2.2787 0.58846 0.51873
T3 2.7926 0.63428 0.58261

6.3. Accuracy of Filtering with Distance
Calculation from Camera Data

Results of fusion error and fusion with distance mod-
els performance evaluation using MSE statistics are
presented in Table 3. The best minimum values as
well as mean values of MSE shows, that fusion with
distance evaluation model performance outperforms
model without distance evaluation performance.

An example of a typical simulation run with differ-
ent models evaluated is shown in Fig. 8

6.4. Fusion Methods Evaluation
The main metrics for evaluation of two fusion approaches
were Object count accuracy (OCA) and FAR. OCA is
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Figure 7: Comparison of performance of models in which Polar or Cartesian coordinates for KF state representation are
used: (a) – test trajectory T1, (b) – test trajectory T2, (c) – test trajectory T3.

Table 3
Fusion error and fusion with distance estimation error comparison using MSE

Trajectory MAX MIN MEAN STD

T1

Measured error 3.0179 2.2735 2.6342 0.2677
KF error 0.8749 0.4311 0.6654 0.1456

Fusion error 0.8065 0.3300 0.5491 0.1471
Fusion with DIST error 0.8438 0.2631 0.5346 0.1720

T2

Measured error 2.8525 1.9410 2.4447 0.3272
KF error 1.1779 0.4676 0.7667 0.2336

Fusion error 0.9825 0.3526 0.5915 0.2170
Fusion with DIST error 0.9841 0.3333 0.5543 0.2203

T3

Measured error 3.0052 1.5744 2.3672 0.4143
KF error 0.9347 0.3607 0.6654 0.1919

Fusion error 0.7708 0.2087 0.5219 0.1843
Fusion with DIST error 0.6282 0.1687 0.4243 0.1536

defined as

OCA𝑡 (𝑃
𝐺

𝑡
, 𝑃

𝐷

𝑡
) =

min(𝑀
𝐺

𝑡
, 𝑀

𝐷

𝑡
)

𝑀
𝐺

𝑡
+𝑀

𝐷

𝑡

2

, (27)

where 𝑃
𝐺

𝑡
and 𝑃

𝐷

𝑡
are sets of ground truth points and

detected points in measurement frame 𝑡 respectively,
𝑀

𝐺

𝑡
and 𝑀

𝐷

𝑡
are quantities of ground truth and de-

tected instances respectively. Overall OCA is defined
as the average OCA of all frames of measurements.
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Figure 8: Typical results of simulation run: (a) – measured positions (T3 trajectory), (b) position estimation squared error

Table 4
Data fusion and tracks fusion evaluation results

Radar tracker Data fusion Tracks fusion

Sequences
mean

FAR
mean

FAR
mean

FAR
OCA OCA OCA

1st 0.5034 0 0.9935 0 0.9839 0
2nd 0.2771 0 0.8909 0 0.8832 0
3rd 0.907 0.0135 0.9800 0 0.9360 0

FAR is defined as number of frames with false tracks,
divided by total observed frames:

FAR =

𝑁𝜏

𝑁

. (28)

Any false track appearing in the frame constitutes to
given frame becoming a false positive.

The focus of the experimental investigation was on
elimination of false detections and reduction of missed
detections rate. Progress towards both goals can be
successfully monitored using selected metrics [25, 26].
Rather conservative policies for tracks validation were
chosen for both versions of fusion to highlight the pos-
sibility to avoid false alarms while still keeping high
enough detection rate (indirectly shown by OCA) for
all practical purposes. Evaluation results are presented
in Table 4. Best results are obtained by Data fusion and
close to the best results are obtained by Tracks fusion.

7. Conclusions
1. It was observed experimentally, that radar only

tracking suffers from many missed detections, if
the target trajectory is close to tangential.

2. While radar only tracker performs without false
alarms during the first two sequences, it is demon-
strated with the third sequence, that target di-
rection changes can cause false tracks to appear.

3. Two issues, mentioned above, can be solved with
any of two fusion of radar and camera approaches,
as it is seen from evaluation results. OCA in-
creased drastically in both cases compared to radar
only tracking.

4. Data fusion offers slightly better performance,
reflected by higher OCA values. In practice, it
means faster track validation and more robust
tracking with missed detections from either VMD
or radar.

5. The addition of distance measurements from the
camera didn’t prove to be stable method for tracks
matching or state updates in practice. Although
simulation was suggesting accuracy improvement,
real measurements were highly unstable while
using this approach.
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