CEUR-WS.org/Vol-2698/pl5.pdf

MDA Approach for Laravel Framework Code Generation

from UML Diagrams

Mantas Razinskas?, Lina Ceponiené®

@Faculty of Informatics of Kaunas University of Technology, Kaunas, Lithuania

bInformation Systems Department of Kaunas University of Technology, Kaunas, Lithuania

Abstract

Laravel is a popular PHP framework used in web development. To facilitate and simplify the work of software developers us-
ing this framework, this paper proposes an MDA based methodology for developing Laravel based web information systems.
This methodology implementation would allow software developers to generate Laravel code from UML diagrams through
MDA transformations from PIM to PSM (with Laravel PSM profile applied) and from PSM to code. Developers then could fill
the gaps in the generated PHP code for Laravel framework to develop a complete web information system.

Keywords
Laravel, MDA, MVC, UML model, code generation

1. Introduction

The modern need for development of high quality in-
formation systems (IS) at minimal cost is rapidly chang-
ing their development methodologies, with stronger

emphasis on the facilitation of IS development and main-

tenance [1, 2, 3]. A possible solution for developing
systems more efficiently is to use Unified Modelling
Language (UML) [4] - a modeling standard developed
by the OMG Computer Industry Standards Consor-
tium, and Model Driven Architecture (MDA) [5, 6] - an
approach for software development by means of mod-
els and transformations between them. MDA enables
model driven systems to be built using model trans-
formations from one model type to another. There are
different types of models in MDA, for example Plat-
form Independent Model (PIM) which defines imple-
mentation independent abstract system functions, and
Platform-Specific Model (PSM), which defines the im-
plementation of system functions in a selected plat-
form. UML is specified by its metamodel which can
also be extended by using the profile mechanism. In
this situation, UML profile extends a referenced meta-
model to adapt or customize it with constructs that
are specific to a particular platform [4]. In MDA ap-
proach, after defining the PSM model, the next step
is to generate the source code for the selected imple-
mentation platform that corresponds to the elements
defined in the PSM [5]. Model transformations and

IVUS 2020: Information Society and University Studies, 23 April 2020,
KTU Santaka Valley, Kaunas, Lithuania

& mantas.razinskas@ktu.edu (M. Razinskas);
lina.ceponiene@ktu.lt (L. Ceponiené)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

code generation save time in the IS development pro-
cess, reduce the risk of potential errors, and simplify
modifications [7]. Currently, code generation is avail-
able in popular UML CASE tools, which usually have
the code generation functionality from structural UML
diagrams to object oriented programming languages
(C#, Java, etc.).

The principles of Model Driven Architecture can be
applied in the development of various information sys-
tems, including web-based ones. In the context of web
development, PHP can be considered the most widely
used programming language [8]. Various PHP frame-
works are widely used for facilitating the implementa-
tion process. Frameworks have a structured architec-
ture, simplify the database connection, are easily ex-
tended with additional libraries, and are usually based
on the Model View Controller (MVC) architecture prin-
ciples [8]. MVC gives an effective and proven way of
developing modular, structured systems. In addition to
benefits of using a framework, introducing the MDA
principles and employing PHP code generation from
UML diagrams for a certain framework could make
web IS development process even more efficient and
reduce time-to-market.

Laravel [9] is a popular PHP framework suitable for
rapid development of small to large scale systems, even
with relatively little experience [8, 10, 11]. This frame-
work is based on the MVC architecture principles and
assists in building web systems faster and easier, by
providing basic model structure, API access, libraries,
and plugins. It also helps developers become more
productive by reducing duplicate code in an ongoing
project [12].

Based on framework comparison results [11], it is
easier to get started with Laravel than with other pop-

mailto:mantas.razinskas@ktu.edu
mailto:lina.ceponiene@ktu.lt
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

ular PHP framework, Symfony, and Symfony is more
suitable for developing complex systems. In this paper,
an MDA based methodology is presented which inves-
tigates the application of model transformation princi-
ples in the context of PHP programming language and
its Laravel framework. The transformations from PIM
to Laravel based PSM and from Laravel PSM to Laravel
PHP code are analyzed. The proposed concept could
help software developers build web information sys-
tems more efficiently by applying UML diagrams and
MDA principles.

The rest of the paper is organized as follows. In re-
lated work section related studies in the area of MDA
and code generation are discussed. In the third section,
the general process of the proposed methodology for
Laravel code generation is presented, along with func-
tional requirements for the methodology implementa-
tion and implementation strategy representation. The
fourth section discusses guidelines for implementation
of proposed concept and presents a short examples
of developed models and generated code. Finally, in
the conclusions section, conclusions are presented and
further research perspectives are discussed.

2. Related Work

In recent years, there has been a numerous research on
MDA and code generation [13, 14, 15, 16]. In this pa-
per, the studies associated with framework based code
generation [14, 15, 16] were selected for more detailed
investigation.

In research paper by Arrhioui, Mbarki, Betari, Roubi,
Erramdani [14], the authors explored a model driven
architecture approach for PHP Codelgniter framework.
The authors proposed a methodology that enables mod-
eling web systems based on the PHP Codelgniter frame-
work and used an MDA approach to develop their me-
thodology. This methodology encompasses transfor-
mations from PIM to PSM using UML class diagram as
a source model to generate an XML file with the essen-
tial components of the Codelgniter framework. The
use of model transformations has provided benefits in
improving the quality of the system development pro-
cess while reducing costs and time.

This approach demonstrated efficiency by enabling
the creation of a complete Codelgniter MVC architec-
ture framework with defined metamodel and gener-
ated program code based on this metamodel.

The Codelgniter framework metamodel developed
by the authors is divided into packages of models, views,
and controllers. Each package has specific metaclasses
based on the MVC architecture. When authors com-

pleted system modelling, the code generation proce-
dure was followed by the model-to-text transforma-
tion (M2T). To generate Codelgniter code, the authors
used Acceleo software and Codelgniter metamodel tem-
plate.

The principles of MDA were also applied in research
by Srai, Guerouate, Berbiche, Lahsini [15] to create a
Spring MVC system using a UML class diagram. First,
ametamodel was created that matched the Spring MVC
template. The target metamodel consisted of two es-
sential parts: the first part referred to the views pack-
age, this package consisted of many JSP pages. The
second part consisted of a controller package, and this
package encompassed a number of controllers and each
controller having one or more actions.

Authors defined transformation rules for model to
model and model to code transformations. These rules
enabled creation of an XML file containing all the ac-
tions, forms, and JSP pages that can be used to gen-
erate code. Authors developed a transformation al-
gorithm using the ATL transformation language [17]
(this language is part of the Eclipse M2M). Next, the
model to text transformation was developed to gener-
ate Spring MVC code. For the model to text transfor-
mation, a Spring MVC template was defined.

A tool that support the Model Driven Architecture
(MoDAr-WA) was introduced by Essebaa, et al. [16],
which implements a methodology automating trans-
formations from the highest MDA level (CIM) to the
lowest (code). This research is a continuation of the
former work in automating transformations from CIM
to PIM. The MoDAr-WA authors created sets of meta-
models for UML class and sequence diagrams, QVT
and Acceleo transformations, as well as Eclipse plu-
gin for MoDAr-WA. In particular, QVT rules for trans-
formations between models (from CIM to PIM, from
PIM to PSM) were used. At the PIM level, the authors
defined key structural and behavioral aspects in UML
class and sequence diagrams. Java source code from
PSM was generated with the help of Acceleo tool.

All of the analyzed researches aim to apply MDA
principles to improve the process of system develop-
ment. They provide a detailed definition of their pro-
posed theoretical concept and its implementation, by
defining profiles, transformation rules and algorithms,
as well as experimental implementation examples. The
analyzed methodologies are intended for various frame-
works and architectures (PHP Codelgniter, Spring MVC
and Java MVC). The methodology proposed in our pa-
per also applies MDA principles and analyses model
transformations and code generation, but in the con-
text of Laravel framework, which is not analyzed in
other authors’ research.

107

®

PIM modelling R4

UML CASE
Tool

: PIM
l]

c -

o : UML profile for
_By Laravel PSM
§ gg, Transformation
=%h to Laravel PSM v

s : Laravel PSM

=

|]

\l/ \L\f : Transformation

Code generation template for Laravel

®

Figure 1: Abstract process of modelling and generating Lar-
avel based IS.

P

:Laravel code

Code Generation
Engine

3. The Proposed Methodology
for LARAVEL Code Generation

This section presents the MDA based methodology for
Laravel framework. This methodology encompasses
not only modelling of PIM and PSM, but also model
transformations from PIM to PSM and from PSM to
Laravel code.

3.1. The General Process for the
Proposed Methodology

In the proposed methodology (Fig. 1), the abstract mod-
eling and code generation process is proposed which
encompasses three main steps: PIM development, trans-
formation to PSM for Laravel framework and Laravel
PHP code generation. First of all, using a UML CASE
tool, PIM model should be modeled and exported to
the selected model-to-model transformation tool. The
XMI model interchange format should be used to en-
able transfer of models between the steps of the pro-
cess. Next, transformation from PIM to PSM is per-
formed by applying transformation rules, algorithms
and model transformation engine along with UML pro-
file for Laravel PSM. After the transformation, PSM in
XMI format is generated.

This PSM model can be either edited in modelling
tool or directly transformed into code. PSM to code
transformation is performed using transformation tem-
plate, transformation algorithms and code generation

1]

MDA for Laravel

o ——

J,i\x — Manage PIM .\f.
Software Developen T - -
~ Import Laravel --H"\I
o P5M profile w4
e S A &
~ Prepare PIMfor ™, Modsl
. transformation __/|1aneformation
i — Engine
~ Transform PIMto ™,
"—_< Laravel PSM P
ey e &
‘-——:/ Manage Laravel PSM \. C/odé'
S | Generation
A Engine
~ Generate Laravel ™,

o code

e

Figure 2: Use Case diagram for methodology of modelling
and generating PHP Laravel based IS.

engine. This transformation results in Laravel code
which can further be completed by the system devel-
opers in order to finalize the system implementation.
It should be noted, that our method does not aim to
generate the complete PHP code for Laravel frame-
work. It rather concentrates on automating the tran-
sition from UML diagrams to code as much as possi-
ble, but allowing the software developers to complete
the system implementation by themselves, as the full
code usually contains more information than it was
provided in the UML diagrams of PIM and PSM.

3.2. Functional Requirements for the
Methodology Implementation

For a detailed representation of the proposed method-
ology, the UML use case diagram (Fig. 2) depicts pos-
sible actions software developer can perform in order
to accomplish the model transformations and generate
Laravel code.

In our proposed methodology, platform independent
model (PIM) can be managed using any CASE tool se-
lected by software developer, which is able to export
the model to XMI file. The PIM model must include a
class diagram, without this type of diagram it will not
be possible to continue the code generation process.
The PIM model has a high level of abstraction and sep-
arates logic from technological implementation. This
model provides modeled system a structure that will

108

fit any implementation platform.

In order to perform transformation from PIM to PSM
and to edit PSM, the software developer can import the
UML profile for the PHP Laravel framework. Having
UML Profile and XMI format PIM model file, imported
into selected transformations tool, Laravel PSM can be
generated by using transformation engine and by ap-
plying transformation rules and algorithms. After the
transformation, software developer can manage Lar-
avel PSM model — make changes to it if required or
import PSM models’ XMI file to transformation tool
for transformation to code.

Transformation from PSM to code is performed us-
ing the selected code generation engine, PSM meta-
model and code generation algorithms. As a result
of the transformation, software developer will receive
the PHP Laravel code with PHP files for models, views,
controllers, routes and other required Laravel frame-
work elements.

3.3. The Proposed Implementation
Strategy

Possible implementation solution with proposed tools
for modeling and generating Laravel based informa-
tion system are depicted in deployment diagram (Fig.
3). The communication paths (having the name “xmi
file”) between execution environment nodes in this di-
agram do not represent the direct communication, but
rather the possibility for the software developer to trans-
fer XMI file from one execution environment to an-
other.

Using MagicDraw CASE tool, software developer
can manage PIM. Software developer models the class
diagram in PIM and it is possible to save PIM in XMI
format for M2M transformation. After M2M transfor-
mation, if further changes are required, it is possible to
import PSM in XMI format back to MagicDraw CASE
tool to modify it before proceeding to code generation.
After PSM modification it is possible to save this model
in XMI format for further transformation.

Transformation from PIM to PSM can be performed
using Eclipse tool and according to the rules and algo-
rithms which have to be defined using ATL transfor-
mation language [17]. ATL provides a way to produce
a number of target models from a set of source mod-
els. An ATL transformation tool is composed of rules,
which define how source model elements are used to
create the elements of the target model.

To perform transformation from PIM to PSM, XMI
format PIM file must be imported into Eclipse ATL
tool. Afterwards, transformation option should be se-
lected for the ATL transformation engine to perform

«device»
Computer

«execution environment»
MagicDraw UML CASE Tool

deployed elements

Laravel PSM Profile

«execution environment» xiffile

Eclipse Modeling Tools

xmi file

«execution environment»
Eclipse ATL

deployed elements
ATL Transformation Engine

«execution environment»
Eclipse Acceleo

deployed elements
Eclipse Code Generation Engine

Figure 3: Deployment diagram representing proposed tools
for modelling and generating Laravel based IS.

the transformation from PIM to PSM according to de-
fined rules and algorithms. As a result, PSM in XMI
format will be generated.

Once the M2M transformation has been completed,
the PHP code can be generated using the Eclipse Ac-
celeo tool according to established rules and algorithms
for code generation [18]. This tool is an open source
code generator implementing the OMG’s MOF Model
to Text Language (MTL) standard that uses any EMF
based models to generate any kind of code.

To perform transformation from PSM to code, PIM
model in XMI format must be imported to Eclipse Ac-
celeo tool. Then transformation option should be se-
lected for Acceleo code generation engine to perform
the transformation from PSM to code according to the
defined rules and algorithms. The result of this trans-
formation is PHP Laravel code.

For the proposed transformation methodology, we
have chosen to use UML class and sequence diagrams
in PIM and in PSM. The implementation plan for the
proposed methodology consists of several steps. The
first step is the definition of the PIM metamodel, which
will consist of relevant class and sequence diagram
metaclasses, the next step is the definition of PSM meta-
model which will consist of relevant class and sequence

109

metaclasses enriched with UML profile, encompassing
specific Laravel framework stereotypes. After defin-
ing both metamodels, we will perform the first trans-
formation using PIM metamodel as input, and by ap-
plying transformation rules the PSM will be generated
according to the defined PSM metamodel. After defin-
ing the first transformation in detail we will proceed
to the next step — detail definition transformation to
code. The input of this transformation will be the re-
sult of previous transformation (PSM), and its output
will be PHP Laravel code according to the defined code
metamodel and transformation rules.

4. Model Transformation and
Code Generation Example

In our proposed methodology, platform independent
model should be developed according to MVC archi-
tecture principles. When modelling PIM, it is impor-
tant to have in mind that controller, model and view
parts must be separate classes.

Model classes should have attributes and operations
declared, controller classes should include operations
for navigation between view classes, operations for
data manipulation and other additional operations, if
required. When adding operations to the controller
class, it is important to assign stereotypes to them,
which indicate whether it is a route type or a CRUD
(Create, Read, Update, Delete) type operation. «Route»
stereotype defines an operation which is intended for
routing between different views.

«CRUD» stereotype defines an operation intended
for manipulating the database. If controller class op-
eration does not have any stereotype applied, this op-
eration is considered as an additional one, which is re-
quired by the user.

In order to demonstrate the proposed solution, in
Fig. 4 a fragment of PIM model for Bookstore informa-
tion system is presented. The fragment contains four
PIM classes: Book, BookController, AddBookView and
BookListView. Each operation of BookController class
has its own stereotype applied, which will further be
used during transformation to PSM process.

In this case, BookController class has an assigned
«Route» stereotype for the showList() and showAdd()
operations, the showList() operation provides the Book-
ListView view and the showAdd() operation provides
the AddBookView view. The «CRUD» stereotype is
assigned to the save() operation, which is intended for
creating a new book.

After model transformation from PIM to PSM, with

transformation rules and algorithms applied, PSM mo-
del should be generated, where previous classes ac-
cording to the class type would become classes with
applied «LaravelBlade», «LaravelModel», «LaravelRo-
ute> or «LaravelRequest» stereotype. «LaravelBlade»
stereotype defines Laravel views, «LaravelController»
stereotype defines Laravel framework controller type,
«LaravelModel» defines frameworks’ model type, «Lar-
avelRoutes» defines application route and «LaravelRe-
quest» defines a class used for validation in Laravel
framework.

In Fig. 5, a fragment of PSM model for bookstore
information system is presented. This fragment gives
an example of how the PIM model depicted in Fig. 4
might look like after transformation from PIM to PSM.

Previously defined AddBookView and BookListView
views after transformation become views that have «Lar-
avelBlade» stereotype applied, which is specific for Lar-
avel framework. For BookController class, the «Lar-
avelController» stereotype is applied and operations
in this controller are replaced with Laravel type opera-
tions according to the stereotypes in the PIM model. In
this case, PIM showAdd() operation became the PSM
create() operation, because in PIM model it had «Route»
stereotype assigned, and the showList() operation be-
came index() operation also due to assigned «Route»
stereotype. The save() operation was transformed to
store(request) operation because of the «CRUD» stereo-
type, which was applied in PIM model.

The Book model class after transformation became
class with «LaravelModel» stereotype. In the PSM mo-
del, a new class was created after transformation - the
BookRequest class with «LaravelRequest» stereotype
applied. This PSM class, after transformation to code
will define the validation rules for BookController CRUD
operations. The PSM model also has Routes class, that
will define routes for controller classes route type meth-
ods.

After transformation from PSM to code, PHP Lar-
avel code should be generated. Sample code fragments
of BookController, Book, AddBookView, Router and
BookRequest classes are presented in Fig. 6-10.

Fig. 6 shows Laravel controller code fragment for
PSM model BookController. In this controller class as-
sociation with Book class was generated because of the
association relationship defined between BookControl-
ler and Book classes in PSM model. Index(), create()
and store(BookRequest request) methods were gener-
ated in this class because the corresponding operations
were also defined for PSM model BookController.

Fig. 7 shows Laravel Book model code fragments
for PSM model Book class. Book model would be gen-
erated from PSM model Book class which has «Lar-

110

«boundary»)
AddBOOkYiew «control» «Entity » Q
_I_Savgp(etr)agg;f) BookController Book
+show() operations attributes
«Route»+showList() -title : String
«boundarv» «Route»+showAdd() -authorName : String
ey «CRUD»+save() -yearPublished : date
BookListView
operations) operations
+show/() tinsert()

Figure 4: Example PIM fragment for BookStore Web Information System.

sLaravelBlades xLaravelControllers sLaravellodels

i

AddBookView BookController Book
. DETSR L) .=.'.'_"'."..'E:
«LaraveBlades +index() -title : String L
BookListVi +createl) -authorMame : String
ookListView +store(request : BookRequest)| |-vearPublished : date

|
«LaravelRoutes 3 «LaravelReguests
Routes - BookRequest
+ru|e'é.-(-}" o
+messages()
+authorize()

Figure 5: Example Laravel PSM fragment for BookStore
Web Information System.

<?php

use App\Book;

namespace App\Http\Controllers;

use App\Http\Requests\BookRequest;
class BookController extends Controller
{

public function index ()

{}

public function create()

{}

public function store (BookRequest request)

{}

Figure 6: Generated Laravel controller code fragments.

avelModel» stereotype applied and this generated class
would have fillable attributes defined by models’ at-
tributes.

Fig. 8 shows generated Laravel route class code frag-
ment of routes class. Routes in Laravel maps requests,
basic routing forward the requests to the associated
controller. In this case, generated route is associated

<?php

namespace App;

use

Illuminate\Database\Eloquent\Model;

class Book extends Model

{

protected $fillable

'title',
'author name',
'year published'

=1

17

Figure 7: Generated Laravel model code fragment.

<?php
Route: :resource (‘books’,’BookController’);

Figure 8: Generated Laravel route code.

with BookController controller, and this route code
would be generated by in PSM defined relation with
BookController controller class.

Fig. 9 shows Laravel view class code fragment for
AddBookView view for PSM AddBookView class. As
the structure of view type classes is similar, only one
of them is presented as an example. In AddBookView
code, the form fields would be generated based on the
attributes defined in the PSM. In this case, this view
class would have title, author name, year published
fields because those attributes were defined in model,
also this form would be generated with route to store
(BookRequest request) method.

111

<form method="post" action="{{
route('books.store") }}">

<div class="form-group">
<label
for="title">Title:</label>
<input type="text"
rm—control” name="title"/>
</div>

class="fo

<div class="form-group">
<label
for="author name">»Author Name:</label>
<input type="text"

class="form-control"
name="author nams"/>
</div>

<div class="form-group">
<label
for="year published">Year
Published:</label>
<input type="text"

class="form-control"
name="year published"/>
</div>

<button type="submit" >Add
Book</button>
</form>
</div>
</divs.

Figure 9: Generated Laravel view code fragment.

Fig. 10 shows generated Laravel request validation
class BookRequest code fragment. It is possible to cre-
ate and use a custom form request for better Laravel
application structure or more complex validation sce-
narios. Form request are custom request classes that
contain validation logic. In this case, BookRequest class
code fragment could be generated. Validation rules
could be generated in rules() method of this class, where
variables would be obtained through BookController
relation with Book model, and “required” rules would
be defined in PIM Book model attribute specification.

The presented model transformation and code gen-
eration example demonstrated how PIM and PSM mod-
els and generated code should be defined when imple-
mented for bookstore information system. In example
case, the generated code consists of five classes and
one route: two view classes, one route class, controller
class, model class and request validation class. All of
these classes have code fragment structure that a soft-
ware developer can further extend to finish the imple-
mentation of the BookStore information system.

<?php
namespace ApphHttp\Reguests;
use IlluminateiFoundaticn\Http\FormRequest;
class BookRequest extends FormRequest
{

public function authorize()

return true;

1
public function rules()

return [

'title' => 'required',
'author name' => 'reguired’,
'year published' => 'required’,
I
}
public function messages ()

{
return [
'title.required' => '',
‘author name.reguired' => "',
"

'year published.required' => B

1:

Figure 10: Generated Laravel request validation code frag-
ment.

5. Conclusions

In this paper, a methodology is proposed, which when
implemented could enable transformation of web ap-
plication UML models into Laravel code. While or-
ganizations nowadays seek to apply the MDA prin-
ciples in information system development to reduce
high technological migration costs, there is a need for
a methodology and algorithms to generate code for
Laravel PHP framework based information systems.
Laravel framework does not have a complete method-
ology for managing MDA model transformations and
code generation and the proposed methodology for mo-
del transformations and code generation for the PHP
Laravel framework in the context of the MDA prin-
ciples should help to improve the process of software
development using Laravel. When implemented, the
proposed methodology should reduce the migration
and development costs of organizations working with
PHP Laravel framework.

In the future, we are planning to develop more de-
tailed transformation algorithms and implement the
proposed methodology to facilitate the development
of Laravel framework based information systems.

References

[1] G. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Gia-
rdino, M. Matta, M. Re, L. Iess, F. Cialfi, G. De An-

112

(10]

(11]

(12]

(13]

gelis, D. Gelfusa, A. Pulcinelli, L. Simone, Hard-
ware prototyping and validation of a w-i dor dig-
ital signal processor, Applied Sciences (Switzer-
land) 9 (2019).

F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli,
M. Wozniak, A novel training method to preserve
generalization of rbpnn classifiers applied to ecg
signals diagnosis, Neural Networks 108 (2018)
331-338.

F. Beritelli, G. Capizzi, G. Lo Sciuto, C. Napoli,
F. Scaglione, Rainfall estimation based on the in-
tensity of the received signal in a lte/4g mobile
terminal by using a probabilistic neural network,
IEEE Access 6 (2018) 30865-30873.

Unified Modeling Language, 2017. https://www.
omg.org/spec/UML/.

S. J. Mellor, K. Scott, A. Uhl, D. Weise, Model-
driven architecture, in: International Confer-
ence on Object-Oriented Information Systems,
Springer, 2002, pp. 290-297.

C. Napoli, E. Tramontana, An object-oriented
neural network toolbox based on design patterns,
in: International Conference on Information and
Software Technologies, Springer, 2015, pp. 388—
399.

M. Brambilla, J. Cabot, M. Wimmer, Model-
driven software engineering in practice, Synthe-
sis lectures on software engineering 3 (2017) 1-
207.

M. Laaziri, K. Benmoussa, S. Khoulji, M. L.
Kerkeb, A comparative study of php frameworks
performance, Procedia Manufacturing 32 (2019)
864-871.

Laravel Documentation, 2020. https://laravel.
com/.

K. Benmoussa, M. Laaziri, S. Khoulji, K. M. Larbi,
A. El Yamami, A new model for the selection
of web development frameworks: application to
php frameworks, International Journal of Elec-
trical and Computer Engineering 9 (2019) 695.
M. Laaziri, K. Benmoussa, S. Khoulji, K. M. Larbi,
A.El Yamami, A comparative study of laravel and
symfony php frameworks, International Journal
of Electrical and Computer Engineering 9 (2019)
704.

A.Kilicdagi, H. 1. Yilmaz, Laravel Design Patterns
and Best Practices, Packt Publishing, 2014.

G. Sebastian, J. A. Gallud, R. Tesoriero, Code
generation using model driven architecture: A
systematic mapping study, Journal of Computer
Languages 56 (2020) 100935.

K. Arrhioui, S. Mbarki, O. Betari, S. Roubi, M. Er-
ramdani, A model driven approach for model-

(17]

(18]

113

ing and generating php codeigniter based appli-
cations, Transactions on Machine Learning and
Artificial Intelligence 5 (2017).

S. D. Rathod, Automatic code generation with
business logic by capturing attributes from user
interface via xml, in: 2016 International Confer-
ence on Electrical, Electronics, and Optimization
Techniques ICEEOT), IEEE, 2016, pp. 1480-1484.
A. Srai, F. Guerouate, N. Berbiche, H. D. Lahsini,
Applying mda approach for spring mvc frame-
work, International Journal of Applied Engineer-
ing Research 12 (2017) 4372-4381.

I. Essebaa, S. Chantit, M. Ramdani, Modar-wa:
Tool support to automate an mda approach for
mvc web application, Computers 8 (2019) 89.
"ATL | The Eclipse Foundation, 2020. https://
www.eclipse.org/atl/.

https://www.omg.org/spec/UML/
https://www.omg.org/spec/UML/
https://laravel.com/
https://laravel.com/
https://www.eclipse.org/atl/
https://www.eclipse.org/atl/

	1 Introduction
	2 Related Work
	3 The Proposed Methodology for LARAVEL Code Generation
	3.1 The General Process for the Proposed Methodology
	3.2 Functional Requirements for the Methodology Implementation
	3.3 The Proposed Implementation Strategy

	4 Model Transformation and Code Generation Example
	5 Conclusions

