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Abstract
Machine learning is constantly gaining popularity in real life applications. And one of them is prediction of various real-life
events that depend on a huge number of factors that are hard to evaluate. In this article we describe the process of applying
XGBoost — one of supervised machine learning methods — to help in prediction and localization of accidents in the district
heating network of Kaunas region. We also investigate the importance of the different factors for these events.

Keywords
Supervised machine learning, xgboost, district heating, accident localization

1. Introduction
In everyday operation centralised district heating com-
pany “Kauno energija” is supervising more than 900
kilometers of district heating networks that provide
heating and hot water to 118 891 customers (as of the
end of 2017) in Kaunas region.

Every year pipe breakages in the district heating
network occur. In most of these times the district heat-
ing services must be stopped for the customers. And
due to the aged infrastructure, it is difficult to deter-
mine where did the accident happen. The only sign of
accident is often a critical pressure drop or a frequent
refill of the heating water in the system. There are a
lot of cases when repair teams are excavating the area
but do not find the accident and sometimes small acci-
dents cannot be found and are compensated by system
refill.

When an accident happens any information that wo-
uld help to determine its location is helpful. Due to the
amount and complexity of factors that cause accidents
it is difficult to predict them. There are some complex
solutions with thermodynamic and hydro-mechanics
models in the market, which allow to calculate pipe
breakage, but they are hard to use in everyday work
and require a lot of investments and learning efforts.

Also, a Web application for network accident man-
agement TAVSIS was developed and it seemed like a
good idea to integrate accident localization algorithms
within that system. All things considered, it was de-
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cided to create a tool for the heating network super-
vising personal. And supervised machine learning al-
gorithms seemed as an inexpensive and valid option
to help in the process of pipe breakage localization.

2. Related works
We were able to find some similar studies where pipe
break accidents were predicted using machine learn-
ing methods. In article [1] pipe breaks were predicted
for water distribution network using pipe attributes
and climatic data, since a monitoring network is not
available [2]. The goal of the authors was to find pipes
that can break soon to prioritize pipe replacements and
repairs. Also different models are tested for best per-
formance: RankBoost.B, Cox proportional hazard mo-
del, Naive Bayes, Logistic Regression and Artificial Ne-
ural Network. The provided results show that Rank-
Boost.B is the most successful with AUC score of more
that 0.85. In article [3] an ensemble of models are used
to predict water utility pipeline condition. As input
the authors use physical pipe attributes, environmen-
tal data, and operational factors and data obtained from
physical models which are developed to understand
the physical process of pipe deterioration [4, 5, 6].

Another article [7] describes pipe failure modelling
for water distribution networks using boosted deci-
sion trees. To predict pipe failures authors use Ad-
aBoost, RUSBoost, Random Forest, and Decision Tree
models.

Although the mentioned articles describe similar me-
thodology there are some major differences to our ap-
proach. First of all, we are targeting a district heating
network. Secondly, we are using historic weather data
as one of the inputs. And finally, we have a different
goal - to locate pipe segment that have failed rather
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Figure 1: Illustration of a pipe breakage accident.

than analyse which pipes are most likely to fail in fu-
ture.

As for a district heating network we were unable to
find any related work. In article [8] authors use ma-
chine learning approach to detect faults by analysing
temperature readings and some additional data from
district heating substations. In article [9] authors use
a completely different methodology - a deterministic
– probabilistic structural integrity analysis to predict
pipeline lifetime and probability of failure.

Our approach is more similar to real-time traffic ac-
cident localization approach described in articles: traf-
fic accident prediction in the state of Utah (USA) [10];
predicting traffic accidents through heterogeneous ur-
ban data [11].

3. The data

3.1. Accident records
In this study we analyze pipe breakage accidents (see
Fig. 1) that happened from the January 2013 to Septem-
ber 2019. There were 1 466 accidents in total that oc-
curred during this time. We extracted these attributes:
date and time of the accident occurrence (weekday,
month, hour), geographic location. The accident data
are collected using a GIS system by the company dis-
patchers that are supervising the district heating op-
erations 24 hours a day in shifts. When an accident
occurs a dispatcher marks its location on the pipe seg-
ment and this allowed us to use a spatial intersection
with the pipe segments to determine how many acci-
dents have occurred in each different segment.

3.2. Piping network
There were more than 49 200 of pipe network segments
with a total length of 904.17 kilometers that are used to
provide district heating network services to customers

Figure 2: Distribution of pipe segment materials in Kaunas
region

Table 1
Initial piping data summary for continuous values

in Kaunas region. We extracted these attributes from
the pipe segments data table:

• type of anti-corrosion coating (bitumen varnish,
no coating, unknown);

• type of isolation protection (unknown, plaster,
tin);

• type of isolation (polyurethane, mineral wool,
unknown);

• pipe material (distribution in the data is displayed
in Fig. 2);

• type of pipe installation (distribution in the data
is displayed in Fig. 3);

• year of the pipe installation;

• type of the heating water parameters (high, low);

• pipe line type (distribution in the data is dis-
played in Fig. 4);

• length of the pipe;

• pipe diameter.

A summary of the continuous values is presented in
Table 1.
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Figure 3: Distribution of pipe segment installation methods
used in Kaunas region

Figure 4: Distribution of pipe segments in different line
types in Kaunas region

3.3. Weather data
Information about the weather conditions was extract-
ed from archives on “Reliable prognosis” website[12].
We used one of Kaunas city weather stations. From
the data set we used these attributes:

• temperature;

• atmospheric pressure;

• humidity;

• raining fact.

There were 19 724 records collected at 3-hour inter-
vals during the analysed period January 2013 - October
2019. Data interpolation had to be used to get hourly
records. Also, the raining fact was extracted from a
human readable message rather than a numeric value.

4. Methodology
The process of our study was:

1. Find and collect necessary data from the data
sources;

2. Analyse, identify, and extract useful data;
3. Select machine learning algorithms that would

best fit the case;
4. Prepare training data for the model;
5. Split the prepared data set into training, valida-

tion and testing data sets;
6. Set machine learning model parameters;
7. Execute the learning process;
8. Validate the results;
9. Repeat steps 6 – 8 until expected results are reach-

ed;
10. Export the prepared model and test it on the test-

ing data;
11. Deploy the prepared model to production.

4.1. Data preparation
Probably the most complicated part of this study was
data preparation. We had to connect different sources
of information to one — training data set which can be
used by the XGBoost machine learning framework. All
the processing and data analysis was performed using
these tools:

• ArcGIS Pro software was used to manage geo-
graphic data and perform initial analysis;

• Jupyter Notebook software was used to develop
and run all the process and share the results;

• Scikit-learn machine learning framework was u-
sed to prepare training data;

• XGBoost gradient boosting framework was used
for model preparation.

There were some attributes that were dropped as
they were considered unimportant. These were at-
tributes with none or very few values, or irrelevant
fields: who edited the data, when the last edit was per-
formed, etc. The quality of the remaining data was not
perfect either, as some relevant attributes were miss-
ing. To mitigate the problem, we prepared the training
data by using different techniques:

• Data interpolation to increase the frequency of
the weather data to one-hour intervals;

• Spatial intersection to connect accidents to pipe
segments, to find the missing pipe attributes from
the connected segments;

• Calculation of mean values to fill the missing
continuous values;
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• Calculation of the most frequent values to fill the
missing categorical values;

• One-hot encoding to transform the categorical
values to numeric as the model cannot handle
non-numeric values. This method creates a bi-
nary column for each category and returns a spar-
se matrix or a dense array (depending on the
sparse parameter). This encoding is needed for
feeding categorical data to many scikit-learn es-
timators, notably linear models and SVMs with
the standard kernels[13].

Also we added some additional properties: month,
day of week, hour of day, was it raining during the
accident or not, the total count of accidents in the seg-
ment. We rounded time of accidents to hours to the
lower side dropping any remaining minutes or seconds
as there is always some delay between when the acci-
dent really happens and when it is noticed.

When all the data cleaning was finished, we joined
the data set of pipe segments to the data set of acci-
dents. We performed this operation by using spatial
join method provided by Arcpy library which allowed
us to join accident record to the nearest pipe segment
within less than 10 meter distance. Next, due to data
imbalance as described in section 4.5 we generated 5
times as many negative samples as we have accident
records. We used a negative sample selection tech-
nique [10]:

• Randomly select an accident record from the pos-
itive examples;

• Randomly alter: the pipe segment, the hour of
the day, or the day of the year;

• If the new sample is not within the accident re-
cords, add it to the list of negative samples;

• Repeat until we have 5 times as many negative
samples as positive.

This allowed us to work with a relatively low amount
of data (in total 6 619 pipe segment in time records).

After that we connected the weather data to all these
records. The final data set contained these attributes:
count of accidents in segment, segment length, year of
segment installation, segment diameter, weather tem-
perature, weather humidity, raining state, atmospheric
pressure, segment material, type of segment insula-
tion, type of segment installation, subtype of the seg-
ment, hour of sample, weekday of sample, month of
sample.

Finally, after the training data was prepared, it was
split into two parts: 70 % for training and 30 % for test-
ing. To make sure that positive (accident happened)
and negative (accident did not happened) samples are
distributed in equal rates for both data sets. For this
we had to set the stratify parameter in the scikit-learn
library for the output column indicating if the accident
happened or not.

4.2. Model
As we mentioned before, our goal is to find most vul-
nerable pipe segments. We had to create a model which
would be able to predict the probability of an acci-
dent in all piping segments at given situation. And
by sorting these probabilities from highest to lowest
we would be able to provide district heating network
dispatcher with information which pipe segments are
most vulnerable to having accident with current con-
ditions: time properties (month, day of week, hour),
weather conditions (temperature, humidity, atmosphe-
ric pressure, raining conditions) and pipe segment prop-
erties. By identifying the vulnerable pipe segments af-
ter the occurrence of the accident, the dispatcher can
send repair teams to investigate them. It is important
to mention that we do not really care how high or low
the probability is in absolute value, because we already
know that an accident has happened but we do not
know where exactly.

In this study we used a decision tree ensemble based
on gradient boosting algorithm called XGBoost. It was
developed as a research project at the University of
Washington. Since its release in 2016 it quickly gained
popularity, won numerous Kaggle challenges, and is
used in real-life applications. It is available as Open
Source project and is actively developed by a commu-
nity of data scientists. The XGBoost algorithm is based
on gradient tree boosting model with additional regu-
larization term which helps to smooth the final learnt
weights to avoid over-fitting [14]. The regularized ob-
jective, or loss function, can be described as

𝐿(Φ) = ∑

𝑖

𝑙(�̂�
𝑖
, 𝑦𝑖) +∑

𝑘

Ω(𝑓
𝑘
), (1)

where 𝑙 is a differentiable convex loss function that
measures the difference between the prediction �̂�

𝑖
and

the target 𝑦𝑖 . The second term Ω penalizes the com-
plexity of the model. Intuitively, the regularized objec-
tive will tend to select a model employing simple and
predictive functions. This loss function can be inte-
grated into the split criterion of decision trees leading
to a pre-pruning strategy.
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Furthermore, randomization techniques are also im-
plemented in XGBoost both to reduce over-fitting and
to increase the training speed.

There are multiple parameters that were tuned to
get the best results (as described in XGBoost docu-
mentation[15]):

• max_depth – the maximum depth of the tree. In-
creasing this value will make the model more
complex and more likely to over-fit.

• min_child_weight – the minimum sum of instan-
ce weight (Hessian) needed in a child. If the
tree partition step results in a leaf node with the
sum of instance weight less than the min_child-
_weight, then the building process will give up
further partitioning. In a linear regression task,
this simply corresponds to minimum number of
instances needed to be in each node. The larger
min_child_weight is, the more conservative the
algorithm will be.

• eval_metric – type of evaluation metrics for val-
idation data, a default metric will be assigned ac-
cording to objective (RMSE for regression, and
error for classification, mean average precision
for ranking).

• objective – learning task and the corresponding
learning objective.

• eta - step size shrinkage used in update to pre-
vents over-fitting. After each boosting step, we
can directly get the weights of the new features,
and eta shrinks the feature weights to make the
boosting process more conservative.

• early_stopping_rounds – activates early stopping.
Validation metric needs to improve at least once
in every early_stopping_rounds round(s) to con-
tinue training.

• num_boost_round – number of boosting itera-
tions.

Weused this model from a Python API. These final
parameters for model were chosen by hand while test-
ing for the best results:

• max_depth = 6,

• min_child_weight = 5.0,

• eval_metric = ’auc’,

• objective = ’binary:logistic’,

• eta = 0.5.

4.3. Training
When the data was prepared, machine training was
an easy step. After few try-outs we were able to get
a model with 88.88 % of AUC (area under the curve)
rating. It took only 13 epochs to reach this value, but
the training kept going 50 epochs to determine that
the value does not further increase.

4.4. Evaluation
One of the advantages of decision tree-based models
is that it allows us to trace the key factors of how the
decision was made. There are multiple characteris-
tics that determine how well the model performs. The
most important of them are:

Accuracy Accuracy explicitly takes into account the
classification of negatives, and is expressible both as a
weighted average of Precision and Inverse Precision
and as a weighted average of Recall and Inverse Re-
call [16, 17, 18]. For us it shows the rate of correctly
predicted result (accident or no accident):

Accuracy =

TP + TN
TP + TN + FP + FN

, (2)

where:

TP = True Positives;

TN = True Negatives;

FP = False Positives;

FN = False Negatives.

Precision It denotes the proportion of predicted pos-
itive cases that are correctly real positives. This is what
Machine Learning, Data Mining and Information Re-
trieval focus on, but it is totally ignored in ROC analy-
sis. It can however analogously be called True Positive
Accuracy, being a measure of accuracy of predicted
positives in contrast with the rate of discovery of real
positives [17]. It shows how many accidents were pre-
dicted correctly compared to all predicted accidents

Precision =

TP
TP + FP

. (3)

Recall It is the proportion of Real Positive cases that
are correctly Predicted Positive. Recall has been shown
to have a major weight in predicting the success of
word alignment. In a medical context Recall is more-
over regarded as primary, as the aim is to identify all
Real Positive cases, and it is also one of the legs on
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which ROC analysis stands. In this context it is re-
ferred to as True Positive Rate [17]. For us it shows
how many accidents were predicted correctly from all
the occured accidents.

Recall =
TP

TP + FN
(4)

ROCcurve (ReceiverOperatingCharacteristic cur-
ve) It is a graph showing the performance of a clas-
sification model at all classification thresholds. The
curve plots two parameters [17]:

• True Positive Rate;

• False Positive Rate.

A ROC curve plots true positive rate vs. false posi-
tive rate at different classification thresholds. Lower-
ing the classification threshold classifies more items
as positive, thus increasing both False Positives and
True Positives. A perfect classifier will score in the top
left-hand corner (False Positive Rate=0, True Positive
Rate=100 %). A worst-case classifier will score in the
bottom right hand corner (False Positive Rate=100 %,
True Positive Rate=0). A random classifier would be
expected to score somewhere along the positive diag-
onal (True Positive Rate = False Positive Rate) since the
model will throw up positive and negative examples at
the same rate [17].

AUC (area under the curve) The area under such
a multipoint curve is thus of some value, but the op-
timum in practice is the area under the simple trape-
zoid [17]. As shown in Fig. 5, the main diagonal rep-
resents chance with parallel isocost lines represent-
ing equal cost-performance. Points above the diagonal
represent performance better than chance and those
below - worse than chance. For a single good (dotted
green) system, AUC is area under the curve (trapezoid
between the green line and x = [0,1]). The perverse
(dashed red) system shown is the same (good) system
with class labels reversed [17].

F1-score F-measure is defined as a harmonic mean
of precision 𝑃 and recall 𝑅 [19]

𝐹1 =

2𝑃𝑅

𝑃 + 𝑅

. (5)

4.5. Issues
During this research we met some issues that had to
be overcome. Some of them are described below.

Figure 5: Illustration of ROC analysis[17]

Missing or incomplete data After the initial run
only 30 % of positive samples was valid for process-
ing as data was incomplete. Important features were
missing such as pipe diameter, year of installation, ma-
terial, etc. And that was a problem because we al-
ready had data imbalance issue with only 1 466 posi-
tive samples (pipe segments with registered accidents).
One of the methods we used to calculate some miss-
ing values was spatial intersection. We have inter-
sected pipes with each other and copied values from
connected pipes assuming that connected pipes have
the same parameters. Also we filled missing values
by replacing them with most frequent values for cate-
gorical values and mean values for continuous values.
Finally, 1 104 out of 1 466 of registered accidents were
successfully used in the model.

Data imbalance Every year has at least 8 760 hours
and every hour we have more than 49 000 of pipe seg-
ments that would make more than 429 million records
every year. And we have only 1 466 accidents regis-
tered since 2013 January to 2019 October. If we would
use data with this rate of positive and negative sam-
ples, the model would not be able to predict any of ac-
cidents. As by predicting that accidents will not hap-
pen at all it would be almost always right. To mitigate
the problem we used negative sample selection tech-
nique as described in Section 4.1.

Non-linear factors of the accidents One of the
problems of real-life event prediction is that there are
many unknown and immeasurable factors that cause
them to occur. There are many factors that might be
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Figure 6: The most important features while constructing
boosted decision trees according to the XGBoost library.

important, but we cannot determine them, or it would
require a lot of effort to collect and provide them to the
model. Such factors can be faults during the pipe pro-
duction, transportation or installation, human errors,
pipe environment conditions like soil, humidity, tem-
perature changes, materials used in pipe production,
electrical conductivity, chemical environment, etc.

5. Results
XGBoost library has a method to plot the most impor-
tant features. Importance is a score that indicates how
useful or valuable each feature was in the construc-
tion of the boosted decision trees within the model.
The more an attribute is used to make key decisions
with decision trees, the higher its relative importance.
As shown in Fig. 6, most important features for dis-
trict heating network accident prediction are weather
pressure P, temperature T, humidity U, segment length
segment_length, diameter SalSkersmuo and year
of installation PaklojimoMetai.

Also as shown in Fig. 7, according to ROC curve our
model performs well compared to random guess. Of
course, we have to keep in mind that these param-
eters are provided for our data set where we limited
our positive and negative sample rate to mitigate data
imbalance. XGBoost classifier predicts probability of
accidents between 0 and 1. By default, it has a thresh-
old set to 0.5, meaning that probability higher than 0.5
will yield positive result and less than 0.5 - negative.

With probability threshold set to 0.16 we get these
results:

• Test Accuracy: 80.31 %

Figure 7: Receiver operating characteristic (ROC) curve

Figure 8: Histogram of atmospheric pressure vs. accident
count

• Test Precision: 44.92 %

• Test Recall: 80.06 %

• Test F1: 57.55 %

But for our approach we care only about the high-
est probability with given parameters. Because we al-
ready know that an accident happened but we just do
not know where exactly. That makes even relatively
low probabilities valuable to us as it is additional infor-
mation that can help us to find the accident locations.
And our user - piping network dispatcher can use this
probability to decide where it most likely have hap-
pened even if probability is relatively low. To compare
our model performance we use AUC score. For XG-
Boost we get score of 0.868 as linear regression model
reaches AUC score of 0.857. It can also be seen in ROC
curve (see Fig. 7).

Also, we plotted some histograms with the most im-
portant features to see if they have any connection to
pipe breakage.

As shown in Fig. 8, more accidents tend to happen
when atmospheric pressure is between 755 and 765
mm Hg.

As shown in Fig. 9, accidents are more likely to hap-
pen during warm temperatures when heating service
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Figure 9: Histogram of temperature vs. accident count

Figure 10: Histogram of humidity vs. accident count

Figure 11: Pipe segment length vs. accident count

is provided only for hot water. It can be explained as
in summer hydraulic testing is performed.

As shown in Fig. 10, more accidents occur when hu-
midity is higher.

As shown in Fig. 11, more accidents occur in short
segments more often. It can be explained as new short
segments are inserted during pipe repair.

As shown in Fig. 12, accidents happens more often
in pipes with smaller diameters.

6. Deployment
We have successfully trained a machine learning model
using XGBoost framework, but the work was only half-
way done, because this model had to be transferred to
a production environment and used from a Web ap-

Figure 12: Pipe diameter vs. accident count

Figure 13: Accident prediction form within TAVSIS web ap-
plication

plication. At first it seemed that it is a good idea to
use a new framework from Microsoft called ML.Net.
They declared that it is easy to integrate any machine
learning model that can be converted to ONNX (Open
Neural Network eXchange standard) model, and XG-
Boost was convertible, but after a lot of hours spent
trying to launch the solution it was clear that XGBoost
model was not fully supported and will not work. So
a simpler approach was used – the model was pub-
lished using a Flask RESTful server library and pub-
lished through a reverse proxy on IIS. Occam’s razor
principle was proven right once again.

As shown in Fig. 13, we have created accidents pre-
diction form within TAVSIS web application. It allows
district heating network dispatcher to run trained mo-
del by filling form values: temperature, humidity, at-
mospheric pressure, raining conditions, month, week-
day and hour.

As shown in Fig. 14, after submitting values to the
accident prediction form user gets accident prognosis
results. It is a list of pipe segments with accident pos-
sibility level (low, medium, high). User can zoom in
to selected a pipe segment and get its location in the
interactive map. This allows him to send a repair team
to check if the pipe segment actually broke.
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Figure 14: Accident prognosis results

7. Future work
Now we are working on applying different machine
learning models and comparison of their characteris-
tics to determine the best available model that would
fit our needs. Also, we are evaluating how well the
model performs in real-life applications.

In addition, we are also planning to collect more ac-
cident data from different district heating companies.
Finally, we are considering applying this algorithm to
different fields where piping networks are used, like
water supply facilities, sewerage systems, etc.

8. Conclusions
This paper describes an ongoing study to apply su-
pervised machine learning algorithms to help localize
pipe breakage accidents in district heating network of
Kaunas region. XGBoost model is trained and used to
predict pipe breakages at the given time and weather
conditions. And by sorting predicted probabilities from
highest to lowest we are getting list of most vulnerable
pipe segments. This allows us to provide this informa-
tion to network dispatcher inside GIS web application
and help him to determine the location of the accident.
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