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Abstract
Local Interpretable Model-Agnostic Explanations (LIME) is a popular method to perform interpretability of any kind of Ma-
chine Learning (ML) model. It explains one ML prediction at a time, by learning a simple linear model around the prediction.
The model is trained on randomly generated data points, sampled from the training dataset distribution and weighted ac-
cording to the distance from the reference point - the one being explained by LIME. Feature selection is applied to keep only
the most important variables, their coefficients are regarded as explanation. LIME is widespread across different domains,
although its instability - a single prediction may obtain different explanations - is one of the major shortcomings. This is due
to the randomness in the sampling step, as well and determines a lack of reliability in the retrieved explanations, making
LIME adoption problematic. In Medicine especially, clinical professionals trust is mandatory to determine the acceptance of
an explainable algorithm, considering the importance of the decisions at stake and the related legal issues. In this paper, we
highlight a trade-off between explanation’s stability and adherence, namely how much it resembles the ML model. Exploiting
our innovative discovery, we propose a framework to maximise stability, while retaining a predefined level of adherence. Op-
tiLIME provides freedom to choose the best adherence-stability trade-off level and more importantly, it clearly highlights the
mathematical properties of the retrieved explanation. As a result, the practitioner is provided with tools to decide whether
the explanation is reliable, according to the problem at hand. We extensively test OptiLIME on a toy dataset - to present
visually the geometrical findings - and a medical dataset. In the latter, we show how the method comes up with meaningful
explanations both from a medical and mathematical standpoint.
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1. Introduction
Nowadays Machine Learning (ML) is pervasive and
widespread across multiple domains. Medicine makes
no difference, on the contrary it is considered one of
the greatest challenges of Artificial Intelligence [1]. The
idea of exploiting computers to provide assistance to
the medical personnel is not new. An historical overview
on the topic, starting from the early ‘60s is provided
in [2]. More recently, computer algorithms have been
proven useful for patients and medical concepts repre-
sentation [3], outcome prediction [4],[5],[6] and new
phenotype discovery [7],[8]. An accurate overview of
ML successes in Health related environments, is pro-
vided by Topol in [9].

Unfortunately, ML methods are hardly perfect and,
especially in the medical field where human lives are
at stake, Explainable Artificial Intelligence (XAI) is ur-
gently needed [10]. Medical education, research and
accountability (“who is accountable for wrong deci-
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sions?”) are some of the main topics XAI tries to ad-
dress. To achieve the explainability, quite a few tech-
niques have been proposed in recent literature. These
approaches can be grouped based on different criterion
[11], [12] such as i) Model agnostic or model specific
ii) Local, global or example based iii) Intrinsic or post-
hoc iv) Perturbation or saliency based. Among them,
model agnostic approaches are quite popular in prac-
tice, since the algorithm is designed to be effective on
any type of ML model.

LIME [13] is a well-known instance-based, model
agnostic algorithm. The method generates data points,
sampled from the training dataset distribution and weighted
according to distance from the instance being explained.
Feature selection is applied to keep only the most im-
portant variables and a linear model is trained on the
weighted dataset. The model coefficients are regarded
as explanation. LIME has already been employed sev-
eral times in medicine, such as on Intensive Care data
[14] and cancer data [15],[16]. The technique is known
to suffer from instability, mainly caused by the ran-
domness introduced in the sampling step. Stability is a
desirable property for an interpretable model, whereas
the lack of it reduces the trust in the explanations re-
trieved, especially in the medical field.

In our contribution, we review the geometrical idea
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on which LIME is based upon. Relying on statistical
theory and simulations, we highlight a trade-off be-
tween the explanation’s stability and adherence, namely
how much LIME’s simple model resembles the ML model.
Exploiting our innovative discovery, we propose Op-
tiLIME: a framework to maximise the stability, while
retaining a predefined level of adherence. OptiLIME
provides both i) freedom to choose the best adherence-
stability trade-off level and ii) it clearly highlights the
mathematical properties of the explanation retrieved.
As a result, the practitioner is provided with tools to
decide whether each explanation is reliable, according
to the problem at hand.

We test the validity of the framework on a medical
dataset, where the method comes up with meaningful
explanations both from a medical and mathematical
standpoint. In addition, a toy dataset is employed to
present visually the geometrical findings.

The code used for the experiments is available at
https://github.com/giorgiovisani/LIME_stability.

2. Related Work
For the sake of shortness, in the following review we
consider only model agnostic techniques, which are
effective on any kind of ML model by construction. A
popular approach is to exclude a certain feature, or
group of features, from the model and evaluate the
loss incurred in terms of model goodness. Such value
quantifies the importance of the excluded feature: an
high loss value underlines an important variable for
the prediction task. The idea has been first introduced
by Breiman [17] for the Random Forest model and has
been generalised to a model-agnostic framework, named
LOCO [18]. Based on variable exclusion, the predictive
power of the ML models has been decomposed into
single variables contribution in PDP [19], ICE [20] and
ALE [21] plots, based on different assumptions about
the ML model. The same idea is exploited also for local
explanations in SHAP [22], where the decomposition
is obtained through a game-based setting.

Another common approach is to train a surrogate
model mimicking the behaviour of the ML model. In
this vein, approximations on the entire input space are
provided in [23] and [24] among others, while LIME
[13] and its extension using decision rules [25] rely on
this technique for providing local approximations.

2.1. LIME Framework
A thorough examination of LIME is provided from a
geometrical perspective, while a detailed algorithmic

description can be found in [13]. We may consider the
ML model as a multivariate surface in the ℝ𝑑+1 space
spanned by the 𝑑 independent variables 𝑋1, ..., 𝑋𝑑 and
the 𝑌 dependent variable.

LIME’s objective is to find the tangent plane to the
ML surface, in the point we want to explain. This task
is analytically unfeasible, since we don’t have a para-
metric formulation of the function, besides the ML sur-
face may have a huge number of discontinuity points,
preventing the existence of a proper derivative and
tangent. To find an approximation of the tangent, LIME
uses a Ridge Linear Model to fit points on the ML sur-
face, in the neighbourhood of the reference individual.

Points all over the ℝ𝑑 space are generated, sampling
the 𝐗 values from a Normal distribution inferred from
the training set. The 𝑌 coordinate values are obtained
by ML predictions, so that the generated points are
guaranteed to perfectly lie on the ML surface. The
concept of neighbourhood is introduced using a kernel
function (RBF Kernel), which smoothly assigns higher
weights to points closer to the reference. Ridge Model
is trained on the generated dataset, each point weighted
by the kernel function, to estimate the linear relation-
ship 𝐄(𝑌 ) = 𝛼 + ∑𝑑

𝑗=1 𝛽𝑗𝑋𝑗 . The 𝛽 coefficients are re-
garded as LIME explanation.

2.2. LIME Instability
One of the main issues of LIME is the lack of stability.
Explanations derived from repeated LIME calls, under
the same conditions, are considered stable when statis-
tically equal [26]. In [27] the authors provide insight
about LIME’s lack of robustness, a similar notion to the
above-mentioned stability. Analogous findings also in
[28]. Often, practitioners are either not aware of such
drawback or diffident about the method because of its
unreliability. By all means, unambiguous explanations
are a key desiderata for the interpretable frameworks.

The major source of LIME instability comes from
the sampling step, when new observations are ran-
domly selected. Some approaches, grouped in two high
level concepts, have been recently laid out in order to
solve the stability issue.

Avoid the sampling step

In [29] the authors propose to bypass the sampling
step using the training units only and a combination
of Hierarchical Clustering and K-Nearest Neighbour
techniques. Although this method achieves stability,
it may find a bad approximation of the ML function,
in regions with only few training points.

https://github.com/giorgiovisani/LIME_stability


Evaluate the post-hoc stability

The shared idea is to repeat LIME method at the same
conditions, and test whether the results are equivalent.
Among the various propositions on how to conduct
the test, in [30] the authors compare the standard devi-
ations of the Ridge coefficients, whereas [31] examines
the stability of the feature selection step - whether the
selected variables are the same - . In [26] two comple-
mentary indices have been developed, based on statis-
tical comparison of the Ridge models generated by re-
peated LIME calls. The Variables Stability Index (VSI)
checks the stability of the feature selection step, whereas
the Coefficients Stability Index (CSI) asserts the equal-
ity of coefficients attributed to the same feature.

3. Methodology
OptiLIME consists in a framework to guarantee the
highest reachable level of stability, constrained to the
finding of a relevant local explanation. From a geo-
metrical perspective, the relevance of the explanation
corresponds to the adherence of the linear plane to the
ML surface. To evaluate the stability we rely on the CSI
and VSI indices [26], while the adherence is assessed
using the 𝑅2 statistic, which measures the goodness of
the linear approximation through a set of points [32].
All the figures of merit above span in the range [0, 1],
where higher values define respectively higher stabil-
ity and adherence.

To fully explain the rationale of the proposition, we
first cover three important concepts about LIME. In
this section we employ a Toy Dataset to show our the-
oretical findings.

Toy Dataset
The dataset is generated from the Data Generating Pro-
cess:

𝑌 = 𝑠𝑖𝑛(𝑋 ) ∗ 𝑋 + 10
100 distinct points have been generated uniformly in
the 𝑋 range [0,10] and only 20 of them were kept, at
random. In Figure 1, the blue line represents the True
DGP function, whereas the green one is its best ap-
proximation using a Polynomial Regression of degree
5 on the generated dataset (blue points). In the follow-
ing we will regard the Polynomial as our ML function,
we will not make use of the True DGP function (blue
line) which is usually not available in practical data
mining scenarios. The red dot is the reference point
in which we will evaluate the local LIME explanation.
The dataset is intentionally one dimensional, so that

Figure 1: Toy Dataset

Figure 2: LIME explanations for different kernel widths

the geometrical ideas about LIME may be well repre-
sented in a 2d plot.

3.1. Kernel Width defines locality
Locality is enforced through a kernel function, the de-
fault is the RBF Kernel (Formula 1). It is applied to each
point 𝑥 (𝑖) generated in the sampling step, obtaining an
individual weight. The formulation provides smooth
weights in the range [0, 1] and flexibility through the
kernel width parameter 𝑘𝑤 .

𝑅𝐵𝐹 (𝑥 (𝑖)) = exp(− ||𝑥
(𝑖) − 𝑥 (𝑟𝑒𝑓 )||2

𝑘𝑤 ) (1)

The RBF flexibility makes it suitable to each situation,
although it requires a proper tuning: setting a high
𝑘𝑤 value will result in considering a neighbourhood
of large dimension, shrinking 𝑘𝑤 we shrink the width
of the neighbourhood.

In Figure 2, LIME generated points are displayed as
green dots and the corresponding LIME explanations



(red lines) are shown. The points are scattered all over
the ML function, however their size is proportional
to the weight assigned by the RBF kernel. Small ker-
nel widths assign significant weights only to the clos-
est points, making the further ones almost invisible.
In this way, they do not contribute to the local linear
model.

The concept of locality is crucial to LIME: a neigh-
bourhood too large may cause the LIME model not
to be adherent to the ML function in the considered
neighbourhood.

3.2. Ridge penalty is harmful to LIME
In statistics, data are assumed to be generated from a
Data Generating Process (DGP) combined with a source
of white noise, so that the standard formulation of the
problem is 𝑌 = 𝑓 (𝐗) +  , where  ∼ 𝑁 (0, 𝜎2). The aim
of each statistical model is to retrieve the best spec-
ification of the DGP function 𝑓 (𝐗), given the noisy
dataset.

Ridge Regression [33] assumes a linear DGP, namely
𝑓 (𝐗) = 𝛼 + ∑𝑑

𝑗=1 𝛽𝑗𝑋𝑗 , and applies a penalty propor-
tional to the norm of the 𝛽 coefficients, enforced dur-
ing the estimation process through the penalty param-
eter 𝜆. This technique is useful when dealing with very
noisy datasets (where the stochastic component  ex-
hibits high variance 𝜎2) [34]. In fact, the noise makes
various sets of coefficients as viable solutions. Instead,
tuning 𝜆 to its proper value allows Ridge to retrieve a
unique solution.

In the LIME setting, the ML function acts as the
DGP, while the sampled points are the dataset. Recall-
ing that the 𝑌 coordinate of each point is given by ML
prediction, it is guaranteed they lie exactly on the ML
surface by construction. Hence, no noise is present
in our dataset. For this reason, we argue that Ridge
penalty is not needed, on the contrary it can be harm-
ful and distort the right estimates of the parameters,
as shown in Figure 3.

In the 3b panel, Ridge penalty 𝜆 = 1 (LIME default) is
employed, whereas in 3a no penalty (𝜆 = 0) is imposed.
It is possible to see how the estimation gets severely
distorted by the penalty, proven also by the 𝑅2 values.
This happens especially for small kernel width values,
since each unit has very small weight and the weighted
residuals are almost irrelevant in the Ridge loss, which
is dominated by the penalty term. To minimize the
penalty term the coefficients are shrunk towards 0.

(a) Ridge Penalty = 0

(b) Ridge Penalty = 1

Figure 3: Effects of Ridge Penalty on LIME explanations

3.3. Relationship between Stability,
Adherence and Kernel Width

Since the kernel width represents the main hyper-parameter
of LIME, we wish to understand how Stability and Ad-
herence vary wrt to it.
From the theory, we have few helpful results:

• Taylor Theorem [32] gives a polynomial approx-
imation for any differentiable function, calcu-
lated in a given point. If we truncate the for-
mula to the first degree polynomial, we obtain a
linear function, its approximation error depends
on the distance from the point in which the er-
ror is evaluated and the given point.
Thus, if we assume the ML function to be dif-
ferentiable in the neighbourhood of 𝑥 (𝑟𝑒𝑓 ), the
adherence of the linear model is expected to be
inversely proportional to the width of the neigh-
bourhood, i.e. to the kernel width. This is true
since the approximation error depends on the
distance from the two points, namely the neigh-
bourhood size.



Figure 4: Relationship among kernel width, 𝑅2 and CSI

• in Linear Regression, the standard deviation of
the coefficients is inversely correlated to the stan-
dard deviation of the 𝐗 variables [32].
The stability of the explanations depends on the
spread of the𝐗 variables in our weighted dataset.
We then expect the kernel width and Stability to
be directly proportional.

To illustrate the conjectures above, we run LIME for
different kernel width values and evaluate both 𝑅2 and
CSI metrics (VSI is not considered in the Toy Dataset,
since only one variable is present). In Figure 4 the re-
sults of such experiment, for the reference unit, are
shown.

Both the adherence and stability are noisy functions
of the kernel width: they contain some stochasticity,
due to the different datasets generated by each LIME
call. Despite this, it is possible to detect a clear pat-
tern: monotonically increasing for the CSI Index and
monotonically decreasing for the 𝑅2 statistic.

For numerical evidence of these properties, we fit
the Logistic function [35], which retrieves the best monotonous
approximation to a set of points. The goodness of the
logistic approximation is confirmed by a low value of
the Mean Absolute Error (MAE).
To corroborate our assumption, the same process has
been repeated on all the units of the Toy Dataset, ob-
taining average MAE for the 𝑅2 approximation of 0.005
and for the CSI of 0.026. The logistic growth rate has
also been inspected: 𝑅2 highest growth rate is -10.78
and CSI lowest growth rate is 7.20. These results en-
sure the monotonous relationships of adherence and
stability with the kernel width, respectively decreas-
ing and increasing.

3.4. OptiLIME
Previously, we empirically showed that adherence and
stability are monotonous noisy functions of the kernel
width: for increasing kernel width we observe, on av-
erage, decreasing adherence and increasing stability.

Our proposition consists in a framework which en-
ables the best choice for the trade-off between stabil-
ity and adherence of the explanations. OptiLIME sets
a desired level of adherence and finds the largest ker-
nel width, matching the request. At the same time, the
best kernel width provides the highest stability value,
constrained to the chosen level of adherence. At the
end of the day, OptiLIME consists in an automated way
of finding the best kernel width. Moreover, it empow-
ers the practitioner to be in control of the trade-off
between the two most important properties of LIME
Local Explanations.

To retrieve the best width, OptiLIME converts the
decreasing 𝑅2 function into 𝑙(𝑘𝑤, �̃�2), by means of For-
mula 2:

𝑙(𝑘𝑤, �̃�2) =
{
𝑅2(𝑘𝑤), if 𝑅2(𝑘𝑤) ≤ �̃�2

2�̃�2 − 𝑅2(𝑘𝑤) if 𝑅2(𝑘𝑤) > �̃�2
(2)

where �̃�2 is the requested adherence.
For a fixed �̃�2, chosen by the practitioner, the function
𝑙(𝑘𝑤, �̃�2) presents a global maximum. We are particu-
larly interested in the argmax𝑘𝑤 𝑙(𝑘𝑤, �̃�2), namely the
best kernel width.

In order to solve the optimum problem, Bayesian
Optimization is employed, since it is the most suitable
technique to find the global optimum of noisy func-
tions [36]. The technique relies on two parameters
to be set beforehand: 𝑝, number of preliminary calls
with random 𝑘𝑤 values, 𝑚, number of iterations of the
search refinement strategy. Increasing the parameters
ensures to find a better kernel width value, at the cost
of longer computation time.

In Figure 5, an application of OptiLIME to the ref-
erence unit of the Toy Dataset is presented. �̃�2 has
been set to 0.9, 𝑝 = 20 and 𝑚 = 40. The points in the
plot represent the distinct evaluations performed by
the Bayesian Search in order to find the optimum.
Comparing the plot with Figure 4, we observe the ef-
fect of Formula 2 on the left part of the 𝑅2 and 𝑙(𝑘𝑤, �̃�2)
functions. In Figure 5 the search has converged to
the maximum, evaluating various points close to the
best kernel width. At the same time, it is evident the
stochastic nature of the CSI function: the several CSI



Figure 5: OptiLIME Search for the best kernel width

measurements, performed in the proximity of 0.3 value
of the kernel width, show a certain variation. Nonethe-
less, it is possible to recall the increasing CSI trend.

4. Case Study

Dataset
To validate our methodology we use a well known med-
ical dataset: NHANES I. It has been employed for med-
ical research [37],[38] as well as a benchmark to test
explanation methods [39]. The original dataset is de-
scribed in [40]. We use a reformatted version, released
at http://github.com/suinleelab/treexplainer-study. It
contains 79 features, based on clinical measurements
of 14,407 individuals. The aim is to model the risk of
death over twenty years of follow-up.

Diagnostic Algorithm
Following Lundberg [39] prescriptions, the dataset has
been divided into a 64/16/20 split for train/validation/test.
The features have been mean imputed and standard-
ized based on statistics computed on the training set.
A Survival Gradient Boosting model has been trained,
using the XGBoost framework [41]. Its hyper-parameters
have been optimized by coordinate descent, using the
C-statistic [42] on the validation set as the figure of
merit.

Explanations
We use the OptiLIME framework to achieve the opti-
mal explanation of the XGBoost model on the dataset.
We consider two randomly chosen individuals to visu-
ally show the results. In our simulation, we consider

(a) Best LIME Explanation, Unit 100

(b) Best LIME Explanation, Unit 7207

Figure 6: NHANES individual Explanations using OptiL-
IME

0.9 as a reasonable level of adherence. OptiLIME is em-
ployed to find the proper kernel width to achieve 𝑅2
value close to 0.9 while maximizing stability indices
for the local explanation models.

The model prediction consists in the hazard ratio for
each individual, higher prediction means the individ-
ual is likely to survive a shorter time. Therefore, posi-
tive coefficients define risk factors, whereas protective
factors have negative values.

LIME model interpretation is the same as a Linear
Regression model, but with the additional concept of
locality. As an example, for Age variable we distin-
guish different impact based on the individual charac-
teristics: having 1 year more for the Unit 100 (increas-
ing from 65 to 66 years) will raise the death risk of
3.56 base points, for Unit 7207 1 year of ageing (from
49 to 50) will increase the risk of just 0.79. Another
example is the impact of Sex: it is more pronounced
in elder people (being female is a protective factor for
1.49 points at age 49, at age 65 being male has a much
worse impact, as a risk factor for 3.04).

For the Unit 100 in Figure 6a, the optimal kernel
width is a bit higher compared with Unit 7207 in Fig-
ure 6b. This is probably caused by the ML model hav-
ing a higher degree of non linearity for the latter unit:

https://github.com/suinleelab/treeexplainer-study


to achieve the same adherence, we are forced to con-
sider a smaller portion of the ML model, hence a small
neighbourhood. Smaller kernel width implies also a
reduced Stability, testified by small values of the VSI
and CSI indices. Whenever the practitioner desires
more stable results, it is possible to re-run OptiLIME
with a less strict requirement for the adherence. It
is important to remark that low degrees of adherence
will make the explanations increasingly more global:
the linear surface retrieved by LIME will consist in an
average of many local non-linearities of the ML model.

The computation time largely depends on the Bayesian
Search, controlled by the parameters 𝑝 and 𝑚. In our
setting, 𝑝 = 10 and 𝑚 = 30 produce good results for
both the units in Figure 6.
On a 4 Intel-i7 CPUs 2.50GHz laptop, the OptiLIME
evaluation for Unit 100 and Unit 7207 took respectively
123 and 147 seconds to compute. For faster, but less ac-
curate results, the Bayesian Search parameters can be
reduced.

5. Conclusions
In Medicine, diagnostic computer algorithms provid-
ing accurate predictions have countless benefits, no-
tably they may help in saving lives as well as reduc-
ing medical costs. However, precisely because of the
importance of these matters, the rationale of the de-
cisions must be clear and understandable. A plethora
of techniques to explain the ML decisions has grown
in recent years, though there is no consensus on the
best in class, since each method presents some draw-
backs. Explainable models are required to be reliable,
thus stability is regarded as a key desiderata.

We consider the LIME technique, whose major draw-
back lies in the lack of stability. Moreover, it is difficult
to tune properly its main parameter: different values
of the kernel width provide substantially different ex-
planations.

The main contribution of this paper consists in the
clear decomposition of the LIME framework in its rel-
evant components and the exhaustive analysis of each
one, starting from the geometrical meaning through
the empirical experiments to validate our intuitions.
We showed that Ridge penalty is not needed and LIME
works best with simple Linear Regression as explain-
able model. In addition, smaller kernel width values
provide a more adherent LIME plane to the ML surface,
therefore a more realistic local explanation. Eventu-
ally, the trade-off between the adherence and stabil-
ity properties is extremely valuable since it empowers
the practitioner to choose the best kernel width con-

sciously.
We exploit these findings in order to tackle LIME

weak points. The result is the OptiLIME framework,
which represents a new and innovative contribution to
the scientific community. OptiLIME achieves stability
of the explanations and automatically finds the proper
kernel width value, according to the practitioner’s needs.

The framework may serve as an extremely useful
tool: using OptiLIME, the practitioner knows how much
to trust the explanations, based on their stability and
adherence values.

Nonetheless, we acknowledge that the optimization
framework may be improved to allow for a faster and
more precise computation.
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