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Abstract
As the result of compression and the source of reconstruction, the latent space of Variational Auto-Encoders (VAEs) captures
the essences of the training data and hence plays a fundamental role in data understanding and analysis. Focused on revealing
what data features/semantics are encoded and how they are related in the latent space, this paper proposes a visual analytics
system, i.e., LatentVis, to interactively study the latent space for better understanding and diagnosing image-based VAEs.
Specifically, we train a supervised linear model to relate the machine-learned latents with the human-understandable se-
mantics. With this model, each important data feature is expressed along a unique direction in the latent space (i.e., semantic
direction). Comparing the semantic directions of different features allows us to compare the feature similarity encoded in the
latent space, and thus to better understand the encoding process of the corresponding VAE. Moreover, LatentVis empowers
us to examine and compare latent spaces across various training stages, or different VAE models, which can provide useful
insight into model diagnosis.
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1. Introduction
With the powerful capability in feature extractions,
Deep Neural Networks (DNNs) have made a series of
breakthroughs across a wide range of applications, e.g.,
image classification [1], object recognition [2], image
segmentation [3], etc. More interestingly, DNNs also
demonstrate excellent performance in feature genera-
tions, which has attracted more research attention [4].
For example, Generative Adversarial Nets (GANs) and
Variational Auto-Encoders (VAEs) are able to generate
data (including images [5], sounds [6]) that are almost
indistinguishable from real data.

The outstanding performance of DNNs comes from
their complicated internal model architectures and the
long-time model training processes, which, however,
have gone far beyond humans’ interpretability. As a
result, it is very difficult to explain how Deep Genera-
tive Models (DGMs) understand the extracted features
and further use them to generate new features. The la-
tent spaces of these models, located at the pivot point
between extraction and generation, compress all the
extracted features and control what to be generated.
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Investigating them could help to understand and di-
agnose the DGMs, and thus shed light on the mystery
power of DGMs. However, those latent spaces are usu-
ally with high-dimensionality and the semantics of in-
dividual latent dimension is not human-understandable.

Recently, we have witnessed many works on inter-
preting the latent space of DNNs. Some considered a
latent space as a high-dimensional manifold and fo-
cused on the geometric interpretation of the manifold.
For example, [7] showed that geodesic curves on the
latent space manifold are approximately straight in their
experiments. [8] revealed that a stochastic Rieman-
nian metric in the latent space could produce smoother
interpolations than the conventional Euclidean distance.
With static visualizations of the geometric path in the
latent space, these studies have helped to understand
the abstractive manifold holistically.

Others explored the semantics of different latent spa-
ces by focusing on specific tasks. For example, [9, 10]
analyzed the word embedding and verified the linear
arithmetic of the semantics in the embedding/latent
space, e.g., 𝑞𝑢𝑒𝑒𝑛−𝑤𝑜𝑚𝑎𝑛+𝑚𝑎𝑛≈𝑘𝑖𝑛𝑔. Similar linear
arithmetic has also been found in the latent space of
image-based DGMs [4]. These studies expose some
structures of the latent spaces, but are still insufficient
to comprehensively reveal their essential semantics.

This paper targets to diagnose image-based VAEs
by interactively investigating their latent space, and
hence answers three concrete research questions: (1)
what semantics are embedded in the latent space of
VAEs; (2) how can we transfer the machine-learned la-
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tent space to a human-understandable semantic space
for better interpretation; (3) how to use the latent spaces
of VAEs to track and compare VAE models. To the end,
we design and develop a three-module visual analytics
prototype, named LatentVis, for this matter. The Data
module presents an interface to interact with the ex-
perimental dataset and select images with desired fea-
tures. The Semantics module identifies and compares
semantic directions of different image features, bridg-
ing the machine-encoded latents with human-under-
standable semantics. The Comparison module com-
pares the latent space of (1) the same model in two
different training stages, (2) the same model from two
separate trainings with randomly initialized network
parameters, and (3) two different VAE models. To sum
up, the contributions of this paper are three-fold:

• We present LatentVis, a visual analytics system
that helps to understand and diagnose VAEs by
interactively revealing the encoded semantics of
the latent space.

• Enlightened by the linear arithmetic of features,
we use a linear model to transfer a machine-
learned latent space into a human-understandable
semantic space.

• Based on our analysis of the latent space, we
propose a model-agnostic approach to compare
VAEs, across training stages, separate trainings,
or different VAE models.

2. Background and Related
Works

Interpreting Latent Spaces. DNNs can be consid-
ered as functions that transfer data instances from the
input data space to a latent space (𝑓 ∶ 𝑅𝑚 → 𝑅𝑛).
A well-trained DNN will preserve the essential infor-
mation of the input data during this transformation.
However, due to the complexity of DNNs, it is a non-
trivial problem to reveal or verify what information is
preserved and how it is preserved in the latent space.
Targeted on this problem, many research efforts have
been devoted to interpret the latent spaces of DNNs.
For example, [11] showed how the statistics of data
can be examined in the latent space representation.
[12] interpreted the association between visual con-
cepts and symbolic annotations captured by 𝛽VAE thr-
ough parallel coordinates plots. Latent embedding learn-
ing methods (GLO, LEO, GLANN [13, 14, 15]) were also
developed for the interpretation and understanding of
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Figure 1: (a) The architecture of VAE; (b) the perceptual loss,
introduced in DFC-VAE [27], for feature reconstruction.

latent spaces. Moreover, in natural language process-
ing, the learned embedding of words/ paragraphs also
form a latent space. [9] and [16] interpreted this space
and found that the correlations between words/ para-
graphs were well-captured in the space.

Visual Analytics for Deep Learning (VIS4DL).
There are two groups of VIS4DL works in general. One
focuses on a specific model to reveal the internal work-
ing mechanism of the model, such as CNNVis [17],
GANViz [18], and ActiVis [19]. These works usually
design a visualization system to expose the hidden fea-
tures and feature connections, for specific DNNs on
specific datasets. Some works in this group also tried
to generalize to different models on various datasets.
For example, [20] proposed Network Dissection to
quantify the interpretability of latent representations
captured by CNNs (AlexNet, VGG, GoogLeNet, ResNet)
via the alignment between hidden units and seman-
tic concepts. The other group focuses on using only
the model inputs and outputs to interpret/diagnose the
model, without touching the intermediate model de-
tails (i.e., model-agnostic). For example, [21] proposed
a model-agnostic approach to reveal the dominant re-
gions of input images in controlling the prediction re-
sults of a classifier. More examples in this group also
include [22, 23, 24]. Our work needs no examination
on the internal working mechanism of VAEs (as se-
mantics are encoded in the space formed by activa-
tions, rather than individual neurons [25, 26]), and thus
belongs to the second group. Integrating a linear space
transformer into our visual analytics process, we try to
present a human-understandable latent space to diag-
nose DGMs.

Variational Auto-Encoder (VAE) [28] aims to re-
construct the input image from a latent representation
of the image encoded/learned by itself. It is comprised
of two neural networks: an encoder network encodes
the image into a latent variable, and a decoder network
decodes the image from the latent variable (Fig. 1a).
Specifically, the encoder maps an input image 𝑥 to a
latent variable 𝑧 (i.e., 𝑧 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥) ∼ 𝑞(𝑧|𝑥)), and
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Figure 2: Three spaces: (a) the image space is where the
CelebA images reside, each pixel is an independent dimen-
sion; (b) the latent space is the VAE learned representation
of those images, the VAE encoder and decoder enable the
transformation between the image space and latent space;
(c) the semantic space is derived from the latent space un-
der the supervision of the 40 binary features of the images
(using our linear model).

the decoder maps a latent variable 𝑧 to an output im-
age 𝑥′ (i.e., 𝑥′ = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑧) ∼ 𝑝(𝑥 |𝑧)). The encoder
and decoder, defined by trainable parameters 𝜃 and 𝜙
respectively, are optimized via minimizing the follow-
ing loss function:

𝑙(𝜃, 𝜙) = −𝐸𝑞𝜃 (𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜙(𝑥 |𝑧)] + 𝐾𝐿(𝑞𝜃 (𝑧|𝑥)‖𝑝(𝑧)).

By 𝑧 = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥), the latent variable of a specific
image from the VAE is readily accessible for further
semantic explorations. One common issue of VAEs is
that the generated images tend to be blurry, due to the
aggregated pixel-wise image distance used in the loss
function, i.e., the 𝐿2 distance between 𝑥 and 𝑥′.
Deep Feature Consistent VAE (DFC-VAE) [27] is

a variant of the regular VAE. It improves the quality of
the reconstructed images by replacing the pixel-wise
reconstruction loss with a feature perceptual loss [29].
In DFC-VAE, multiple levels of features are extracted
from both the input and reconstructed images by pass-
ing them into a pre-trained CNN. Each layer of the
CNN extracts certain levels of image features. The
features from the input and reconstructed images are
then used to measure their perceptual distance (Fig. 1b,
the 𝐿2 loss between the corresponding feature maps).
In this work, we adopted this perceptual loss to im-
prove the reconstruction quality. The VGG19 [30] pre-
trained on the ImageNet data is used as our pre-trained
CNN.

3. Methodology

3.1. Fundamental Concepts
Image Dataset. We focus on a face image dataset, i.e.,
CelebA [31], to explore the latent space of VAE models

in this work. This dataset is constituted of 202599 hu-
man face images. Each image has 40 binary attributes
(e.g., the image is a male face or not, a face with glasses
or not) with a resolution of 178×218. We pre-processed
those images by cropping them into 148×148 and scal-
ing down to 64×64 for our VAEs. Images with the same
feature (i.e., have the same value on a binary attribute)
belong to the same feature category.

We focused on this face image dataset for two rea-
sons. First, this dataset presents rich attributes for the
same object (the human face) in the same scale. Com-
pared to other datasets with numerous objects in dif-
ferent scales (e.g., ImageNet), a VAE can more accu-
rately capture the underlying data distribution. Sec-
ond, the well-labeled attributes in this dataset can help
to interpret the semantics encoded in the latent space
of VAEs, through which, we derived the semantic space
using our linear model (Fig. 2).

Image Semantics. The semantics of face images is
the existence and scale of the 40 features in the CelebA
dataset. A well-trained VAE can transfer the semantics
from the image space to the VAE’s latent space (i.e.,
from Fig. 2a to 2b). However, the transferred seman-
tics in the latent space is not human-understandable.
Hence, our goal is to interpret them via a semantic
space (Fig. 2c), in which, we can explore if the image
semantics have been accurately encoded (Fig. 2i) and
how they are encoded (Fig. 2ii).

Semantic Direction. In Fig. 2b, we use a point to
denote the VAE encoded latent variable for the corre-
sponding image in the image space. All latent vari-
ables for images of the same category (e.g. “glasses",
“mustache") form a cluster in the space, denoted as a
blue bubble in Fig. 2b. We identify the direction from
one cluster without a particular feature to the clus-
ter with that feature as the semantic direction for the
feature. For example, in Fig. 2b, the directions on the
red and green lines reflect the semantic directions for
“mustache" and “glasses". Moving the latent variable
of one image along a semantic direction will change
the corresponding feature of the reconstructed image
themost. Along this semantic direction, a vector with
a certain length is referred to as a Semantic Vector. For
CelebA, there are 40 features, and we have 40 unique
semantic directions.

3.2. Our Contributions
The Linear Model. Enlightened by the linear arith-
metic of features (e.g., 𝑤𝑜𝑚𝑎𝑛 𝑓 𝑎𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑙𝑎𝑠𝑠𝑒𝑠 +
(𝑚𝑎𝑛 𝑓 𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 𝑔𝑙𝑎𝑠𝑠𝑒𝑠−𝑚𝑎𝑛 𝑓 𝑎𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑔𝑙𝑎𝑠𝑠𝑒𝑠)≈
𝑤𝑜𝑚𝑎𝑛 𝑓 𝑎𝑐𝑒 𝑤𝑖𝑡ℎ 𝑔𝑙𝑎𝑠𝑠𝑒𝑠) [4], we trained a linear model
to quantify the semantic directions, as well as to trans-
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Figure 3: The framework of LatentVis system.

form the latent space to a human-understandable se-
mantic space (i.e., from Fig. 2b to 2c). The linear model,
𝐲 = 𝑊 𝑇 ⋅ 𝐳 + 𝐛, is trained using the latent variable of
all CelebA images encoded by VAEs (denoted as 𝐳) and
the 40 binary attributes of the images (denoted as 𝐲). 𝐳
is a vector with many dimensions (the black arrow in
Fig. 2b), and 𝐲 is a vector with 40 dimensions (the green
arrow in Fig. 2c). Each row of the weight matrix 𝑊 𝑇

is the derivatives of a certain feature to all the latent
dimensions, which represents a semantic direction in
the latent space. Each column of 𝑊 𝑇 represents the
contributions of a latent dimension to all the seman-
tics.
Analytic Tasks and LatentVis. We focus on three

analytic tasks to better understand and diagnose VAEs
in a lens of their latent space: (T1) navigating the dataset
and feature selection; (T2) visualizing and comparing
the image semantics/ semantic directions in a latent
space; and (T3) facilitating model comparisons and di-
agnosis through comparing their latent spaces. Fol-
lowing these tasks, we propose a visual analytics sys-
tem, LatentVis (Fig. 3, bottom), which contains three
analytical modules corresponding to an hierarchical
information flow (Fig. 3, top).

The Data Module (Fig. 3a) gives an overview of the
studied dataset, allowing us to flexibly explore data in-
stances. It is also an interface to select any interested
feature category and data instance for further analy-
sis in other modules (please check details in the Ap-
pendix).

The Semantics Module (Fig. 3b) demonstrates what
semantics has been captured by the VAE, and how the
data features are correlated in the latent space by con-
necting the image space with the VAE latent space. Its
three views follow an hierarchical information flow to
detect, cluster, and compare semantics (see details in
Sec. 4.1).

The Comparison Module (Fig. 3c) compares the se-
mantic directions of latent space from different VAEs
to diagnose these models. The diagnosis for the com-
pared VAEs is performed by examining the learning
work division between the encoder and decoder (see

details in Sec 4.2).

4. Experiments and Results
Neural Network Structure. We worked with one reg-
ular VAE and one DFC-VAE, both with an encoder and
a decoder of four convolutional layers. The four-layer
encoder compresses the 64×64×3CelebA images to 32×32
×32, 16×16×64, 8×8×128, and 4×4×256. The compression
result is then flattened and mapped to a 100D Gaus-
sian distribution, represented by a 100D mean and a
100D standard deviation, through two fully-connected
layers. The decoder has a symmetric structure with
the encoder, but with a reversed order of the layers to
up-sample the 100D latent variables (sampled from the
100D Gaussian).

The difference between the VAE and DFC-VAE is
whether a pre-trained VGG19 model was used to com-
pute the perceptual loss. We trained the VAE once
and the DFC-VAE twice with the same batch size and
the Adam optimizer in all trainings. However, notice
that the hyperparamters for these trainings could be
the same or be different on-purpose to compare the
trained models and investigate the effect of the hyper-
parameters, e.g., comparing models trained with dif-
ferent learning rates to study their convergence speed.

All three trainings used the 202599 CelebA images
and the batch size is 64. Every 800 batches were con-
sidered as a training stage to collect model statistics,
like loss-values, and all the three trainings were run
for 197 stages (i.e., 157600 batches).

4.1. Detecting and Comparing Semantic
Directions

We propose Algorithm 1 to detect and compare seman-
tic directions in the Semantics Module (Fig. 4). First,
we give all CelebA images to the well-trained VAE model
to obtain their latent variables. Then, we use these
latent variables and their corresponding 40 binary at-
tributes to train a linear model to capture the semantic
directions encoded in the latent space. To verify the ef-
fectiveness of the semantic directions, we also gener-
ate many random directions in the latent space. Given
any selected image, we visualize the modified version
of the image resulted from changing its latent variable
along the 40 semantic directions and a random direc-
tion. For example, by dragging the control point for
the feature “bangs" and “glasses" in Fig. 4a (i.e., change
the length of a semantic vector, 𝜆∈[−10, 10]), we ob-
served how those two features were added (Fig. 4-a2)
to the selected image (Fig. 4-a1). However, no obvi-



ous changes towards a particular feature were found
in the image when dragging the control point on the
axis representing random directions (Fig. 4-a3).

Algorithm1 : Detecting and Comparing Semantic Di-
rections
Require: images 𝑋 = {𝐱𝑖}𝑛𝑖=1, feature labels 𝑌 =

{𝐲𝑖}𝑛𝑖=1
Require: selected image �̂� ∈ 𝑋 , selected feature 𝑓 ,

compared feature 𝑓 ′, the length of a semantic vec-
tor 𝜆

Require: the VAE model with an 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 and a
𝑑𝑒𝑐𝑜𝑑𝑒𝑟

1: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒(𝑛) do
2: 𝐳𝑖 ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝐱𝑖)
3: end for
4: train a linear model 𝐲 = 𝑊 𝑇 ⋅ 𝐳 + 𝐛
5: semantic directions 𝐷 ← 𝑊 𝑇

6: 𝐝𝑓 ← 𝐷[𝑓 , ∶] // a row of 𝐷 corresponding
to feature 𝑓

7: randomly initialize 𝐝𝑟 with ‖𝐝𝑟 ‖ = ‖𝐝𝑓 ‖
8: �̂� ← 𝑒𝑛𝑐𝑜𝑑𝑒𝑟(�̂�).
9: �̂�𝑓 ← �̂� + 𝜆𝐝𝑓

10: �̂�𝑟 ← �̂� + 𝜆𝐝𝑟
11: �̂�𝑓 ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(�̂�𝑓 )
12: �̂�𝑟 ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(�̂�𝑟 )
13: 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒(�̂�, �̂�𝑓 , �̂�𝑟 ) to verify semantics in 𝐝𝑓

//Fig. 4a
14: 𝐱𝑓 ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝜆𝐝𝑓 )
15: 𝐝′𝑓 ← 𝐷[𝑓 ′, ∶] // another row of 𝐷 corresponding

to feature 𝑓 ′
16: 𝐱𝑓 ′ ← 𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝜆𝐝𝑓 ′ )
17: 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒(𝜆𝐝𝑓 , 𝜆𝐝𝑓 ′ ), (𝐱𝑓 , 𝐱𝑓 ′ ) to compare seman-

tics //Fig. 4c

We cluster the 40 feature categories (40 semantics)
into five groups using the𝐾 -means algorithm based on
the cosine similarity between their corresponding se-
mantic directions. Interestingly, the feature categories
inside each group present similar semantics. For ex-
ample, the feature “make up", “no beard", and “attrac-
tive" are in the same group, which are all “women-
ish" features. With the similar logic, the other four se-
mantic groups are named “man-ish" (e.g., “mustache",
“five-o’clock shadow"), “weak-woman-ish" (e.g., “smile",
“bangs"), “weak-man-ish"(e.g., “bushy eyebrows", “hat"),
and “old-ish" (e.g., “chubby", “bald"). The five clusters
can be easily identified from the symmetric pair-wise
similarity matrix (Fig. 4b), and we can select any two
semantics (i.e., one row and one column) for compar-
ison. For example, Fig. 4c shows the negative corre-
lation between the “rosy cheeks" and “male" feature,

a b 
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Figure 4: Semantic Module on DFC-VAE from the 197𝑡ℎ
training stage: (a) detect, (b) cluster, and (c) compare se-
mantic directions. The cell color from red over white to blue
in the matrix (b) indicates the cosine similarity of two se-
mantic directions from -1 over 0 to 1; (b1-b5) represent five
clusters: “weak-woman-ish", “man-ish", “woman-ish", “old-
ish", and “weak-man-ish".

which are from the “woman-ish" (Fig. 4-b3) and “man-
ish" (Fig. 4-b2) groups respectively. The negative cor-
relation is indicated by an obtuse angle between the
two colored semantic vectors (i.e., 𝜆𝐝𝑓 and 𝜆𝐝𝑓 ′ in Al-
gorithm 1). To visualize these two high-dimensional
vectors 𝜆𝐝𝑓 and 𝜆𝐝𝑓 ′ in a 2D plot intuitively, 𝜆𝐝𝑓 (cor-
responding to the selected feature) is always along the
horizontal direction, and 𝜆𝐝𝑓 ′ (corresponding to the
compared feature) presents an angle with 𝜆𝐝𝑓 , calcu-
lated as the angle between them in the original HD
latent space. The length of each colored segment re-
flects the norm of the corresponding semantic vector.
Dragging the green/red point in Fig. 4c to the oppo-
site direction (i.e., change 𝜆 to a negative value), we
can also verify that the opposite direction indeed en-
codes the opposite feature, e.g., “pale skin" is the op-
posite of “dark skin". Interestingly, we found several
such pairs, showing a similar way of how human un-
derstand these semantics, such as “smile" v.s. “scary
face", “bangs" v.s. “high hairlines".

From the above explorations and visual evidence,
we feel confident to believe the following hypothesis
on the semantic structure of the latent space: (1) la-
tent space tends to encode semantics along unique di-
rections (i.e., semantic directions); (2) smaller angles
between semantic directions denote similar semantics
and opposite semantic directions encode opposite se-
mantics.

4.2. Comparing Semantics across VAEs
The Comparison Module compares two VAE models
and facilitates model diagnosis using their latent spaces.
The comparison is across different training stages, train-
ings (with randomly initialized neural network param-
eters), and VAE models. For each pair of compared
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reconstructed images when changing along the semantic di-
rection (SD) learned by different VAEs.

models, we run Algorithm 1 to obtain their individual
semantic directions and generate the corresponding
reconstructed images. Given any selected image, Al-
gorithm 1 also outputs its latent variable, from which,
we can regenerate the image with a VAE’s decoder. We
can use the same VAE’s decoder and a different VAE’s
decoder to reconstruct two images and compare them.
From the comparison, we can track the work division
between an encoder and a decoder, and also diagnose
which of these two networks is more responsible for
certain model functions.

Since we have two encoders and two decoders, there
are four possible combinations between them. Each
rectangle in Fig. 5a represents one combination. We
use purple and orange color to denote model 1 and
model 2. The left and right borders’ color of a rectangle
reflects which model’s encoder is in use, whereas the
top and bottom borders’ color reflects which model’s
decoder is in use. For example, the top right rectangle
in Fig. 5a means the reconstructed image uses encoder
1 (the left and right borders of the rectangle are in pur-
ple) and decoder 2 (the top and bottom borders of the
rectangle are in orange), i.e., the pair of E1-D2.

When dragging the horizontal control point (i.e., cha-
nge 𝜆) in the top of the Comparison Module, these four
images will be modified along the semantic directions
(SD) for the focused semantics learned from the two
models. Fig. 5b shows the mappings, i.e., which image
is changing along which semantic direction. For exam-
ples, Fig. 5i and Fig. 5ii show the reconstructed images
when changing the top right image of Fig. 5a along the
semantic directions learned from model 1 and model 2,
respectively.
Comparing SemanticDirectionsAcross-Time. We

take the DFC-VAE in an early training stage and a well-
trained stage to perform the comparison. Fig. 6 in-
vestigates the DFC-VAE model with parameters from
the 3𝑟𝑑 (orange) and the 197𝑡ℎ (purple) training stage.

b 

d 

a 

c 

e f 

b 

Figure 6: The Comparison Module on the “ glasses" feature.
Left: the orange and purple color represent the DFC-VAE
model from the 3𝑟𝑑 and the 197𝑡ℎ training stages. Right: the
orange and purple color represent two separate trainings of
the same DFC-VAE model from the 197𝑡ℎ training stage.

When moving the latent variable of the image in Fig. 6a
along the semantic direction learned in those two stages,
all the six reconstructed images generated the “glasses"
feature (as shown in Fig. 6b), regardless of the swap-
ping of the encoders and decoders from the two train-
ing stages. This observation indicates that different
stages of the training encode the semantic direction of
the same feature in a consistent way. It also implies
another insight on the semantic structure of the latent
space, i.e., the semantic directions may have a tolerable
range, within which, the learned semantics is evolving
over the training process.

Comparing SemanticDirectionsAcross-Training.
Focusing on a well-trained stage, we compared the DFC-
VAE from two separate trainings (where the model pa-
rameters are randomly initialized in each training). Our
goal is to explore whether the semantics is encoded
in the same way over the two trainings. We used the
same training hyperparameters and trained the same
model twice with enough epochs. Fig. 6c investigates
the semantic directions of the “glasses" feature from
the two trainings. We found the “glasses" feature can
only be generated when using the matched encoder-
decoder pairs. For example, Fig. 6c reconstructs an
image using the decoder from the second training, but
the latent variable is moved along the semantic direc-
tion learned from the first training. As a result, the
“glasses" feature was not generated. Conversely, the
“glasses" feature could be generated when moving along
the semantic direction learned from the second train-
ing, as shown in Fig. 6d. The results shown in Fig. 6e
(image with “glasses"), 6f (image without “glasses") fur-
ther verify this. The observation indicates that differ-
ent trainings of the same VAE may encode the seman-
tic direction of the same feature differently.

4.3. Diagnosing VAEs via Semantics
Comparison

Learning Process Comparison between Encoders and
Decoders. To interpret the learning work division be-



Figure 7: Images reconstructed from model 1 (DFC-VAE,
197𝑡ℎ stage, in purple) and model 2 (DFC-VAE, 3𝑟𝑑 stage, in
orange) with matched and swapped encoder-decoder pairs.
The numbers 1, 2, 3, 4 represent the combinations of 𝐸1-𝐷1,
𝐸2-𝐷1, 𝐸1-𝐷2, 𝐸2-𝐷2, respectively.

tween the encoder and decoder, we explored the DFC-
VAE model from a well-trained stage and an early train-
ing stage. We swapped the pairing between the two
encoders and two decoders to investigate their respec-
tive responsibilities, i.e., the well-trained encoder is
paired with the early-stage decoder, and the early-stage
encoder is paired with the well-trained decoder. By
comparing the reconstructed images from them, we
discovered that a well-trained encoder is responsible
for controlling semantics, while a well-trained decoder
is responsible for generating clear images. For exam-
ple, the image in Fig. 7-a2 reconstructs the image in
Fig. 7-a0 using the early-stage encoder (𝐸2) and the
well-trained decoder (𝐷1). Although the reconstruc-
tion did not catch the features of the original image
(e.g., gender, hair style and color), the generated im-
age is clear. On the contrary, the image in Fig. 7-a3 is
reconstructed using the well-trained encoder (𝐸1) and
the early-stage decoder (𝐷2). The image captures most
of the features in the original image, but it is blurry.
Similar observations can also be found in Fig. 7b, 7c,
and 7d.

We believe a well-trained encoder can better con-
trol semantics because it better captures the correla-
tion between different semantics. In other words, bet-
ter semantic correlations make the semantic directions
more accurate in the latent space generated from a
well-trained encoder. For example, Fig. 8 compares the
correlations between the “glasses" feature and other
features in the 3𝑟𝑑 − 6𝑡ℎ, 8𝑡ℎ, 13𝑡ℎ, and 197𝑡ℎ training
stages. It is obvious that the negative correlations of
different semantics (i.e., the region in the black dashed
lines) were evolving gradually over the training. Com-
paring the trend of negative to positive correlations
between semantics (i.e., red to blue cells), we can see
the negative correlations are acquired in later stages.
ComparingVAEandDFC-VAE.Although the VAE

and DFC-VAE shared a similar network structure, the
feature perceptual loss used in DFC-VAE dramatically
improved the semantics learning. The image features
generated from DFC-VAE tend to be less blurry and
more recognizable than those from VAE. For exam-

Figure 8: Comparing the cosine similarity between the
“glasses" semantic direction and other semantic directions
across seven training stages; red over white to blue denotes
values from -1 over 0 to 1.
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Figure 9: Comparing the reconstructed images along se-
mantic directions at 𝜆 = 4.5 from DFC-VAE (purple borders)
and VAE (orange borders) in (a) the 3𝑟𝑑 and (b) 197𝑡ℎ stage.
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Figure 10: Comparing the semantic correlations learned
by DFC-VAE (top row) and VAE (bottom row) between the
five interested semantic directions and other semantic di-
rections in the the (a) 3𝑟𝑑 and (b) 197𝑡ℎ stage.

ple, the left and right image in the five pairs of images
in Fig. 9a compare five image features generated from
DFC-VAE and VAE respectively from the 3𝑟𝑑 training
stage. Fig. 9b shows the same comparison but using
the parameters of DFC-VAE and VAE from the 197𝑡ℎ
stage. Comparing Fig. 9a and 9b vertically, i.e., across
time, we can see that DFC-VAE enhanced the features
in the reconstructed images more than VAE.

Comparing the semantic correlations learned from
DFC-VAE and VAE in those two training stages, we
found that both models captured the semantic corre-
lations at a similar pace. For example, the top and
bottom row of the 10 row-pairs in Fig. 10 show the
semantic correlations from the DFC-VAE and VAE re-
spectively, in stage 3 and 197. As highlighted by the
rectangles, the evolutions of the correlations between
the five semantics and other semantics are similar in
both models, from the 3𝑟𝑑 stage (left) to the 197𝑡ℎ stage
(right).

Combining our observations from Fig. 9 and Fig. 10,
we get a better understanding on how the perceptual
loss (from the pre-trained VGG19) was affecting the
model, i.e., compared to DFC-VAE, VAE captured the
correlations between different semantics but it still could
not generate clear features. We suspect that the per-



ceptual loss contributed more to improving the decoder
in better reconstructing image features.

5. Limitations and Future Work
LatentVis can be easily adapted to analyze other VAE
models, as it is a model-agnostic approach and does
not use any model-specific information (e.g., network
architectures). The required data are the input images,
the reconstructed images, and the learned latent vari-
ables at different training stages. The labels for dif-
ferent feature categories are also demanded to train
our supervised linear model. One interesting ques-
tion here is whether finer granularity labels can fur-
ther improve the accuracy of the derived semantic di-
rections. For example, the current "glasses" feature
includes both "sunglasses" and "normal glasses". Dif-
ferentiating them as two features may help in more
accurately extracting the semantic directions. Addi-
tionally, we can also verify the existence of the class
hierarchy of features in the latent space. These are in-
teresting research directions for us to explore in the
future. However, similar to the current limitation of
our work, these future works also heavily depend on
the availability of the labeled datasets.

Moreover, it is also possible to extend LatentVis to
VAEs trained on other data types, e.g., texts or audios.
Compared to images, those types of data may not be
able to be visually interpreted. However, through dif-
ferent visual encodings used in existing works, we be-
lieve they can be intuitively presented as well. We plan
to investigate more from the literature and spend more
efforts this direction in the future.

It is worth mentioning that our current explorations
in this work are heuristic and based only on one dataset,
through which, we hope to shed some light on how
the latent space of VAEs captured the semantics of im-
ages. More thorough experimental studies on more
datasets would be needed to further validate our find-
ings, which is another planned future work for us.

6. Conclusion
In this paper, we propose LatentVis, a visual analyt-
ics system to interpret and compare the semantics en-
coded in the latent space of image-based VAEs. The
system trains a supervised linear model to bridge the
machine learned latent space with the human under-
standable semantic space. From this bridging, we found
that data semantics is usually expressed along a fixed
direction in the latent space (i.e., semantic direction),

and human interpreted similar/different semantics tend
to have smaller/larger angles between semantic direc-
tions. Also, LatentVis can be used to examine and com-
pare VAEs from three different perspectives: (1) dif-
ferent training stages, (2) separate trainings with ran-
domly initialized neural network parameters, and (3)
different VAEs. Several interesting points on VAEs are
discovered and summarized as follows:

• Different stages of one training encode the se-
mantic direction of the same feature in a consis-
tent way.

• Different trainings of the same VAE model may
result in the VAE encoding the semantic direc-
tion for the same feature in a different way.

• For a well-trained VAE, its encoder tends to be
responsible for controlling semantics, while its
decoder tends to be responsible for generating
clear images.

• For the specific dataset we worked on, the per-
ceptual loss of DFC-VAE contributes more to the
training of the decoder in better reconstructing
image features. Without using the perceptual
loss, VAE is still able to accurately capture the
semantics correlations.

These explorations and comparisons demonstrate how
the latent spaces can be used to interpret and compare
the corresponding VAEs. With the promising results
demonstrated in the paper, we are confident in extend-
ing LatentVis to other latent variable models or other
data types in the future.
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A. Appendix
The Data Module contains two linked visualization views.
The first view presents a statistical summary of all train-
ing images. Each bubble in this view represents one
feature category (the color of the bubble corresponds
to different clusters in Fig. 4b), and the distances among
bubbles reflect the Euclidean distances between those
feature categories in the latent space. These distances
are calculated via the Multi-Dimensional Scaling (MDS)
algorithm, whose input is the average latent variable
of images belong to the same feature category. Click-
ing on any bubble in this view will trigger the second
view to display images from the corresponding cate-
gory. The second view displays numerous randomly
selected images from the selected image category, so
that users can check the features of those images and
select interested ones for further exploration. To save
the screen space, images are scaled down to 32×32.
Clicking on any image in this view will trigger further
updates in other views.
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