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Abstract

There is a long and unresolved debate between the symbolic and sub-symbolic methods. However, in recent years, there
is a push towards in-between methods. In this work, we provide a comprehensive overview of the symbolic, sub-symbolic
and in-between approaches focused in the domain of knowledge graphs, namely, schema representation, schema matching,
knowledge graph completion, link prediction, entity resolution, entity classification and triple classification. We critically present
key characteristics, advantages and disadvantages of the main algorithms in each domain, and review the use of these

methods in knowledge graph related applications.
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1. Introduction

Symbolic and sub-symbolic represent the two main bran-
ches of Artificial Intelligence (AI). The Al field saw huge
progress and established itself in the 1950s, after some of
the most notable and inaugural works of McCulloch and
Pittes, who in 1943 established the foundations of neural
networks (NN), and Turing’s work, who introduced in
1950s the test of intelligence for machines, known as the
Turing test.

Since its invention, the field has seen ups and downs
in its development, which are colloquially known as the
Al seasons, and are characterised as “summers” and “win-
ters”. The exact periods of these ups and downs are
unclear, however, we adopt an intermediate convention
based on Wikipedia and Henry Kautz’s talk' “The Third
Al Summer” in AAAI 2020. We display a timeline of these
developments in Figure 1.

The first Al summer, also called the golden years, be-
gins a few years after the birth of Al, and it was based
on the optimism in problem solving and reasoning. The
dominant paradigm was symbolic AI until the 1980s. This
is when the sub-symbolic Al starts taking the lead and
gains attention until the recent years. There is a long and
unresolved debate between the two different approaches.
However, this grapple between the different AI domains
is approaching to its end, as we are currently experienc-
ing the third Al summer, where the presiding wave is the
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combination of symbolic and sub-symbolic Al approaches,
which we refer to as in-between methods.

Table 1 shows an overview of some of the basic differ-
ent characteristics of the symbolic and sub-symbolic AI
methods. It presents an easy visual comparison between
the two Al fields; as it was discussed in [1, 2] and accord-
ing to our thorough analysis of the fields. Apart from the
core symbolic or sub-symbolic methods, nowadays there
are symbolic applications with sub-symbolic characteris-
tics and vice versa [3]. We choose to adopt an annotation
where a method belongs to symbolic or sub-symbolic if
it uses only symbolic or sub-symbolic parts respectively;
otherwise we categorise it in the in-between methods.
The main differences between these two Al fields are
the following: (1) symbolic approaches produce logical
conclusions, whereas sub-symbolic approaches provide
associative results. (2) The human intervention is com-
mon in the symbolic methods, while the sub-symbolic
learn and adapt to the given data. (3) The symbolic meth-
ods perform best when dealing with relatively small and
precise data, while the sub-symbolic ones are able to
handle large and noisy datasets.

In this paper, we discuss in detail some of the well-
known approaches in each Al domain, and their appli-
cation use-cases in some of the most prominent down-
stream tasks in the domain of knowledge graphs. We
focus on their applicability in the schema representa-
tion, schema matching, knowledge graph completion
and more specifically in entity resolution, link prediction,
entity and triple classification. In this work, we make the
following contributions:

+ A overview of the characteristics, advantages and
disadvantages of the symbolic and sub-symbolic
Al methods (Sections 2 and 3).
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Figure 1: The timeline of Artificial Intelligence methods

« An analysis of the in-between methods and their
different categories as they are presented in the
literature, and their general characteristics (Sec-
tion 4).

« An overview of the most common applications
of the symbolic, sub-symbolic and in-between
methods in knowledge graphs (Section 5).

The rest of this paper is structured as following: Sec-
tion 2 presents an overview of the main characteristics of
the symbolic AI methods. Similarly, in Section 3 we dis-
cuss the main characteristics of the sub-symbolic meth-
ods. In Section 4, we present an overview of the ap-
proaches that combine both symbolic and sub-symbolic
methods, namely, the in-between methods. Then, in
Section 5 we present some of the most important down-
stream tasks in the field of knowledge graphs and we
analyse the different approaches (symbolic, sub-symbolic
and in-between methods) that have been followed in the
literature to tackle these tasks.

2. Symbolic Methods

Symbolic methods, also known as Good Old Fashioned
Artificial Intelligence (GOFAI), refer to human-readable
and explainable processes. The symbolic techniques are
defined by explicit symbolic methods, such as formal
methods and programming languages, and are usually
used for deductive knowledge [4]. They consist of first-
order logic rules, while other methods include rules, on-
tologies, decision trees, planning and reasoning. Accord-
ing to Benderskaya et al [5] the symbolic Al is usually
associated with knowledge bases and expert systems,
and it is a continuation of the von Neumann and Turing
machines.

A key characteristic of symbolic methods is their abil-
ity to explain and reason about the reached conclusion.
Furthermore, even their intermediate steps are often
explainable. The symbolic systems provide a human-
understandable computation flow which makes them
easier to debug, explain and control. In particular, the

rule based systems have the advantage of rule modular-
ity, as the rules are discrete and autonomous knowledge
units that can easily be inserted or removed from a knowl-
edge base [6]. Moreover, they provide knowledge inter-
operability; meaning that in closely related applications,
knowledge transfer is possible. Also, they are better for
abstract problems as they are not highly dependent on
the input data.

On the other hand, the symbolic methods are typi-
cally not well-suitable for cases where datasets have data-
quality issues and might be prone to noise. Under such
circumstances, they are often yielding to sub-optimal
results [5], and they are not possible to conclude (“brittle-
ness”) [7]. Further, the rules and the knowledge usually
are hard and hand-coded, creating the Knowledge Ac-
quisition Bottleneck [8], which refers to the high cost of
human involvement in converting real-world problems
into inputs for symbolic Al systems. Finally, the main-
tenance of rule bases is difficult as it requires complex
verification and validation.

In terms of applications, the symbolic methods work
best on well-defined and static problems, and on manipu-
lating and modelling abstractions. However, traditionally,
they do not have good performance in real-time dynamic
assessments and massive empirical data streams.

3. Sub-symbolic Methods

Contrary to symbolic methods, where the learning hap-
pens through the human supervision and intervention,
sub-symbolic methods establish correlations between
input and output variables. Such relations have high
complexity, and are often formalized by functions that
map the input to the output data or the target variables.

Sub-symbolic methods represent the Connectionism
movement that is trying to mimic a human brain and
its complex network of interconnected neurons with the
Artificial Neural Networks (ANN). The sub-symbolic Al
includes statistical learning methods, such as Bayesian
learning, deep learning, backpropagation, and genetic
algorithms.



Table 1

Symbolic vs Sub-symbolic methods characteristics
Symbolic Sub-symbolic
Symbols Numbers
Logical Associative
Serial Parallel
Reasoning Learning
von Neumann machines Dynamic Systems
Localised Distributed

Rigid and static

Concept composition and
expansion

Model abstraction
Human intervention
Small data

Literal/precise input

Flexible and adaptive
Concept creation, and
generalization

Fitting to data
Learning from data

Big data
Noisy/incomplete input

The sub-symbolic methods are more robust against
noisy and missing data, and generally have high comput-
ing performance. They are easier to scale up, therefore,
they are well suitable for big datasets and large knowl-
edge graphs. Moreover, they are better for perceptual
problems, and they require less knowledge upfront.

However, connectionist methods have some disadvan-
tages. The most important one is the lack of interpretabil-
ity in these methods. This presents a big obstacle to their
applicability in domains where explanations and inter-
pretations are key points. Further, based on the General
Data Protection Regulation of European Union [9], sub-
symbolic techniques are proving to be usually restricted
in critical or high-risk decision applications such as the
medical, legal or military decision applications and the
autonomous cars. Furthermore, they are highly depen-
dant on the training data they process. At first glance, it
might not seem like a problem, however, this results in an
inability to extrapolate results to unseen instances or data
which do not follow a similar distribution as the training
data. Additionally, due to the typically large amount of
parameters that need to be estimated in sub-symbolic
models, they require huge computation power and huge
amounts of data. Another issue arising is the availability
of high quality data for training the algorithms, which
often are difficult to find. Data need to be correctly la-
belled and to have decent representatives of the normal
not to lead to biased outcomes [10].

Most common applications of sub-symbolic methods
include prediction, clustering, pattern classification and
recognition of objects, and Natural Language Processing
(NLP) tasks. Further, we find in sub-symbolic applica-
tions the text classification and categorization, as well as
recognition of speech and text.

4. In-between Methods

Despite the fundamental differences between symbolic
and sub-symbolic the last years there is a link between
them with the in-between methods. Since late 1980s,
there is a discussion about the need of cognitive sub-
symbolic level [11]. The in-between methods consist of
the efforts to bridge the gap between the symbolic and
sub-symbolic paradigms. The idea is to create a system
which can combine the advantages of both methods: the
ability to learn from the environment and the ability to
reason the results.

Most of the recent applications use a combination of
symbolic and connectionist parts to create their algo-
rithms. The used terminology for the range between the
symbolic and sub-symbolic varies, as can be seen in this
Section many methods are found with different names.
Therefore, we refer to them as in-between methods.

4.1. General characteristics

The advantages of the in-between computations are evi-
dent and measurable to specific applications, with higher
accuracy, efficiency and knowledge readability [12]. They
have an explanation capacity with no need for a-priori as-
sumptions, and they are comprehensive cognitive models
which integrate statistical learning with logical reason-
ing. They also perform well with noisy data [13]. An-
other advantage is that these systems during learning can
combine logical rules with data, while fine-tuning the
knowledge based on the input data. Overall, they seem
suitable for applications which have large amounts of het-
erogeneous data and need knowledge descriptions [14].

In the in-between algorithms we find the Knowledge-
based Neural Networks (KBNN or KBANN) [16], Hybrid
Expert System (HES) [17], Connectionist Inductive Learn-
ing and Logic Programming (CILP) and Connectionist
Temporal Logics of Knowledge (CTLK) [14], Graph Neu-
ral Networks (GNN) [18], Tensor Product Representa-
tion [19], in which the core is a neural network that is
loosely-coupled with a symbolic problem-solver. Also,
we find the Logic Tensor Networks [20], Neural Tensor
Networks [21] for representing complex logical struc-
tures, and the latter’s extension are the knowledge graph
translating embedding models [22].

The applications of these methods can be found in
many domains which combine learning and reasoning
parts according to a specific problem. However, the ex-
isting hybrid models are non-generalizable, they cannot
be applied in multiple domains; each time the model is
developed to answer a specific question. Also, there is
no guide deciding the combinations of symbolic and sub-
symbolic parts for computation and representation [2].
Recent downstream applications tend to combine sym-
bolic and sub-symbolic methods for their computation
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Figure 2: The range from symbolic to sub-symbolic as proposed by Hilario [15]

model, more often than using a strictly only one of the
two as can be seen in Section 5.

4.2. Existing Categorisations in
Literature

Some of the in-between methods are found in literature as
connectionist expert systems (or neural network based
expert systems) [23], multi-agent systems [5], hybrid
representations [24], neural-fuzzy [25, 26] and neural-
symbolic (or neurosymbolic [15]) computing, learning
and reasoning’, and its sub-type neurules [27].

To the best of our knowledge, there is no report con-
taining all the in-between methods. Moreover, there is
no standard categorisation or common taxonomy for the
methods which belong in the range between the sym-
bolic and sub-symbolic techniques. The used terminology
varies, therefore, we refer to them as in-between methods,
and not as neural-symbolic, hybrid or unified. In the last
years, there is an increased interest about in-between
methods [28], and there are some review works in the
domain each one presenting a taxonomy. Most of them
refer to the in-between methods as neural-symbolic ap-
proaches.

Garcez et al [14] present a neural-symbolic comput-
ing table that separates the methods to applications of
knowledge representation, learning, reasoning and ex-
plainability. Bader and Hitzler [13] study the dimen-
sions of neural-symbolic integration and propose the
dimensions of usage, language and interrelation. In the
neural-symbolic techniques, they identify two models,
the hybrid and integrated (also called unified or transla-
tional) [29]. The difference between the two is that hybrid
models combine two or more symbolic and sub-symbolic
techniques which run in parallel, while the integrated
neural symbolic systems consist of a main sub-symbolic
component which uses symbolic knowledge in the pro-
cessing.

Hilario [15] separates neurosymbolic integration to
unified and hybrid approaches, each consisted of two
subcategories. Both categories, unified and hybrid, have
a similar description to Bader and Hitzler [13]. In the uni-

*http://www.neural-symbolic.org/

fied approaches, Hilario identifies two main categories
the neuronal and the connectionist symbol processing,
and on the hybrid approaches the translational and func-
tional hybrids respectively. The translational models
translate representations between NNs and symbolic
structures. Furthermore, she creates a visual continu-
ous representation from connectionism to symbolism,
in which includes the categories she is proposing in the
range between sub-symbolic and symbolic techniques,
as it is illustrated in Figure 2.

In continuation of Hilario’s model, McGarry et al [30]
focuses on hybrid rule-based systems. They are propos-
ing the categorisation of the symbolic rules and neural
networks integrations into unified, transformational and
adds the modular subcategory. The latter covers the
hybrid models that they consist of several ANNs and
rule-based modules, which are coupled and integrated
with many degrees. They support that most of hybrid
models are modular.

5. Knowledge Graph Tasks

There are plenty of symbolic, sub-symbolic and in-between
applications in different domains. Our main focus in this
study will be knowledge graph related applications.

A knowledge graph (KG) consists of a set of triples
K C E x R x (EUL),where E is a set of resources
that we refer as entities, L a set of literals, and R a set
of relations. Given a triple (h, r, t) (aka a statement), h is
known as subject, r as relation, and t as object. A KG can
represent any kind of information for the world such as
(Anna_Karenina, writtenBy, Leo_Tolstoy) and
(Leo_Tolstoy, bornIn, Russia),whichmeans that
Anna Karenina is written by Leo Tolstoy, who was born
in Russia. The above notation will help us explain and
analyse the following tasks.

5.1. Schema Representation

Schemata are present from the beginning of databases
and data management systems, and stand in for the
structure of the data and knowledge. In the last years,
there is attention towards linking and structuring data



in the web. Connecting information on the web can
also be achieved by schemata; an example is schema.org’
which focuses on the schema creation, representation and
maintenance [31]. When modelling knowledge graphs,
schemata can be used to prescribe high-level rules that
the graph should follow [4]. Knowledge schema or other-
wise schema representation contains a conceptual model
of the KG. A schema defines the types of entities and rela-
tions which can exist in a KG, and an abstract way of com-
bining these entities and relations in (h,r,t) triples. In our
example, a schema representation could exist in the form

mapping evolves from specific to generic applications.
The majority of these methods focus on class alignment,
however, there also are works focus on relation align-
ment [39, 40, 41].

5.3. Knowledge Graph Completion

Once a knowledge graph is created, it contains a lot of
noisy and incomplete data [42]. In order to fill the missing
information for a constructed knowledge graph, we use
the task of Knowledge Graph Completion (KGC). KGC,

of triples which will state that (Book, writtenBy, Authsimilar to knowledge graph identification [43], is an in-

and (Author, bornIn, Country) [32].

Schema representation is traditionally a symbolic task.
First-order logic, ontologies, and formal knowledge repre-
sentation languages, such as RDF(S), OWL [33], XML [34]
as well as rules have been used for schema formulations.
Some of the most representative examples of schema rep-
resentation in terms of knowledge graphs construction
are YAGO [35] and DBpedia [36]. The two of the most
frequently used KGs are following a symbolic approach
as they are mostly rely on rule mining techniques used
to extract knowledge and represent it in RDF(S) terms.

5.2. Schema Matching

Different KGs use different schemata to represent the
same information which create the need for schema match-
ing. Schema matching or mapping, also can be found as
schema alignment, is happening between two or more
KGs, when we want to perform data integration or map-
ping, and it refers to the process of identifying semanti-
cally related objects. It is similar to the entity resolution,
in Section 5.3.1, with the difference that the latter cares
about mapping object references, such as “L. Tolstoy” and
“Leo Tolstoy”, while the schema matching works on the
schema definitions, such as Author and Person.

Over the last decades, many models and prototypes
have been introduced on schema matching. Based on
a survey in schema matching [37], each model uses an
input schema with most common an OWL data model,
then a RDF, and finally a document type definition. They
process the symbolic input by using different models,
which can be linguistic or language based, constrain-
based, and structured-based. The linguistic matchers
combine the symbolic input with sub-symbolic NLP algo-
rithms [38]. The constrain-based matchers are exploiting
the constrains in data features, such as the data types
and ranges. The structured-based matchers focus on the
database/graph structure. Both constrain and structured
based models use mostly symbolic techniques, while
there is also an interesting raise in combinations of match-
ers (hybrid models). The application domain for schema

Shttps://schema.org/

telligent way of performing data cleaning. This is usually
addressed with filling the missing edges (link prediction),
deduplicating entity nodes (entity resolution) and dealing
with missing values.

Mostly in-between methods are used for KGC, with
the Knowledge Graph Embeddings (KGEs) to be one of
the most powerful and commonly used techniques. KGEs
aim to create a low dimensional vector representation
of the KG and model relation patterns, hence reduce the
complexity of KG related tasks while achieving high ac-
curacy. We further analyse the KGC task into the specific
sub-tasks of entity resolution and link prediction.

5.3.1. Entity Resolution

Entity resolution (ER) is also known as record linkage,
reference matching or duplication. It is the process of
finding duplicated references or records in a dataset. It
is related to data integration as it is one of its founda-
tional problems [44]. Based on our example, we will
have to perform entity resolution between the entities “L.
Tolstoy” and “Leo Tolstoy” which can exist in the triples

(Anna_Karenina, writtenBy, L._Tolstoy) and (Leo_Tol-

stoy, bornIn, Russia), and refer to the same per-
son.

Record linkage was introduced by Halbert L. Dunn in
1946. In 1960s, there are statistical sub-symbolic mod-
els describing the process of entity resolution, which
formulate the mathematical basis for many of the cur-
rent models [45]. In 1990s, machine learning techniques
are applied for this assignment and the techniques used
are mostly based on the in-between methods [46]. Com-
monly, ER techniques rely on attribute similarity between
the entities [47]. The algorithms deployed for ER are in-
spired by information retrieval and relational duplicate
elimination [48].

5.3.2. Link Prediction

Link prediction techniques, also known as edge predic-
tion, have been applied in many and different fields. Edge
prediction refers to the task of adding new links to an ex-
isting graph. In practice, this can be used as a recommen-



dation system for future connections, or as completion-
correction tool that foresees the missing links between
entities.

The link prediction is a well studied field consisted of
many and different approaches. A survey of link predic-
tion in complex networks [49] separates the approaches
based on the method they are using. It identifies the edge
prediction problem to a few techniques that belong to
sub-symbolic, such as Al based ANN, probabilistic and
Monte Carlo algorithms. However, most of the solutions
it proposes, belong to the in-between range. The cur-
rent state-of-the-art for link prediction tasks is focused
on in-between methods. KGEs play a big role in this
task and they can be found in different forms of transla-
tional models [22], neural based KGE with logical rules by
[50], and hierarchy-aware KGEs [51]. In link prediction
tasks, we find the triple classification, entity classification,
and the head (?, writtenBy, Leo_Tolstoy), rela-
tion (Anna_Karenina, ?, Leo_Tolstoy), and tail
(Anna_Kareni-
na, writtenBy, ?) prediction respectively. We addi-
tionally focus on the analysis of entity classification, and
triple classification in the next paragraphs.

Entity Classification. It can also be found as node
classification or type prediction in the literature. Entity
classification tries to predict the type or the class of an
entity given some characteristics. In our case, the input
triple would be (Leo_Tolsto, isA, ?),which could
give the results (1, Person, 99%) and (2, Author,
98%).

While most of link prediction tasks are sub-symbolic
based with combination of some symbolic parts, the en-
tity classification is more related to the schema and on-
tology of the KG, hence, the techniques are symbolic
based [52, 53].

Triple Classification. The triple classification is a
binary problem which answers whether a triple (h,r,t)
is true or not, for example the input (Anna_Karenina,
writtenBy, Leo_Tolstoy)? leads to result (yes,
92%). Systems like the Trans* KGEs [22] use a density
function to make predictions about the triple classifi-
cation based on a probability function. Mayank Kejri-
wal [54] claims that the correct metric for this task with
the usage of KGEs is accuracy, if the test data are bal-
anced.

Triple classification algorithms usually belong to in-
between methods, with some examples using neural ten-
sor networks [21] and time-aware [55], latent factor and
semantic matching models.

6. Conclusions

We represented the symbolic, sub-symbolic and in-between
methods in Al and analysed the key characteristics, main
approaches, advantages and disadvantages of each tech-
nique respectively. Further, we argued that the current,
and possibly future, area of processes is the application
of the in-between methods. We justified this belief by dis-
cussing principal downstream tasks related to knowledge
graph.
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